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Abstract

We introduce SceneNet RGB-D, a dataset providing

pixel-perfect ground truth for scene understanding prob-

lems such as semantic segmentation, instance segmenta-

tion, and object detection. It also provides perfect camera

poses and depth data, allowing investigation into geomet-

ric computer vision problems such as optical flow, cam-

era pose estimation, and 3D scene labelling tasks. Ran-

dom sampling permits virtually unlimited scene configu-

rations, and here we provide 5M rendered RGB-D im-

ages from 16K randomly generated 3D trajectories in syn-

thetic layouts, with random but physically simulated ob-

ject configurations. We compare the semantic segmenta-

tion performance of network weights produced from pre-

training on RGB images from our dataset against generic

VGG-16 ImageNet weights. After fine-tuning on the SUN

RGB-D and NYUv2 real-world datasets we find in both

cases that the synthetically pre-trained network outper-

forms the VGG-16 weights. When synthetic pre-training

includes a depth channel (something ImageNet cannot na-

tively provide) the performance is greater still. This sug-

gests that large-scale high-quality synthetic RGB datasets

with task-specific labels can be more useful for pre-

training than real-world generic pre-training such as Im-

ageNet. We host the dataset at http://robotvault.

bitbucket.io/scenenet-rgbd.html.

1. Introduction

A primary goal of computer vision research is to give

computers the capability to reason about real-world im-

ages in a human-like manner. Recent years have witnessed

large improvements in indoor scene understanding, largely

driven by the seminal work of Krizhevsky et al. [20] and

the increasing popularity of Convolutional Neural Networks

(CNNs). That work highlighted the importance of large

scale labelled datasets for supervised learning algorithms.

Figure 1. Example RGB rendered scenes from our dataset.

In this work we aim to obtain and experiment with large

quantities of labelled data without the cost of manual cap-

turing and labelling. In particular, we are motivated by tasks

which require more than a simple text label for an image.

For tasks such as semantic labelling and instance segmenta-

tion, obtaining accurate per-pixel ground truth annotations

by hand is a pain-staking task, and the majority of RGB-D

datasets have until recently been limited in scale [29, 31].

A number of recent works have started to tackle this

problem. Hua et al. provide sceneNN [16], a dataset of

100 labelled meshes of real world scenes, obtained with a

reconstruction system with objects labelled directly in 3D

for semantic segmentation ground truth. Armeni et al. [1]

produced 2D-3D-S dataset with 70K RGB-D images of 6

large-scale indoor (educational and office) areas with 270

smaller rooms, and the accompanying ground-truth annota-

tions. Their work used 360✍ rotational scans at fixed loca-

tions rather than a free 3D trajectory. Very recently, Scan-

Net by Dai et al. [7] provided a large and impressive real-

world RGB-D dataset consisting of 1.5K free reconstruc-

tion trajectories taken from 707 indoor spaces, with 2.5M

frames, along with dense 3D semantic annotations obtained

manually via mechanical turk.

Obtaining other forms of ground-truth data from real-

world scenes, such as noise-free depth readings, precise

camera poses, or 3D models is even harder and often can

only be estimated or potentially provided with costly addi-

tional equipment (e.g. LIDAR for depth, VICON for cam-
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NYUv2 [29] SUN RGB-D [31] sceneNN [16] 2D-3D-S [1] ScanNet [7] SceneNet [13] SUN CG✄ [32, 33] SceneNet RGB-D

RGB-D videos available ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Per-pixel annotations Key frames Key frames Videos Videos Videos Key frames Key Frames Videos

Trajectory ground truth ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

RGB texturing Real Real Real Real Real Non-photorealistic Photorealistic Photorealistic

Number of layouts 464 - 100 270 1513 57 45,622 57

Number of configurations 464 - 100 270 1513 1000 45,622 16,895

Number of annotated frames 1,449 10K - 70K 2.5M 10K 400K 5M

3D models available ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Method of design Real Real Real Real Real Manual and Random Manual Random

