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Abstract

In this paper we propose a novel solution to the multi-

view matching problem that, given a set of noisy pairwise

correspondences, jointly updates them so as to maximize

their consistency. Our method is based on a spectral de-

composition, resulting in a closed-form efficient algorithm,

in contrast to other iterative techniques that can be found

in the literature. Experiments on both synthetic and real

datasets show that our method achieves comparable or su-

perior accuracy to state-of-the-art algorithms in signifi-

cantly less time. We also demonstrate that our solution can

efficiently handle datasets of hundreds of images, which is

unprecedented in the literature.

1. Introduction

Establishing correspondences between feature sets is a

fundamental problem in computer vision, that lies at the ba-

sis of any geometric computation (e.g., structure from mo-

tion) and also object recognition and shape analysis. In this

paper we consider the case in which features are extracted

from a collection of images.

The majority of the works on this topic focus on finding

correspondences between two feature sets [14, 11, 13, 12,

15, 20]. However, in many tasks it is often required to find

matches across multiple views. Moreover, recent studies

have suggested that jointly optimizing the correspondences

across the whole dataset can lead to significant improve-

ments when compared to computing matches between pairs

of views in isolation [19, 31], since pairwise matching al-

gorithms can generate noisy and unreliable results.

As a matter of fact, appearance and geometry alone can-

not guarantee the correctness of the matches, hence all one

can do is to resort to higher level constraints that arise from

the closed-loop consistency of matching across multiple

views. This is called joint matching or multi-view match-

ing by some authors.

A natural approach to joint matching consists in operat-

ing directly in the feature space, namely optimizing a cost

function which explicitly depends on the features extracted

in all the images. Early solutions of this type include the

methods presented in [21, 22, 16, 25]. More recently, the

authors of [6] cast multi-view matching to an image index-

ing problem, while in [3] a game-theoretical approach is

adopted and the matching problem is expressed as a non-

cooperative game. Rank constraints are introduced in [18]

for point matching across video frames, and this approach

is extended in [30, 8], where the joint matching problem is

robustly formulated as a low-rank and sparse matrix decom-

position.

A different approach is adopted in [19, 7, 2, 31, 28]

where multi-view matching is solved in two steps: first,

matching between pairs of images is performed in isola-

tion; then, such correspondences are improved by globally

optimizing their internal coherence, without relying on the

actual value of the features. In this paper we concentrate

on these methods, for they are faster and less memory-

demanding than feature-based ones.

A key concept in this context is that of cycle consistency,

namely the composition of pairwise matches along any loop

should give the identity. This property is exploited in sev-

eral algorithms to remove outliers among pairwise corre-

spondences [29, 17, 9]. However, in practice, a few number

of consistent cycles may be found due to noise, and con-

sidering all the cycles is computationally intractable. It is

shown in some recent works [19, 7, 31] that, if all the pair-

wise correspondences are collected in a block-matrix, then

cycle consistency can be reduced to the requirement that

such a matrix is positive semidefinite and low-rank. The

authors of [19] express multi-view matching as a synchro-

nization problem, which is approximately solved via spec-

tral decomposition. In [7] a solution based on semidefinite

programming is proposed, which, however, assume total

feature correspondences between all images. Such tech-

nique is extended in [2] in order to handle partial corre-

spondences, and theoretical guarantees for exact matching

in the presence of corrupted input are provided, assuming

a certain noise model. In [31] the joint matching problem

is formulated as a low-rank matrix recovery task and the
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nuclear-norm relaxation for rank minimization is employed.

The resulting cost function is optimized via the Alternating

Direction Method of Multipliers (ADMM). Finally, in [28]

a solution based on the proximal Gauss-Seidel method is

provided, which, as [7], assumes total correspondences be-

tween all the images, thus limiting its applicability to real

scenarios.

