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Abstract

Following the success of deep convolutional networks,

state-of-the-art methods for 3d human pose estimation have

focused on deep end-to-end systems that predict 3d joint

locations given raw image pixels. Despite their excellent

performance, it is often not easy to understand whether

their remaining error stems from a limited 2d pose (visual)

understanding, or from a failure to map 2d poses into 3-

dimensional positions.

With the goal of understanding these sources of error,

we set out to build a system that given 2d joint locations

predicts 3d positions. Much to our surprise, we have found

that, with current technology, “lifting” ground truth 2d joint

locations to 3d space is a task that can be solved with a

remarkably low error rate: a relatively simple deep feed-

forward network outperforms the best reported result by

about 30% on Human3.6M, the largest publicly available

3d pose estimation benchmark. Furthermore, training our

system on the output of an off-the-shelf state-of-the-art 2d

detector (i.e., using images as input) yields state of the art

results – this includes an array of systems that have been

trained end-to-end specifically for this task. Our results in-

dicate that a large portion of the error of modern deep 3d

pose estimation systems stems from their visual analysis,

and suggests directions to further advance the state of the

art in 3d human pose estimation.

1. Introduction

The vast majority of existing depictions of humans are

two dimensional, e.g. video footage, images or paintings.

These representations have traditionally played an impor-

tant role in conveying facts, ideas and feelings to other peo-

ple, and this way of transmitting information has only been

possible thanks to the ability of humans to understand com-

plex spatial arrangements in the presence of depth ambi-

guities. For a large number of applications, including vir-

tual and augmented reality, apparel size estimation or even

autonomous driving, giving this spatial reasoning power to

machines is crucial. In this paper, we will focus on a partic-

ular instance of this spatial reasoning problem: 3d human

pose estimation from a single image.

More formally, given an image – a 2-dimensional rep-

resentation – of a human being, 3d pose estimation is the

task of producing a 3-dimensional figure that matches the

spatial position of the depicted person. In order to go from

an image to a 3d pose, an algorithm has to be invariant to

a number of factors, including background scenes, lighting,

clothing shape and texture, skin color and image imperfec-

tions, among others. Early methods achieved this invariance

through features such as silhouettes [1], shape context [28],

SIFT descriptors [6] or edge direction histograms [40].

While data-hungry deep learning systems currently outper-

form approaches based on human-engineered features on

tasks such as 2d pose estimation (which also require these

invariances), the lack of 3d ground truth posture data for im-

ages in the wild makes the task of inferring 3d poses directly

from colour images challenging.

Recently, some systems have explored the possibility of

directly inferring 3d poses from images with end-to-end

deep architectures [33, 45], and other systems argue that 3d

reasoning from colour images can be achieved by training

on synthetic data [38, 48]. In this paper, we explore the

power of decoupling 3d pose estimation into the well stud-

ied problems of 2d pose estimation [30, 50], and 3d pose

estimation from 2d joint detections, focusing on the latter.

Separating pose estimation into these two problems gives

us the possibility of exploiting existing 2d pose estimation

systems, which already provide invariance to the previously

mentioned factors. Moreover, we can train data-hungry al-

gorithms for the 2d-to-3d problem with large amounts of

3d mocap data captured in controlled environments, while

working with low-dimensional representations that scale

well with large amounts of data.

Our main contribution to this problem is the design and

analysis of a neural network that performs slightly better

than state-of-the-art systems (increasing its margin when
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the detections are fine-tuned, or ground truth) and is fast (a

forward pass takes around 3ms on a batch of size 64, allow-

ing us to process as many as 300 fps in batch mode), while

being easy to understand and reproduce. The main reason

for this leap in accuracy and performance is a set of simple

ideas, such as estimating 3d joints in the camera coordinate

frame, adding residual connections and using batch normal-

ization. These ideas could be rapidly tested along with other

unsuccessful ones (e.g. estimating joint angles) due to the

simplicity of the network.