Table 1. A comparison table of 3D indoor scene datasets and their differing characteristics. sceneNN provides annotated 3D meshes

instead of frames, and so we leave the number of annotated frames blank. 2D-3D-S provides a different type of camera trajectory in the

form of rotational scans at positions rather than free moving 3D trajectories. *We combine within this column the additional recent work

of physically based renderings of the same scenes produced by Zhang et al. [33], it is that work which produced 400K annotated frames.

era pose tracking). In other domains, such as highly dy-

namic or interactive scenes, synthetic data becomes a neces-

sity. Inspired by the low cost of producing very large-scale

synthetic datasets with complete and accurate ground-truth

information, as well as the recent successes of synthetic data

for training scene understanding systems, our goal is to gen-

erate a large photorealistic indoor RGB-D video dataset and

validate its usefulness in the real-world.

This paper makes the following core contributions:

✎ We make available the largest (5M) indoor synthetic

video dataset of high-quality ray-traced RGB-D im-

ages with full lighting effects, visual artefacts such as

motion blur, and accompanying ground truth labels.

✎ We outline a dataset generation pipeline that relies to

the greatest degree possible on fully automatic ran-

domised methods.

✎ We propose a novel and straightforward algorithm

to generate sensible random 3D camera trajectories

within an arbitrary indoor scene.

✎ To the best of our knowledge this is the first work to

show that a RGB-CNN pre-trained from scratch on

synthetic RGB images can outperform an identical net-

work initialised with the real-world VGG-16 ImageNet

weights [30] on a real-world indoor semantic labelling

dataset, after fine-tuning.

In Section 3 we provide a description of the dataset itself.

Section 4 describes our random scene generation method,

and Section 5 discusses random trajectory generation. In

Section 6 we describe our rendering framework. Finally,

Section 7 details our experimental results.

2. Background

A growing body of research has highlighted that care-

fully synthesised artificial data with appropriate noise mod-

els can be an effective substitute for real-world labelled data

in problems where ground-truth data is difficult to obtain.

Aubry et al. [2] used synthetic 3D CAD models for learn-

ing visual elements to do 2D-3D alignment in images, and

similarly Gupta et al. [11] trained on renderings of synthetic

objects to do alignment of 3D models with RGB-D images.

Peng et al.[23] augmented small datasets of objects with

renderings of synthetic 3D objects with random textures

and backgrounds to improve object detection performance.

FlowNet [9] and FlowNet 2.0 [17] both used training data

obtained from synthetic flying chairs for optical flow esti-

mation; and de Souza et al. [8] used procedural generation

of human actions with computer graphics to generate large

dataset of videos for human action recognition.

For semantic scene understanding, our main area of in-

terest, Handa et al. [13] produced SceneNet, a repository of

labelled synthetic 3D scenes from five different categories.

That repository was used to generate per-pixel semantic

segmentation ground truth for depth-only images from ran-

dom viewpoints. They demonstrated that a network trained

on 10K images of synthetic depth data and fine-tuned on

the original NYUv2 [29] and SUN RGB-D [31] real image

datasets shows an increase in the performance of semantic

segmentation when compared to a network trained on just

the original datasets.

For outdoor scenes, Ros et al. generated the SYNTHIA

[27] dataset for road scene understanding, and two inde-

pendent works by Richter et al. [25] and Shafaei et al. [28]

produced synthetic training data from photorealistic gam-

ing engines, validating the performance on real-world seg-

mentation tasks. Gaidon et al. [10] used the Unity engine

to create the Virtual KITTI dataset, which takes real-world

seed videos to produce photorealistic synthetic variations to

evaluate robustness of models to various visual factors. For

indoor scenes, recent work by Qui et al. [24] called Unre-

alCV provided a plugin to generate ground truth data and

photorealistic images from the UnrealEngine. This use of

gaming engines is an exciting direction, but is can be lim-

ited by proprietary issues either by the engine or the assets.

Our SceneNet RGB-D dataset uses open-source scene

layouts [13] and 3D object repositories [4] to provide tex-

tured objects. For rendering, we have built upon an open-

source ray-tracing framework which allows significant flex-
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Figure 2. Flow chart of the different stages in our dataset generation pipeline.

ibility in the ground truth data we can collect and visual

effects we can simulate.