In this paper we propose a novel closed-form method for

multi-view matching, called MATCHEIG, which proceeds

as follows: first, the top eigenvectors of the block-matrix

containing pairwise correspondences are computed; then,

the eigenvectors are projected onto permutations to yield

the output pairwise matches. The resulting method is ex-

tremely simple and it can be coded in a few lines of Matlab.

Its accuracy is comparable or superior to the state of the art,

as shown by synthetic and real experiments, and it is sig-

nificantly faster than all the competing methods. Thanks to

its computational efficiency it successfully handles sets of

hundreds of images, where others fail to produce a solution.

The proposed method share the same framework as [19],

since it is based on a spectral decomposition. Differences

with respect to [19] are detailed in Sec. 3, and they imply

a significant improvement in performance, as demonstrated

by the experiments.

The paper is organized as follows. Sec. 2 formally de-

fines the problem and in Sec. 3 the proposed method is de-

scribed. Sec. 4 presents experiments on both synthetic and

real data and analyzes the results. Finally, Sec. 5 draws the

conclusions.

2. Problem formulation

The goal of multi-view matching is to establish feature

correspondences between all pairs of images. Let n denote

the number of images and let mi denote the number of fea-

tures in image i. The correspondences between the features

in image j and those in image i can be represented as a par-

tial permutation matrix Pij ∈ {0, 1}mi×mj constructed as

follows: [Pij ]h,k = 1 if feature k in image j is matched with

feature h in image i; [Pij ]h,k = 0 otherwise. If row [Pij ]h,·
is a row of zeros, then feature h in image i does not have a

matching feature in image j. If column [Pij ]·,k is a column

of zeros, then feature k in image j does not have a match-

ing feature in image i. A partial permutation matrix has at

most one nonzero entry in each row and column, and these

nonzero entries are all 1. If exactly one entry in each row

and column is equal to 1 (and all other entries are 0), then

the permutation is total. Partial permutations are suitable

to model matches in practical scenarios, since they can rep-

resent missing correspondences, whereas the usage of total

permutations requires that the same set of features is present

in all the images, which is an unrealistic assumption.

Let us assume that all the features belong to a universe

set. Let Pi ∈ {0, 1}mi×d denote the partial permutation

matrix representing the correspondences between the fea-

tures in image i and those in the universe, where d denotes

the size of the universe. In the absence of noise, the cor-

respondences between image j and image i can be equiva-

lently represented by first computing the matches between

image j and the universe, and then from the universe to im-

age i, namely

Pij = PiP
T

j . (1)

Equation (1) is called the consistency constraint. The ma-

trix Pij is referred to as the relative permutation of the pair

(i, j), and the matrix Pi (resp. Pj) is referred to as the

absolute permutation of image i (resp. j). According to

Eq. 1, the solution to the multi-view matching problem can

also be achieved by first computing n absolute permutations

P1, . . . , Pn and then setting Pij = PiP
T

j .

2.1. Spectral properties

As observed in [19, 7, 31], the consistency constraint

can be expressed in a compact matrix form if all the ab-

solute and relative permutations are collected in two block-

matrices X ∈ {0, 1}m×d and Z ∈ {0, 1}m×m respectively,

where m =
∑n

i=1
mi, namely

X =




P1

P2

. . .
Pn


 , Z =




P11 P12 . . . P1n

P21 P22 . . . P2n

. . . . . .
Pn1 Pn2 . . . Pnn


 . (2)

Note that Z may contain zero blocks: if all the features

in image i do not match with any feature in image j, then

Pij = 0. Using this notation, Eq. (1) becomes

Z = XXT (3)

which implies that Z is symmetric positive semidefinite and

has rank d.

Proposition 1. [19, 26] The columns of X are d (orthog-

onal) eigenvectors of Z corresponding to the eigenvalue n,

assuming that all the permutations are total.

Proof. In the case of total permutations we have PT

i Pi = Id
and hence XTX = nId, where Id denotes the d×d identity

matrix. Thus ZX = XXTX = nX , which means that the

columns of X are d eigenvectors of Z corresponding to the

eigenvalue n.