The experiments show that inferring 3d joints from

groundtruth 2d projections can be solved with a surprisingly

low error rate – 30% lower than state of the art – on the

largest existing 3d pose dataset. Furthermore, training our

system on noisy outputs from a recent 2d keypoint detec-

tor yields results that slightly outperform the state-of-the-art

on 3d human pose estimation, which comes from systems

trained end-to-end from raw pixels.

Our work considerably improves upon the previous best

2d-to-3d pose estimation result using noise-free 2d detec-

tions in Human3.6M, while also using a simpler archi-

tecture. This shows that lifting 2d poses is, although far

from solved, an easier task than previously thought. Since

our work also achieves state-of-the-art results starting from

the output of an off-the-shelf 2d detector, it also suggests

that current systems could be further improved by focus-

ing on the visual parsing of human bodies in 2d images.

Moreover, we provide and release a high-performance, yet

lightweight and easy-to-reproduce baseline that sets a new

bar for future work in this task. Our code is publicly avail-

able at https://github.com/una-dinosauria/

3d-pose-baseline.

2. Previous work

Depth from images The perception of depth from purely

2d stimuli is a classic problem that has captivated the atten-

tion of scientists and artists at least since the Renaissance,

when Brunelleschi used the mathematical concept of per-

spective to convey a sense of space in his paintings of Flo-

rentine buildings.

Centuries later, similar perspective cues have been ex-

ploited in computer vision to infer lengths, areas and dis-

tance ratios in arbitrary scenes [57]. Apart from perspective

information, classic computer vision systems have tried to

use other cues like shading [53] or texture [25] to recover

depth from a single image. Modern systems [12, 26, 34, 39]

typically approach this problem from a supervised learning

perspective, letting the system infer which image features

are most discriminative for depth estimation.

Top-down 3d reasoning One of the first algorithms for

depth estimation took a different approach: exploiting the

known 3d structure of the objects in the scene [37]. It has

been shown that this top-down information is also used by

humans when perceiving human motion abstracted into a

set of sparse point projections [8]. The idea of reasoning

about 3d human posture from a minimal representation such

as sparse 2d projections, abstracting away other potentially

richer image cues, has inspired the problem of 3d pose esti-

mation from 2d joints that we are addressing in this work.

2d to 3d joints The problem of inferring 3d joints from

their 2d projections can be traced back to the classic work

of Lee and Chen [23]. They showed that, given the bone

lengths, the problem boils down to a binary decision tree

where each split correspond to two possible states of a

joint with respect to its parent. This binary tree can be

pruned based on joint constraints, though it rarely resulted

in a single solution. Jiang [20] used a large database

of poses to resolve ambiguities based on nearest neigh-

bor queries. Interestingly, the idea of exploiting nearest

neighbors for refining the result of pose inference has been

recently revisited by Gupta et al. [14], who incorporated

temporal constraints during search, and by Chen and Ra-

manan [9]. Another way of compiling knowledge about 3d

human pose from datasets is by creating overcomplete bases

suitable for representing human poses as sparse combina-

tions [2, 7, 36, 49, 55, 56], lifting the pose to a reproducible

kernel Hilbert space (RHKS) [18] or by creating novel pri-

ors from specialized datasets of extreme human poses [2].

Deep-net-based 2d to 3d joints Our system is most re-

lated to recent work that learns the mapping between 2d

and 3d with deep neural networks. Pavlakos et al. [33]

introduced a deep convolutional neural network based on

the stacked hourglass architecture [30] that, instead of re-

gressing 2d joint probability heatmaps, maps to probabil-

ity distributions in 3d space. Moreno-Noguer [27] learns

to predict a pairwise distance matrix (DM) from 2-to-3-

dimensional space. Distance matrices are invariant up

to rotation, translation and reflection; therefore, multi-

dimensional scaling is complemented with a prior of human

poses [2] to rule out unlikely predictions.