Recently, Song et al. released the SUN-CG dataset [32]

containing ✙46K synthetic scene layouts created using

Planner5D. The most closely related approach to ours, and

performed concurrently with it, is the subsequent work on

the same set of layouts by Zhang et al. [33], which provided

400K physically-based RGB renderings of a randomly sam-

pled still camera within those indoor scenes and provided

the ground truth for three selected tasks: normal estima-

tion, semantic annotation, and object boundary prediction.

Zhang et al. compared pre-training a CNN (already with

ImageNet initialisation) on lower quality OpenGL render-

ings against pre-training on high quality physically-based

renderings, and found pre-training on high quality render-

ings outperformed on all three tasks.

Our dataset, SceneNet RGB-D, samples random layouts

from SceneNet [13] and objects from ShapeNet [4] to cre-

ate a practically unlimited number of scene configurations.

As shown in Table 1, there are a number of key differ-

ences between our work and others. Firstly, our dataset

explicitly provides a randomly generated sequential video

trajectory within a scene, allowing 3D correspondences be-

tween viewpoints for 3D scene understanding tasks, with

the ground truth camera poses acting in lieu of a SLAM

system [21]. Secondly, Zhang et al. [33] use manually

designed scenes, while our randomised approach produces

chaotic configurations that can be generated on-the-fly with

little chance of repeating. Moreover, the layout textures,

lighting, and camera trajectories are all randomised, allow-

ing us to generate a wide variety of geometrically identical

but visually differing renders as shown in Figure 7.

We believe such randomness could help prevent overfit-

ting by providing large quantities of less predictable training

examples with high instructional value. Additionally, ran-

domness provides a simple baseline approach against which

more complex scene-grammars can justify their added com-

plexity. It remains an open question whether randomness is

preferable to designed scenes for learning algorithms. Ran-

domness leads to a simpler data generation pipeline and,

given a sufficient computational budget, allows for dynamic

on-the-fly generated training examples suitable for active

machine learning. A combination of the two approaches,

with a reasonable manually designed scene layouts or se-

mantic constraints along-side physically simulated random-

ness, may in the future provide the best of both worlds.

3. Dataset Overview

The overall pipeline is depicted in Figure 2. It was neces-

sary to balance the competing requirements of high frame-

rates for video sequences with the computational cost of

rendering many very similar images, which would not pro-

vide significant variation in the training data. We decided

upon 5 minute trajectories at 320✂240 image resolution,

with a single frame per second, resulting in 300 images per

trajectory (the trajectory is calculated at 25Hz, however we

only render every 25th pose). Each view consists of both

a shutter open and shutter close camera pose. We sample

from linearly interpolations of these poses to produce mo-

tion blur. Each render takes 2–3 seconds on an Nvidia GTX

1080 GPU. There is also a trade off between rendering time

and quality of renders (see Figure 6 in Section 6.2).

Various ground truth labels can be obtained with an extra

rendering pass. Depth is rendered as the first ray intersec-

tion euclidean distance, and instance labels are obtained by

assigning indices to each object and rendering these. For

ground truth data a single ray is emitted from the pixel cen-

tre. In accompanying datafiles we store, for each trajectory,

a mapping from instance label to a WordNet semantic la-

bel. We have 255 WordNet semantic categories, including

40 added by the ShapeNet dataset. Given the static scene

assumption and the depth map, instantaneous optical flow

can also be calculated as the time-derivative of a surface

points projection into camera pixel space with respect to

the linear interpolation of the shutter open and shutter close

poses. Examples of the available ground-truth is shown in

Figure 3, and code to reproduce it is open-source.1

Our dataset is separated into train, validation, and test

sets. Each set has a unique set of layouts, objects, and tra-

jectories. However the parameters for randomly choosing

lighting and trajectories remain the same. We selected two

layouts from each type (bathroom, kitchen, office, living

room, and bedroom) for the validation and test sets making

the layout split 37-10-10. For ShapeNet objects within a

scene we randomly divide the objects within each WordNet

class into 80-10-10% splits for train-val-test. This ensures

that some of each type of object are in each training set. Our

final training set has 5M images from 16K room configura-

tions, and our validation and test set have 300K images from

1K different configurations. Each configuration has a single

trajectory through it.