The following new result generalizes Prop. 1 to the case

of partial permutations.

Proposition 2. The columns of X are d (orthogonal) eigen-

vectors of Z and the corresponding eigenvalues are given

by the diagonal of V :=
∑n

i=1
PT

i Pi.
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Proof. In the case of partial permutations, Pi does not have

an inverse, thus the d × d (diagonal) matrix PT

i Pi is not

equal to the identity: [PT

i Pi]k,k = 1 if the k-th feature in

the universe is present in image i; [PT

i Pi]k,k = 0 other-

wise. Define the d × d diagonal matrix V := XTX =∑n

i=1
PT

i Pi. Then

ZX = XV (4)

which is a spectral decomposition, i.e., the columns of X
are d eigenvectors of Z and the corresponding eigenvalues

are given by the diagonal of V . Specifically, the k-th eigen-

value is an integer which counts how many images match

the k-th feature in the universe.

Note that in the case of total permutations all the features

are present in all the images, therefore V = nId and all the

eigenvalues are equal, hence we get Prop. 1. Since Z has

rank d, the matrix V contains the largest eigenvalues of Z
and all the other eigenvalues are zero. Thus, in the presence

of noise, we can take the eigenvectors of Z corresponding

to the d largest eigenvalues as an estimate of X . In Sec. 2.2

we describe the meaning of this procedure in terms of an

optimization problem, and in Sec. 3 we show how it can

be exploited to derive an efficient method for multi-view

matching.

2.2. Optimization problem

In practice, pairwise correspondences contain errors,

hence what we measure is an estimate P̂ij of the relative

permutation between image i and image j (in this paper

we use the hat accent to denote approximate quantities).

The goal is to compute a set of partial permutation matrices

{Pij}
n
i,j=1 such that the consistency constraint is satisfied

and Pij is as close as possible to its measure P̂ij , namely

Pij ≈ P̂ij for all i, j ∈ {1, . . . , n}. A possible approach

consists in considering the following optimization problem

max
{Pij}n

i,j=1

n∑

i,j=1

〈P̂ij , Pij〉 s.t. Pij = PiP
T

j (5)

where each optimization variable is constrained to be a par-

tial permutation matrix. Here 〈·, ·〉 denotes the matrix inner

product, i.e. 〈A,B〉 = trace(ABT). The cost function in

(5) counts, for each image pair (i, j), the number of fea-

tures equally matched by permutations Pij and P̂ij .

If Ẑ denotes the block-matrix containing the measured

relative permutations P̂ij , then Eq. (5) rewrites

max
Z

〈Ẑ, Z〉 = max
Z

trace(ẐZT) s.t. Z = XXT (6)

⇐⇒ max
X

〈Ẑ,XXT〉 = max
X

trace(XTẐX) (7)

where X is constrained to be composed of partial permuta-

tion matrices. Maximizing the objective function in Eq. (7)

is a challenging task since the feasible set consists of binary

variables which makes the problem combinatorially NP-

hard. Moreover, optimizing with respect to multiple permu-

tation matrices simultaneously increases the difficulty of the

problem. For these reasons, it is common practice to relax

some constraints on the optimization variables, thus provid-

ing tractable approaches that solve the multi-view match-

ing problem approximately but efficiently. Some examples

include the semidefinite relaxation [2], the low-rank relax-

ation [31] and the spectral relaxation [19]. The SPECTRAL

method of [19] treats X as a real matrix instead of a binary

matrix and enforces the columns of X to be orthogonal, re-

sulting in the following optimization problem

max
UTU=Id

trace(UTẐU) (8)

where the notation U instead of X is used to underline that,

due to the relaxation, the optimal U will not be composed

of partial permutation matrices. Equation (8) is a general-

ized Rayleigh problem, whose solution is given by the d
leading eigenvectors of Ẑ. In order to obtain proper corre-

spondences from U , each mi × d block is projected onto

the nearest permutation matrix via the Kuhn-Munkres algo-

rithm [10], which solves a linear assignment problem, thus

returning a set of estimated absolute permutations.