A major motivation behind Moreno-Noguer’s DM re-

gression approach, as well as the volumetric approach of

Pavlakos et al., is the idea that predicting 3d keypoints

from 2d detections is inherently difficult. For example,

Pavlakos et al. [33] present a baseline where a direct 3d

joint representation (such as ours) is used instead (Table 1

in [33]), with much less accurate results than using volumet-

ric regression1 Our work contradicts the idea that regress-

ing 3d keypoints from 2d joint detections directly should

1This approach, however, is slightly different from ours, as the input is

still image pixels, and the intermediate 2d body representation is a series

of joint heatmaps – not joint 2d locations.
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Figure 1. A diagram of our approach. The building block of our network is a linear layer, followed by batch normalization, dropout and a

RELU activation. This is repeated twice, and the two blocks are wrapped in a residual connection. The outer block is repeated twice. The

input to our system is an array of 2d joint positions, and the output is a series of joint positions in 3d.

be avoided, and shows that a well-designed and simple net-

work can perform quite competitively in the task of 2d-to-3d

keypoint regression.

2d to 3d angular pose There is a second branch of al-

gorithms for inferring 3d pose from images which estimate

the body configuration in terms of angles (and sometimes

body shape) instead of directly estimating the 3d position

of the joints [4, 7, 31, 54]. The main advantages of these

methods are that the dimensionality of the problem is lower

due to the constrained mobility of human joints, and that

the resulting estimations are forced to have a human-like

structure. Moreover, constraining human properties such

as bone lengths or joint angle ranges is rather simple with

this representation [51]. We have also experimented with

such approaches; however in our experience the highly non-

linear mapping between joints and 2d points makes learning

and inference harder and more computationally expensive.

Consequently, we opted for estimating 3d joints directly.

3. Solution methodology

Our goal is to estimate body joint locations in 3-

dimensional space given a 2-dimensional input. Formally,

our input is a series of 2d points x ∈ R
2n, and our output

is a series of points in 3d space y ∈ R
3n. We aim to learn

a function f∗ : R2n → R
3n that minimizes the prediction

error over a dataset of N poses:

f∗ = min
f

1

N

N∑

i=1

L (f(xi)− yi) . (1)

In practice, xi may be obtained as ground truth 2d joint

locations under known camera parameters, or using a 2d

joint detector. It is also common to predict the 3d positions

relative to a fixed global space with respect to its root joint,

resulting in a slightly lower-dimensional output.

We focus on systems where f∗ is a deep neural network,

and strive to find a simple, scalable and efficient architecture

that performs well on this task. These goals are the main

rationale behind the design choices of our network.

3.1. Our approach – network design

Figure 1 shows a diagram with the basic building blocks

of our architecture. Our approach is based on a sim-

ple, deep, multilayer neural network with batch normal-

ization [17], dropout [44] and Rectified Linear Units (RE-

LUs) [29], as well as residual connections [16]. Not de-

picted are two extra linear layers: one applied directly to the

input, which increases its dimensionality to 1024, and one

applied before the final prediction, that produces outputs

of size 3n. In most of our experiments we use 2 residual

blocks, which means that we have 6 linear layers in total,

and our model contains between 4 and 5 million trainable

parameters.

Our architecture benefits from multiple relatively recent

improvements on the optimization of deep neural networks,

which have mostly appeared in the context of very deep

convolutional neural networks and have been the key ingre-

dient of state-of-the-art systems submitted to the ILSVRC

(Imagenet [10]) benchmark. As we demonstrate, these con-

tributions can also be used to improve generalization on our

2d-to-3d pose estimation task.

2d/3d positions Our first design choice is to use 2d and

3d points as inputs and outputs, in contrast to recent work

that has used raw images [11,13,24,32,33,45,46,54,56] or

2d probability distributions [33, 56] as inputs, and 3d prob-

abilities [33], 3d motion parameters [54] or basis pose coef-

ficients and camera parameter estimation [2, 7, 36, 55, 56]

as outputs. While 2d detections carry less information,

their low dimensionality makes them very appealing to

work with; for example, one can easily store the entire Hu-

man3.6M dataset in the GPU while training the network,

which reduces overall training time, and considerably al-

lowed us to accelerate the search for network design and

training hyperparameters.
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Linear-RELU layers Most deep learning approaches to

3d human pose estimation are based on convolutional neu-

ral networks, which learn translation-invariant filters that

can be applied to entire images [13, 24, 32, 33, 45], or 2-

dimensional joint-location heatmaps [33, 56]. However,

since we are dealing with low-dimensional points as inputs

and outputs, we can use simpler and less computationally

expensive linear layers. RELUs [29] are a standard choice

to add non-linearities in deep neural networks.