1https://github.com/jmccormac/pySceneNetRGBD
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(a) photo (b) depth (c) instance (d) class segmentation (e) optical flow

Figure 3. Hand-picked examples from our dataset; (a) rendered images and (b)–(e) the ground truth labels we generate.

4. Generating Random Scenes with Physics

To create scenes, we randomly select a density of objects

per square metre. In our case we have two of these den-

sities. For large objects we choose a density between 0.1

and 0.5 objects m�✷, and for small objects (❁0.4m tall) we

choose a density between 0.5 and 3.0 objects m�✷. Given

the floor area of a scene, we calculate the number objects

needed. We sample objects for a given scene according to

the distribution of objects categories in that scene type in the

SUN RGB-D real-world dataset. We do this with the aim

of including relevant objects within a context e.g. a bath-

room is more likely to contain a sink than a microwave. We

then randomly pick an instance uniformly from the avail-

able models for that object category.

We use an off-the-shelf physics engine, Project Chrono,2

to dynamically simulate the scene. The objects are pro-

vided with a constant mass (10kg) and convex collision hull

and positioned randomly within the 3D space of the layouts

axis-aligned bounding box. To slightly bias objects towards

the correct orientation, we offset the center of gravity on

the objects to be below the mesh. Without this, we found

very few objects were in their normal upright position after

the simulation. We simulate 60s of the system to allow ob-

jects to settle to a physically realistic configuration. While

not organised in a human manner, the overall configuration

aims to be physically plausible i.e. avoiding configurations

where an object cannot physically support another against

gravity or with unrealistic object intersections.

2https://projectchrono.org/

5. Generating Random Trajectories

As we render videos at a large scale, it is imperative that

the trajectory generation be automated to avoid costly man-

ual labour. The majority of previous works have used a

SLAM system operated by a human to collect hand-held

motion: the trajectory of the camera poses returned by the

SLAM system is then inserted into a synthetic scene and the

corresponding data is rendered at discrete or interpolated

poses of the trajectory [12, 14]. However, such reliance on

humans to collect trajectories quickly limits the potential

scale of the dataset.

We automate this process using a simple random camera

trajectory generation procedure which we have not found in

any previous synthetic dataset work. For our trajectories,

we have the following desiderata. Our generated trajecto-

ries should be random, but slightly biased towards looking

into central areas of interest, rather than for example pan-

ning along a wall. It should contain a mix of fast and slow

rotations like those of a human operator focussing on nearby

and far away points. It should also have limited rotational

freedom that emphasises yaw and pitch rather than rolling,

which is a less prominent motion in human trajectories.

To achieve the desired trajectories we simulate two phys-

ical bodies. One defines the location of the camera, and an-

other the point in space that it is focussing on as a proxy for

a human paying attention to random points in a scene. We

take the simple approach of locking roll entirely, by setting

the up vector to always be along the positive y-axis. These

two points completely define the camera coordinate system.
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We simulate the motion of the two bodies using a physi-

cal motion model. We use simple Euler integration to sim-

ulate the motion of the bodies and apply randomly sampled

3D directional force vectors as well as drag to each of the

bodies independently, with a maximum cap on the permit-

ted speed. This physical model has a number of benefits.

Firstly, it provides an intuitive set of metric physical prop-

erties we can set to achieve a desired trajectory, such as the

strength of the force in Newtons and the drag coefficients.

Secondly, it naturally produces smooth trajectories. Finally,

although not currently provided in our dataset, it can au-

tomatically produce synthetic IMU measurements, which

could prove useful for Visual-Inertial systems.

We initialise the pose and ‘look-at’ point from a uniform

random distribution within the bounding box of the scene,

ensuring they are less than 50cm apart. As not all scenes are

convex, it is possible to initialise the starting points outside

of a layout, for example in an ‘L’-shaped room. Therefore,

we have two simple checks. The first is to restart the simula-

tion if either body leaves the bounding volume. The second

is that within the first 500 poses at least 10 different object

instances must have been visible. This prevents trajectories

external to the scene layout with only the outer wall visible.