3. Our method

The SPECTRAL method is extremely fast, as multi-view

matching is solved in one shot via spectral decomposition.

However, since absolute permutations are computed, the

knowledge of the size of the universe d is required, which is

not available in practice. The importance of a correct esti-

mate of d is also demonstrated experimentally in Sec. 4.1.1.

We introduce here a novel technique for multi-view

matching, dubbed MATCHEIG, which inherits the positive

aspects of the SPECTRAL method, namely efficiency and

simplicity, and at the same time it overcomes its drawback,

i.e., the need of the correct value of d as input. The key ob-

servation is that relative permutations are independent from

d, thus a method that aims at producing relative permuta-

tions instead of absolute ones can get by without knowing

precisely d. Specifically, our method proceeds as follows.

First, the top d eigenvectors of Ẑ are computed and col-

lected in a m × d matrix U , as done by SPECTRAL. Let

D be the diagonal matrix containing the corresponding d
eigenvalues λ1, . . . λd. The matrix

Ẑd = UDUT (9)

is the solution of (6) under the spectral relaxation. In this

way we get an estimate of Z – which contains relative per-

mutations, and this is a key difference with respect to the

SPECTRAL method that provides an estimate of X – which

contains absolute permutations.
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Suppose that we are given an estimate d̂ of the size of the

universe such that d̂ ≥ d, and we compute Ẑ
d̂

accordingly.

Since Ẑ has approximately rank d, we expect that the least

d̂ − d eigenvalues λd+1, . . . λd̂
are smaller than the top d

eigenvalues, thus the corresponding eigenvectors in U have

a limited impact on Ẑ
d̂
, in particular: ‖Ẑd−Ẑ

d̂
‖
2
= |λd+1|.

Note that, due to the relaxation, the mi × mj blocks of

Ẑd are not guaranteed to be partial permutation matrices.

In order to enforce this constraint we analyze two different

strategies. A first stage common to both consists in setting

to zero all the entries smaller than a given threshold t. We

set t = 0.25 in simulations and t = 0.5 in real experiments.

A higher threshold allows for more missing matches, and

this is useful in real datasets to model the presence of iso-

lated features.

Then, a principled approach consists in projecting

each block onto the closest partial permutation matrix

via the Kuhn-Munkres algorithm. We call this method

MATCHEIG-CP, where CP stands for “closest permuta-

tion”. This projection, however, slows down the comput-

ing time, so in our MATCHEIG algorithm we use a greedy

strategy that, if applied to each block, returns a valid permu-

tation, although not the closest one. This strategy, imple-

mented in the function matrix2perm(), is approximate but

it produces no noticeable loss in accuracy, while greatly

boosting the speed, as experiments will demonstrate.

The matrix2perm() function takes a matrix C as input and

returns a (partial) permutation matrix P constructed as fol-

lows: search among the non-zero entries of C for the ones

where the maximum over the corresponding row or col-

umn is achieved. These entries are then sorted by decreas-

ing magnitude and examined sequentially starting from the

largest element: let (i, j) be the index of the current entry,

and let P be the output matrix, initialized to 0; then [P ]i,j
is set to 1 provided that P remains a partial permutation.

The idea behind this procedure is the following. For a

given row i, which corresponds to a feature in one image,

each entry [C]i,j represents the extent of pairing between

feature i and feature j, and the greatest element in this row

can be regarded as the most likely correspondence. The

same holds for each column. To these putative matches we

need to apply the principle of exclusion, and we do it in

a greedy way [23]: the strongest match wins and inhibits

other 1s to be placed in its row or column.

The Matlab code of MATCHEIG is reported in Algo-

rithm 1. MATCHEIG-CP has a function implementing the

Kuhn-Munkres projection instead of matrix2perm(). We ex-

ploited the sparse eigen-solver (eigs) since Ẑ is sparse and

only the top d̂ eigenvectors are required.