Residual connections We found that residual connec-

tions, recently proposed as a technique to facilitate the train-

ing of very deep convolutional neural networks [16], im-

prove generalization performance and reduce training time.

In our case, they helped us reduce error by about 10%.

Batch normalization and dropout While a simple net-

work with the three components described above achieves

good performance on 2d-to-3d pose estimation when

trained on ground truth 2d positions, we have discovered

that it does not perform well when trained on the output

of a 2d detector, or when trained on 2d ground truth and

tested on noisy 2d observations. Batch normalization [17]

and dropout [44] improve the performance of our system in

these two cases, while resulting in a slight increase of train-

and test-time.

Max-norm constraint We also applied a constraint on

the weights of each layer so that their maximum norm is

less than or equal to 1. Coupled with batch normalization,

we found that this stabilizes training and improves gener-

alization when the distribution differs between training and

test examples.

3.2. Data preprocessing

We apply standard normalization to the 2d inputs and 3d

outputs by subtracting the mean and dividing by the stan-

dard deviation. Since we do not predict the global position

of the 3d prediction, we zero-centre the 3d poses around

the hip joint (in line with previous work and the standard

protocol of Human3.6M).

Camera coordinates In our opinion, it is unrealistic to

expect an algorithm to infer the 3d joint positions in an ar-

bitrary coordinate space, given that any translation or rota-

tion of such space would result in no change in the input

data. A natural choice of global coordinate frame is the

camera frame [11, 24, 33, 46, 54, 56] since this makes the

2d to 3d problem similar across different cameras, implic-

itly enabling more training data per camera and preventing

overfitting to a particular global coordinate frame. We do

DMR [27] Ours ∆

GT/GT 62.17 37.10 25.07

GT/GT + N (0, 5) 67.11 46.65 20.46

GT/GT + N (0, 10) 79.12 52.84 26.28

GT/GT + N (0, 15) 96.08 59.97 36.11

GT/GT + N (0, 20) 115.55 70.24 45.31

GT/CPM [50] 76.47 – –

GT/SH [30] – 60.52 –

Table 1. Performance of our system on Human3.6M under pro-

tocol #2. (Top) Training and testing on ground truth 2d joint lo-

cations plus different levels of additive gaussian noise. (Bottom)

Training on ground truth and testing on the output of a 2d detector.

this by rotating and translating the 3d ground-truth accord-

ing to the inverse transform of the camera. A direct effect

of inferring 3d pose in an arbitrary global coordinate frame

is the failure to regress the global orientation of the per-

son, which results in large errors in all joints. Note that the

definition of this coordinate frame is arbitrary and does not

mean that we are exploiting pose ground truth in our tests.

2d detections We obtain 2d detections using the state-

of-the-art stacked hourglass network of Newell et al. [30],

pre-trained on the MPII dataset [3]. Similar to previous

work [19, 24, 27, 32, 46], we use the bounding boxes pro-

vided with H3.6M to estimate the centre of the person in the

image. We crop a square of size 440 × 440 pixels around

this computed centre to the detector (which is then resized

to 256 × 256 by stacked hourglass). The average error be-

tween these detections and the ground truth 2d landmarks

is 15 pixels, which is slightly higher than the 10 pixels re-

ported by Moreno-Noguer [27] using CPM [50] on the same

dataset. We prefer stacked hourglass over CPM because (a)

it has shown slightly better results on the MPII dataset, and

(b) it is about 10 times faster to evaluate, which allowed us

to compute detections over the entire H3.6M dataset.

We have also fine-tuned the stacked hourglass model on

the Human3.6M dataset (originally pre-trained on MPII),

which obtains more accurate 2d joint detections on our tar-

get dataset and further reduces the 3d pose estimation error.