Finally, to avoid collisions with the scene or objects we

render a depth image using the z-buffer of OpenGL. If a col-

lision occurs, the velocity is simply negated in a ‘bounce’,

which simplifies the collision by assuming the surface nor-

mal is always the inverse of the velocity vector. Figure 4

visualises a two-body trajectory from the final dataset.

Figure 4. Example camera and lookat trajectory through a syn-

thetic scene (with rendered views from the first and last frustum).

6. Rendering Photorealistic RGB Frames

The rendering engine used was a modified version of the

Opposite Renderer3 [22], a flexible open-source ray-tracer

3http://apartridge.github.io/OppositeRenderer/

built on top of the Nvidia OptiX framework. We do not have

strict real-time constraints to produce photorealistic render-

ing, but the scale and quality of images required does mean

the computational cost is an important factor to consider.

Since OptiX allows rendering on the GPU it is able to fully

utilise the parallelisation offered by readily-available mod-

ern day consumer grade graphics cards.

(a) No reflections & transparency (b) With reflections & transparency

Figure 5. Reflections and transparency

6.1. Photon Mapping

We use a process known as photon mapping to approx-

imate the rendering equation. Our static scene assump-

tion makes photon mapping particularly efficient as we can

produce photon maps for a scene which are maintained

throughout the trajectory. A good tutorial on photon map-

ping is given by its creators Jensen et al.[19]. Normal ray-

tracing allows for accurate reflections and transparency ren-

derings, but photon mapping provides a global illumination

model that also approximates indirect illumination, colour-

bleeding from diffuse surfaces, and caustics. Many of these

effects can be seen in Figure 5.

6.2. Rendering Quality

Rendering over 5M images requires a significant amount

of computation. We rendered our images on 4-12 GPUs for

approximately one month. An important trade-off in this

calculation is between the quality of the renders and the

quantity of images. Figure 6 shows two of the most im-

portant variables dictating this balance within our rendering

framework. Our final dataset was rendered with 16 samples

per pixel and 4 photon maps. This equates to approximately

3s per image on a single GPU.

6.3. Random Layout Textures and Lighting

To improve the variability within our 57 layouts, we ran-

domly assign textures from a curated library of selected

seamless textures to their components. Each layout object

has a material type, which then gives a number of random

texture images for that type. For example, we have a large

number of different wall textures, floor textures, and curtain

textures. We also generate random indoor lighting for the

scene. We have two types of lights: spherical orbs, which

serve as point light sources, and parallelograms which act
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Figure 6. Trade off between rendering time and quality. Each photon map contains approximately 3M stored photons.

as area lights. We randomly pick a hue and power of each

light and then add them to a random location within the

scene. We bias this location to be within the upper half of

the scene. This approach allows an identical geometric lay-

out to result in multiple renders with very different visual

characteristics (see Figure 7).

(a) Version 1 (b) Version 2

Figure 7. Same scene with different lighting and layout textures.

6.4. Camera Model and CRF

Our simulated camera is a simple global shutter pinhole

model, with a focal length of 20cm, a horizontal FoV of

60✍and vertical FoV of 40✍. In order to make sure that the

rendered images are a faithful approximation to real-world

images, we also apply a non-linear Camera Response Func-

tion (CRF) that maps irradiance to quantised brightness as

in a real camera. We do not explicitly add camera noise

or distortion to the renderings, however the random ray-

sampling and integration procedure from ray-tracing natu-

rally adds a certain degree of noise to the final images.

6.5. Motion Blur

For fast motion we integrate incoming rays throughout

a shutter exposure to approximate motion blur — this can

be efficiently performed within the rendering process by

changing the poses from which samples are drawn for each

pixel and integrating the irradiance value rather than for ex-

ample averaging RGB values after rendering. For an exam-

ple rendering using this technique see Figure 8. The motion

blur does not affect the ground truth outputs of depth or in-

stance segmentations. For these images we set the pose to

be the exact midpoint of the shutter exposure.

(a) Without motion blur (b) With motion blur

Figure 8. Motion blur examples.