Note that, because of noise, Ẑ
d̂

is full, in general, and

its size can become large in practical scenarios. However,

this matrix needs not to be explicitly computed, for only

one block is needed at a time. Specifically, when an im-

age pair (i, j) is considered, the product UiDUT

j need to be

computed, where Ui denotes the mi × d̂ block in U corre-

sponding to image i and Uj denotes the mj × d̂ block in

U corresponding to image j. Therefore we only need to

store the matrix UD
1

2 instead of Ẑ
d̂
, and this observation

considerably reduces the storage space necessary to run the

algorithm.

Note also that the projection step (either via the Kuhn-

Munkres algorithm or via the approximate strategy) can be

performed in parallel, since each image pair is independent

from the others, thus speeding up the process.

Algorithm 1 MATCHEIG

function Zout = MatchEIG(Z,d,n,dimP ,t)

% Z: input matches

% d: estimate of universe size

% n: number of images

% dimP: size of each permutation

% t: threshold

cm = [0; cumsum(dimP (1:end -1))];

blk = @(k) 1+cm(k):cm(k)+dimP(k);

% spectral decomposition

[U,D] = eigs(Z,d,’lm’);

U=U*sqrt(D);

for i=1:n

for j=i:n

Zb = U(blk(i) ,:)*U(blk(j) ,:) ’;

Zb(Zb<t)=0; % thresholding

% project onto permutations

Zout(blk(i),blk(j))=matrix2perm(Zb);

end

end

end

3.1. Computational complexity

The core of the algorithm is the eigenvalue decomposi-

tion of a sparse matrix, which is computed with a Lanc-

zos method, implemented by the eigs function of Matlab.

The method is iterative: every iteration is O(m) [5], but the

number of iterations cannot be bounded by a constant.

The second and final step of our algorithm is the pro-

jection onto permutation matrices. For a matrix of dimen-

sion r, computing the nearest permutation via the Kuhn-

Munkres algorithm takes O(r3) time [1]. As for the ap-

proximate strategy, we have to sum the cost for computing

the maximums over rows/columns, which is O(r2), and the

cost for sorting such values, which is O(r log(r)), result-

ing in O(r2). Since the average dimension of each block
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in Ẑ is m/n and the number of blocks is n2, the total cost

for the projection step is O(m3/n) for MATCHEIG-CP and

O(m2) for MATCHEIG.

(a) MATCHEIG

(b) MATCHEIG-CP

(c) MATCHALS [31]

(d) SPECTRAL [19]

Figure 1: F-score for the competing methods (the higher the

better). In the left column, the number of views n and the

input error rate re are varying, while the observation ratio

ro is constant and equal to 0.4. In the right column, ro and

re are varying, while n = 30. In all the experiments, the

size of the universe d is set to 100.

4. Experiments

In order to evaluate the performance of the proposed

methods, we ran experiments on both synthetic and real

datasets. In the synthetic experiments, performances have

been measured in terms of precision (number of correct

matches returned divided by the number of matches re-

turned) and recall (number of correct matches returned di-

vided by the number of correct matches that should have

been returned). In order to provide a single figure of merit

we computed the F-score (twice the product of precision

and recall divided by their sum), which is a measure of ac-

curacy and reaches its best value at 1 and worst at 0. In the

real experiments the number of matches that should have

been returned is not known, hence only the precision can be

computed.

Results in terms of accuracy (or precision) and comput-

ing time are compared with methods which, as ours, first

compute pairwise matches and then jointly update them

without involving the features, namely MATCHALS [31]

and SPECTRAL [19]. The MATCHALS code is available

online 1 and the SPECTRAL code is courtesy of the au-

thors of [31]. The method described in [2] has already been

shown to have accuracy comparable with [31] with a much

higher computing time. For this reason we did not consider

it in the experiments. All the algorithms are implemented

in Matlab and tested on a PC with an Intel Core i5-4200M

CPU @ 2.50GHz and 8GB RAM. Our implementation of

MATCHEIG is available on the web2.