We used all the default parameters of stacked hourglass, ex-

cept for minibatch size which we reduced from 6 to 3 due

to memory limitations on our GPU. We set the learning rate

to 2.5× 10−4, and train for 40 000 iterations.

Training details We train our network for 200 epochs us-

ing Adam [21], a starting learning rate of 0.001 and expo-

nential decay, using mini-batches of size 64. Initially, the

weights of our linear layers are set using Kaiming initial-

ization [15]. We implemented our code using Tensorflow,

which takes around 5ms for a forward+backward pass, and
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Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

LinKDE [19] (SA) 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Li et al. [24] (MA) – 136.9 96.9 124.7 – 168.7 – – – – – – 132.2 70.0 – –

Tekin et al. [46] (SA) 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0

Zhou et al. [56] (MA) 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Tekin et al. [45] (SA) – 129.1 91.4 121.7 – 162.2 – – – – – – 130.5 65.8 – –

Ghezelghieh et al. [13] (SA) 80.3 80.4 78.1 89.7 – – – – – – – – – 95.1 82.2 –

Du et al. [11] (SA) 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Park et al. [32] (SA) 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3

Zhou et al. [54] (MA) 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3

Pavlakos et al. [33] (MA) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Ours (SH detections) (SA) 61.6 73.4 63.3 58.3 91.8 93.6 66.3 62.0 91.7 109.4 75.7 86.5 67.2 51.2 52.3 73.6

Ours (SH detections) (MA) 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7 81.9 99.8 69.1 63.9 67.1 50.9 54.8 67.5

Ours (SH detections FT) (MA) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Ours (GT detections) (MA) 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Table 2. Detailed results on Human3.6M [19] under Protocol #1 (no rigid alignment in post-processing). SH indicates that we trained and

tested our model with Stacked Hourglass [30] detections as input, and FT indicates that the 2d detector model was fine-tuned on H3.6M.

GT detections denotes that the groundtruth 2d locations were used. SA indicates that a model was trained for each action, and MA indicates

that a single model was trained for all actions.

around 2ms for a forward pass on a Titan Xp GPU. This

means that, coupled with a state-of-the-art realtime 2d de-

tector (e.g., [50]), our network could be part of full pixels-

to-3d system that runs in real time.

One epoch of training on the entire Human3.6M dataset

can be done in around 2 minutes, which allowed us to ex-

tensively experiment with multiple variations of our archi-

tecture and training hyperparameters.

4. Experimental evaluation

Datasets and protocols We focus our numerical evalua-

tion on two standard datasets for 3d human pose estimation:

HumanEva [42] and Human3.6M [19]. We also show qual-

itative results on the MPII dataset [3], for which the ground

truth 3d is not available.

Human3.6M is, to the best of our knowledge, currently

the largest publicly available datasets for human 3d pose

estimation. The dataset consists of 3.6 million images fea-

turing 7 professional actors performing 15 everyday activ-

ities such as walking, eating, sitting, making a phone call

and engaging in a discussion. 2d joint locations and 3d

ground truth positions are available, as well as projection

(camera) parameters and body proportions for all the ac-

tors. HumanEva, on the other hand, is a smaller dataset that

has been largely used to benchmark previous work over the

last decade. MPII is a standard dataset for 2d human pose

estimation based on thousands of short youtube videos.

On Human3.6M we follow the standard protocol, using

subjects 1, 5, 6, 7, and 8 for training, and subjects 9 and

11 for evaluation. We report the average error in millime-

tres between the ground truth and our prediction across all

joints and cameras, after alignment of the root (central hip)

joint. Typically, training and testing is carried out indepen-

dently in each action. We refer to this as protocol #1. How-

ever, in some of our baselines, the prediction has been fur-

ther aligned with the ground truth via a rigid transformation

(e.g. [7,27]). We call this post-processing protocol #2. Sim-

ilarly, some recent methods have trained one model for all

the actions, as opposed to building action-specific models.