4.1. Synthetic experiments

For the synthetic case, the size of the universe was set to

d = 100, while the number of views varied from n = 10
to n = 50. The observation ratio ro, i.e., the probabil-

ity that a feature is seen in a view, decreased from 1 (that

corresponds to total permutations) to 0.2. After generating

ground-truth absolute permutations, pairwise matches were

computed from Eq. (3), and random errors were added to

relative permutations by switching two matches, removing

true matches or adding false ones. In the experiments the

input error rate re, i.e., the ratio of mismatches, varied from

0 to 0.8. For each configuration the test was run 10 times

and the average F-score was evaluated.

Synthetic experiments were run providing the true rank

(equal to the size of the universe d) to all the methods

(MATCHALS uses it to compute the parameter k = 2d,

as suggested in [31]). Moreover, for MATCHALS we fixed

the number of possible iterations to 100 and we chose the

values proposed by the authors for all the other parameters.

Results in terms of accuracy are illustrated in Fig. 1.

The analyzed methods show similar behaviors, achieving

high accuracy rates even in the presence of high noise con-

tamination, especially when the number of views is large.

Please note that there is no loss of accuracy when using the

approximated projection onto permutations (MATCHEIG)

with respect to the exact closest permutation, as done by

MATCHEIG-CP.

We also evaluated the computing time, varying the size

1https://fling.seas.upenn.edu/∼xiaowz/dynamic/wordpress/matching/
2http://www.diegm.uniud.it/fusiello/demo/mvm/
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Figure 2: Average computing time against size of the universe, observation ratio and number of views.

of the universe, the observation ratio and the number of

views. Figure 2 shows that MATCHEIG and SPECTRAL

are the fastest algorithms, while MATCHALS is on aver-

age an order of magnitude slower. Comparing MATCHEIG

and MATCHEIG-CP, it is clear that the Kuhn-Munkres al-

gorithm is computationally much more expensive than the

approximate procedure. Since the accuracy provided by the

two projection algorithms is the same, as demonstrated by

Fig. 1, only the fastest version (MATCHEIG) will be used

in real experiments.

estimated size of universe
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F
-s

c
o
re
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1

MatchEIG

MatchEIG-CP

MatchALS

Spectral

Figure 3: F-score versus estimated size of the universe d̂.

The true size of universe is d = 100, n = 30, ro = 0.6, and

re = 0.1.

4.1.1 Sensitivity to rank estimate

All the evaluated methods require as input an estimate of

the size of the universe, which corresponds to the rank of

the ground-truth matrix Z. However, when the input ma-

trix Ẑ is noisy, estimating this rank can be difficult [31],

hence the sensitivity of a method to the estimated rank d̂
becomes crucial. As demonstrated in Fig. 3, MATCHEIG

and MATCHALS give good results whenever d̂ ≥ d. The

SPECTRAL method, instead, is extremely sensitive to this

parameter and performs well only if d̂ = d.

4.2. Real experiments

For evaluating the applicability of the proposed method

in real scenarios, we tested MATCHEIG, MATCHALS and

SPECTRAL on popular benchmark datasets (Graffiti, EPFL

[27] and Middlebury [24] datasets) with up to 363 images.

To generate the input to the algorithms, a set of features

was first extracted in each image with SIFT [14] using the

VLFeat library3. Subsequently, correspondences between

pairs of images were established using nearest neighbor and

ratio test as in [14] and refined using RANSAC [4]. Fi-

nally, features with matches in less than two images were

removed, since they are not significant in joint matching.

In these experiments the universe set is not known, so we

estimated its dimension as twice the average number of fea-

tures present in each image, and provided all the methods

with this estimate. For the same reason only the precision

value is reported, together with the absolute number of cor-

rect matches returned, that can give some relative indication

on the recall. For MATCHALS, we set the parameter m′/m
to 0.7 (see [31]) to take into consideration the presence of

isolated features in real images, as suggested by the authors.

The maximum number of iterations was fixed to 100 and the

default values were used for all the other parameters.

Matches are considered correct if the corresponding

point is located within a given distance threshold from

what is predicted. In the case of the Graffiti datasets the

ground-truth homographies allow to predict the position

of the point, whereas for EPFL and Middlebury datasets

the ground-truth cameras allow to predict the epipolar line

where the corresponding point should lie. In both cases the

threshold (in pixels) has been set equal to 0.01 times the

image diagonal.

4.2.1 Graffiti dataset

The Graffiti datasets4 consist of eight sequences with six

images each, showing different structured and textured pla-

nar scenes. Each dataset is characterized by different image

transformations, e.g., change of viewpoint, zoom, blur, illu-

mination and rotation.

Table 1 shows the performances of joint matching on

3http://www.vlfeat.org/
4http://www.robots.ox.ac.uk/∼vgg/data/data-aff.html
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Input MATCHEIG MATCHALS [31] SPECTRAL [19]

Dataset n d̂ PR [%] PR [%] CM time [s] PR [%] CM time [s] PR [%] CM time [s]

Graffiti 6 382 93.85 95.63 678 12 96.02 747 91 96.24 614 24

Boat 6 578 98.75 99.03 1731 35 98.63 1154 209 98.66 1544 45

Bark 6 684 99.71 99.77 1323 58 100.00 914 307 99.67 1225 77

Ubc 6 891 99.36 99.66 3828 139 99.67 3030 681 99.63 3533 207

Trees 6 1015 98.48 98.46 2885 184 98.73 2484 971 98.51 2719 255

Light 6 1113 98.67 99.39 4105 336 99.43 3287 1258 98.95 2253 416

Wall 6 1236 99.40 99.45 3253 341 99.38 2871 1644 99.57 2760 456

Bikes 6 1759 99.12 99.39 4866 954 99.53 4228 3828 99.26 4149 1298

Table 1: Results on the Graffiti dataset. n is the number of images, PR is the precision and CM is the number of correct

matches returned. Time is in seconds.

Input MATCHEIG MATCHALS [31] SPECTRAL [19]

Dataset n d̂ PR [%] PR [%] CM time [m] PR [%] CM time [m] PR [%] CM time [m]

Herz-Jesu-P8 8 386 94.40 95.08 4545 < 1 94.87 4047 2 94.41 3987 < 1

Entry-P10 10 432 75.11 79.24 5978 5 74.17 5726 4 76.10 6236 4

Fountain-P11 11 374 94.35 94.70 6988 3 94.15 6717 3 91.92 7849 3

Castle-P19 19 314 70.29 75.21 5109 3 66.22 7014 9 34.41 7605 3

Herz-Jesu-P25 25 517 90.20 93.45 25120 7 89.23 32528 41 47.86 32876 8

Castle-P30 30 445 72.32 81.01 16754 8 68.92 24844 57 34.67 25884 10

Temple Ring 47 396 73.72 88.25 18426 6 55.91 40096 260 28.99 46432 7

Dino Ring 48 340 75.37 92.11 23406 2 66.66 44215 94 34.49 48979 3

Temple 312 689 55.50 89.06 379545 153 – – – 14.56 1571708 228

Dino 363 493 63.48 95.66 862221 88 – – – 18.97 2231890 111

Table 2: Results on the EPFL [27] and Middlebury datasets [24]. n is the number of images, PR is the precision and CM is

the number of correct matches returned. Time is in minutes.

these datasets. The input error is already small, and all

the methods achieve a precision higher than 95%, with a

comparable number of correct matches returned, confirm-

ing the results of the synthetic experiments. This dataset

is not particularly challenging, as it consists of few images

with little differences in visual content among them; how-

ever it is widely used for testing multi-view matching al-

gorithms, therefore it has been included here. A consid-

eration can be made regarding the computing time, with

MATCHEIG being on average 5 times and 1.5 times faster

than MATCHALS and SPECTRAL, respectively.