We have found that this practice consistently improves re-

sults, so we report results for our method under these two

variations. In HumanEva, training and testing is done on

all subjects and in each action separately, and the error is

always computed after a rigid transformation.

4.1. Quantitative results

An upper bound on 2d-to-3d regression Our method,

based on direct regression from 2d joint locations, naturally

depends on the quality of the output of a 2d pose detector,

and achieves its best performance when it uses ground-truth

2d joint locations.

We followed Moreno-Noguer [27] and tested under dif-

ferent levels of Gaussian noise a system originally trained

with 2d ground truth. The results can be found in Ta-

ble 1. Our method largely outperforms the Distance-Matrix

method [27] for all levels of noise, and achieves a peak

performance of 37.10 mm of error when it is trained on

ground truth 2d projections. This is about 43% better than

the best result we are aware of reported on ground truth 2d

joints [27]. Moreover, note that this result is also about 30%

better than the 51.9 mm reported by Pavlakos et al. [33],

which is the best result on Human3.6M that we aware of –

however, their result does not use ground truth 2d locations,

which makes this comparison unfair.

Although every frame is evaluated independently, and

we make no use of time, we note that the predictions pro-

duced by our network are quite smooth. A video with
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Protocol #2 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SitingD Smoke Wait WalkD Walk WalkT Avg

Akhter & Black [2]* (MA) 14j 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 176.2 198.6 192.7 181.1

Ramakrishna et al. [36]* (MA) 14j 137.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 150.0 174.8 150.2 157.3

Zhou et al. [55]* (MA) 14j 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 106.5 110.4 115.2 106.7

Bogo et al. [7] (MA) 14j 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 86.8 79.7 87.7 82.3

Moreno-Noguer [27] (MA) 14j 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 71.5 78.0 73.2 74.0

Pavlakos et al. [33] (MA) 17j – – – – – – – – – – – – – – – 51.9

Ours (SH detections) (SA) 17j 50.1 59.5 51.3 56.9 68.5 67.5 51.0 47.2 68.5 85.6 61.2 67.0 55.1 41.1 45.5 58.5

Ours (SH detections) (MA) 17j 42.2 48.0 49.8 50.8 61.7 60.7 44.2 43.6 64.3 76.5 55.8 49.1 53.6 40.8 46.4 52.5

Ours (SH detections FT) (MA) 17j 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Ours (SH detections) (SA) 14j 44.8 52.0 44.4 50.5 61.7 59.4 45.1 41.9 66.3 77.6 54.0 58.8 49.0 35.9 40.7 52.1

Table 3. Detailed results on Human3.6M [19] under protocol #2 (rigid alignment in post-processing). The 14j (17j) annotation indicates

that the body model considers 14 (17) body joints. The results of all approaches are obtained from the original papers, except for (*), which

were obtained from [7].

Walking Jogging

S1 S3 S3 S1 S2 S3 Avg

Radwan et al. [35] 75.1 99.8 93.8 79.2 89.8 99.4 89.5

Wang et al. [49] 71.9 75.7 85.3 62.6 77.7 54.4 71.3

Simo-Serra et al. [43] 65.1 48.6 73.5 74.2 46.6 32.2 56.7

Bo et al. [5] 46.4 30.3 64.9 64.5 48.0 38.2 48.7

Kostrikov et al. [22] 44.0 30.9 41.7 57.2 35.0 33.3 40.3

Yasin et al. [52] 35.8 32.4 41.6 46.6 41.4 35.4 38.9

Moreno-Noguer [27] 19.7 13.0 24.9 39.7 20.0 21.0 26.9

Pavlakos et al. [33] 22.1 21.9 29.0 29.8 23.6 26.0 25.5

Ours (SH detections) 19.7 17.4 46.8 26.9 18.2 18.6 24.6

Table 4. Results on the HumanEva [42] dataset, and comparison

with previous work.

these and more qualitative results can be found at https:

//youtu.be/Hmi3Pd9x1BE.

Robustness to detector noise To further analyze the ro-

bustness of our approach, we also experimented with testing

the system (always trained with ground truth 2d locations)

with (noisy) 2d detections from images. These results are

also reported at the bottom of Table 1.2 In this case, we also

outperform previous work, and demonstrate that our net-

work can perform reasonably well when trained on ground

truth and tested on the output of a 2d detector.