4.2.2 EPFL dense multi-view stereo test images

A more challenging benchmark are the EPFL dense multi-

view stereo test images [27]. These are six image sets rep-

resenting outdoor scenes, composed of a number of images

that varies from 8 to 30. Performing multi-view matching

on the Entry-P10 and Castle-P* sequences is particularly

difficult due to the presence of repetitive structures. For

practical reasons, we rescaled images to 20% of the origi-

nal size.

As can be seen in the upper part of Tab. 2, the qual-

ity of the input matches is lower than that on the Graffiti

datasets and it can be significantly improved by joint match-

ing. On these datasets, MATCHEIG outperforms the other

algorithms, both in terms of precision and computing time.

Note that on some sequences SPECTRAL achieves a very

low precision, probably due to the fact that the chosen value

of d̂ is not an accurate estimate of d. Fig. 4 shows a repre-

sentative example of the results obtained by the competing

methods. With respect to pairwise matching, joint match-

ing reduces the number of false matches and complete the

matches with new ones retrieved indirectly via loop closure.

4.2.3 Middlebury multi-view stereo dataset

Multi-view matching often needs to be applied on sets of

hundreds of images. Therefore we selected the two largest

sets among the Middlebury multi-view stereo datasets

[24] to evaluate the practical applicability of MATCHEIG,

MATCHALS and SPECTRAL. The Temple and the Dino sets
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(a) Input (b) MATCHALS

(c) MATCHEIG (d) SPECTRAL

Figure 4: (best viewed in color) Representation of the matches between two images of the Castle-P19 set [27]. Wrong

matches are drawn in red.

consist of 312 and 363 views respectively, sampled on a

hemisphere. We also considered the smaller Dino Ring and

Temple Ring sets, that contain approximately 50 views each,

sampled on a ring around the object.

Results are reported at the bottom of Tab. 2. In these

cases, the initial pairwise matching provides a noisy input,

upon which only MATCHEIG is able to improve. In fact,

on the smaller datasets, MATCHALS and SPECTRAL pro-

duced results worse than the input (MATCHALS taking a

very long time), while on larger sets MATCHALS did not

achieve a solution: due to a memory request that exceeded

the available space it aborted prematurely.

correct matches
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Figure 5: Precision vs CM curve on the Castle-P19 set [27].

The precision/recall tradeoff in MATCHEIG is affected

by the threshold t, which controls the degree of “partial-

ity” of the permutations. A small t yields more matches,

but with low precision. On the other hand, a high t pro-

duces few but extremely reliable matches. Fig. 5 shows the

precision vs CM curve (recall is not available) on a typical

dataset: MATCHALS has an almost constant precision for

a wide range of the controlling parameter (m′/m), whereas

in the left part of the curve MATCHEIG has a superior pre-

cision, and this is where we suggest our algorithm should

be used. We tuned the value of t empirically so as to be in

this part of the curve in all the considered datasets.

This choice is motivated by applications: with respect

to the null hypothesis that a match is an inlier, a Type I

error (rejecting an inlier) is less serious than a Type II error

(not rejecting an outlier) when using matches to compute

geometrical models.

5. Conclusions

We presented a closed-form solution to (joint) multi-

view matching, based on a spectral decomposition.

MATCHEIG handles realistic situations, such as partial per-

mutations and image sets of unprecedented size in the liter-

ature. It also enjoys a very compact Matlab implementation.

While experiments on simulated data – and one easy

real dataset – only highlight the superior computational effi-

ciency of the method, with the accuracy being on a par with

the others, on challenging real datasets MATCHEIG outper-

forms the competing methods both in speed and precision.

Applications for a practical multi-view matching are

countless, and surely include structure from motion, which

motivates this study as well as future developments.
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