Training on 2d detections While using 2d ground truth

at train and test time is interesting to characterize the per-

formance of our network, in a practical application our sys-

tem has to work with the output of a 2d detector. We

report our results on protocol #1 of Human3.6M in Ta-

ble 2. Here, our closest competitor is the recent volumet-

ric prediction method of Pavlakos et al. [33], which uses

a stacked-hourglass architecture, is trained end-to-end on

Human3.6M, and uses a single model for all actions. Our

2This was, in fact, the protocol used in the main result of [27].

method outperforms this state-of-the-art result by 4.4 mm

even when using out-of-the-box stacked-hourglass detec-

tions, and more than doubles the gap to 9.0 mm when the

2d detector is fine-tuned on H3.6M. Our method also con-

sistently outperforms previous work in all but one of the 15

actions of H3.6M.

Our results on Human3.6M under protocol #2 (using a

rigid alignment with the ground truth), are shown in Table 3.

Although our method is slightly worse than previous work

with out-of-the-box detections, it comes first when we use

fine-tuned detections.

Finally, we report results on the HumanEva dataset in

Table 4. In this case, we obtain the best result to date in 3

out of 6 cases, and overall the best average error for actions

Jogging and Walking. Since this dataset is rather small, and

the same subjects show up on the train and test set, we do

not consider these results to be as significant as those ob-

tained by our method in Human3.6M.

Ablative and hyperparameter analysis We also per-

formed an ablative analysis to better understand the impact

of the design choices of our network. Taking as a basis our

non-fine tuned MA model, we present those results in Ta-

ble 5. Removing dropout or batch normalization leads to

3-to8 mm of increase in error, and residual connections ac-

count for a gain of about 8 mm in our result. However, not

pre-processing the data to the network in camera coordi-

nates results in error above 100 mm – substantially worse

than state-of-the-art performance.

Last but not least, we analyzed the sensitivity of our net-

work to depth and width. Using a single residual block re-

sults in a loss of 6 mm, and performance is saturated after 2

blocks. Empirically, we observed that decreasing the layers

to 512 dimensions gave worse performance, while layers

with 2 048 units were much slower and did not seem to in-

crease the accuracy.
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Figure 2. Example output on the test set of Human3.6M. Left: 2d observation. Middle: 3d ground truth. Right (green): our 3d predictions.

error (mm) ∆

Ours 67.5 –

w/o batch norm 88.5 21.0

w/o dropout 71.4 3.9

w/o batch norm w/o dropout 76.0 8.5

w/o residual connections 75.8 8.3

w/o camera coordinates 101.1 33.6

1 block 74.2 6.7

2 blocks (Ours) 67.5 –

4 blocks 69.3 1.8

8 blocks 69.7 2.4

Table 5. Ablative and hyperparameter sensitivity analysis.

4.2. Qualitative results

Finally, we show some qualitative results on Hu-

man3.6M in Figure 2, and from images “in the wild” from

the test set of MPII in Figure 3. Our results on MPII reveal

some of the limitations of our approach; for example, our

system cannot recover from a failed detector output, and it

has a hard time dealing with poses that are not similar to

any examples in H3.6M (e.g. people upside-down). Finally,

in the wild most images of people do not feature full bodies,

but are cropped to some extent. Our system, trained on full

body poses, is currently unable to deal with such cases.

5. Discussion

Looking at Table 2, we see a generalized increase in er-

ror when training with SH detections as opposed to training

with ground truth 2d across all actions – as one may well

expect. There is, however, a particularly large increase in

the classes taking photo, talking on the phone, sitting and

sitting down. We hypothesize that this is due to the se-

vere self-occlusions in these actions – for example, in some

phone sequences, we never get to see one of the hands of

the actor. Similarly, in sitting and sitting down, the legs are

often aligned with the camera viewpoint, which results in

large amounts of foreshortening.

Further improvements The simplicity of our system

suggests multiple directions of improvement in future work.

For example, we note that stacked hourglass produces fi-

nal joint detection heatmaps of size 64 × 64, and thus a

larger output resolution might result in more fine-grained

detections, moving our system closer to its performance

when trained on ground truth. Another interesting direc-

tion is to use multiple samples from the 2d stacked hour-

glass heatmaps to estimate an expected gradient – à la pol-

icy gradients, commonly used in reinforcement learning –

so as to train a network end-to-end. Yet another idea is to

emulate the output of 2d detectors using 3-dimensional mo-

cap databases and “fake” camera parameters for data aug-

mentation, perhaps following the adversarial approach of

Shrivastava et al. [41]. Learning to estimate coherently the

depth of each person in the scene is an interesting research

path, since it would allow our system to work on 3d pose

estimation of multiple people. Finally, our architecture is

simple, and it is likely that further research into network

design could lead to better results on 2d-to-3d systems.

5.1. Implications of our results

We have demonstrated that a relatively simple deep feed-

forward neural network can achieve a remarkably low error

rate on 3d human pose estimation. Coupled with a state-of-

the-art 2d detector, our system obtains the best results on 3d

pose estimation to date.
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Figure 3. Qualitative results on the MPII test set. Observed image, 2d detection with Stacked Hourglass [30], (in green) our 3d prediction.

The bottom 3 examples are typical failure cases, where either the 2d detector has failed badly (left), or slightly (right). In the middle, the 2d

detector does a fine job, but the person is upside-down and Human3.6M does not provide any similar examples – the network still seems

to predict an average pose.

Our results stand in contrast to recent work, which has

focused on deep, end-to-end systems trained from pixels to

3d positions, and contradicts the underlying hypothesis that

justify the complexity of recent state-of-the-art approached

to 3d human pose estimation. For example, the volumetric

regression approach of [33] et al. is based on the hypothe-

sis that directly regressing 3d points is inherently difficult,

and regression in a volumetric space would provide easier

gradients for the network (see Table 1 in [33]). Although

we agree that image content should help to resolve chal-

lenging ambiguous cases (consider for example the classic

turning ballerina optical illusion), competitive 3d pose es-

timation from 2d points can be achieved with simple high

capacity systems. This might be related to the latent in-

formation about subtle body and motion traits existing in

2d joint stimuli, such as gender, which can be perceived

by people [47]. Similarly, the use of a distance matrix as

a body representation in [27] is justified by the claim that

invariant, human-designed features should boost the accu-

racy of the system. However, our results show that well

trained systems can outperform these particular features in

a simple manner. It would be interesting to see whether a

combination of joint distances and joint positions boost the

performance even further – we leave this for future work.

6. Conclusions and future work

We have shown that a simple, fast and lightweight deep

neural network can achieve surprisingly accurate results in

the task of 2d-to-3d human pose estimation; and coupled

with a state-of-the-art 2d detector, our work results in an

easy-to-reproduce, yet high-performant baseline that out-

performs the state of the art in 3d human pose estimation.

Our accuracy in 3d pose estimation from 2d ground

truth suggest that, although 2d pose estimation is consid-

ered a close to solved problem, it remains as one of the

main causes for error in the 3d human pose estimation task.

Moreover, our work represents poses in simple 2d and 3d

coordinates, which suggests that finding invariant (and more

complex) representations of the human body, as has been

the focus of recent work, might either not be crucial, or have

not been exploited to its full potential.

Finally, given its simplicity and the rapid development

in the field, we like to think of our work as a future base-

line, rather than a full-fledged system for 3d pose esti-

mation. This suggests multiple directions of future work.

For one, our network currently does not have access to vi-

sual evidence; we believe that adding this information to

our pipeline, either via fine-tuning of the 2d detections or

through multi-sensor fusion will lead to further gains in per-

formance. On the other hand, our architecture is similar to a

multi-layer perceptron, which is perhaps the simplest archi-

tecture one may think of. We believe that a further explo-

ration of the network architectures will result in improved

performance. These are all interesting areas of future work.
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