7. Experiments

We test the value of SceneNet RGB-D as a training set

for semantic segmentation, using the real image datasets

NYUv2 and SUN RGB-D as our benchmarks. More specif-

ically, we compare the performance of three different pre-

trained network weights on the task of per-pixel semantic

labelling. The three weight initialisations are: a network

trained from scratch with initialisation proposed by He et

al. [15], a network (originally initialised with [15]) pre-

trained on the 5M synthetic RGB images from the SceneNet

RGB-D dataset, and a network initialised with the VGG-16

ImageNet weights. As the VGG-16 ImageNet weights are

for a classification task, the second ‘upsampling’ half of the

network architecture described below is not available and is

also initialised with the scheme proposed by He et al. [15]

before fine-tuning.

The comparison of ImageNet vs. synthetic RGB-only is
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particularly challenging as the ImageNet weights are trained

using 1M real-world images, just as our final test datasets

are drawn from the real-world. The important question

is whether the task-specific information available in our

dataset (indoor scene classes and per-pixel ground truth la-

belling instead of generic classification tags such as cats and

dogs) combined with 5✂more images is enough to counter-

balance the advantages of real-world images.

We also experiment with another advantage our synthetic

dataset provides, that of a wider variety of potential input

domains. We train a slightly modified network architecture

to include a depth-channel and train this from scratch us-

ing the SceneNet RGB-D dataset. We compare this against

training from scratch (scaling depth input in each dataset

by a constant factor) but do not directly compare the depth

network against ImageNet pre-training for a number of rea-

sons. First, ImageNet does not provide depth data — there

is no depth channel for publicly available weights to directly

compare against. Second, in the RGB-D network architec-

ture described below we maintained a similar number of

feature maps for the first half of the network, split evenly be-

tween depth and RGB due to memory constraints; this un-

fortunately prevents a direct mapping of VGG-16 weights

into even the RGB-only part of the network.

For both the NYUv2 and SUN RGB-D datasets we

choose the 13 class semantic mapping defined by Couprie et

al. [6]. We manually map each of the WordNet ids in our

dataset to one of the 13 semantic classes. We give three

accuracy metrics: global pixel accuracy (proportion of cor-

rectly classified pixels out of all ground truth labelled pix-

els), class average accuracy (average over classes of the pro-

portion of correctly classified pixels of a class to the ground

truth labels of that class, the accuracy of each class is also

given), and mean Intersection over Union or IU (average

over classes of the proportion of correctly classified pixels

of a class to the ground truth labels of that class plus false

positives of that class).

7.1. Network Architectures

We choose the relatively straightforward U-Net [26] ar-

chitecture as the basis for our experiments, with the slight

modification of applying Batch Normalisation [18] between

each convolution and non-linearity. Our inputs are RGB

320✂240 images and our output is 320✂240✂14 class

probabilities (the first class being ‘missing ground-truth la-

bel’ as observed in SUN RGB-D and NYUv2 and ignored

in the loss function for training purposes). The RGB-only

network contains 22M free parameters.

To accommodate a depth channel in the RGB-D CNN

we modify the U-Net architecture to have an additional col-

umn of depth-only convolutions. The second half of U-Net

remains unchanged; we simply concatenate the output of

both the depth and RGB feature maps during the upsam-

pling portion of the CNN. We maintain the same number of

feature maps in the first half of the network step, but split

them evenly for depth and RGB, i.e. the first 64-channel

RGB convolution becomes a 32-channel RGB convolution

and 32-channel depth convolution. Finally, to maintain ap-

proximately consistent memory usage and batch sizes dur-

ing training, we skip the final max-pooling layer and 1024-

channel convolutions. Instead we simply concatenate the

last two 512-channel blocks of RGB and Depth feature

maps to produce the 1024-channel in the first stage of up-

sampling in the U-Net. Overall these changes reduce the

number of free-parameters to 17.2M.

7.2. Training

Our network implementation is built within the

Torch7 [5] framework, and trained on a multi-GPU sys-

tem. We use the standard per-pixel cross-entropy loss after

the softmax layer. We shuffle the full dataset at the begin-

ning of each epoch, and train with the largest batch-size that

would fit in memory. Depending on the network architec-

ture the batch-size varied from 25-30. For all experiments

the learning rate was initialised at 0.1, and scaled by 0.95 af-

ter every 30 epochs. Our networks pre-trained on SceneNet

RGB-D were both maintained at a constant learning rate

as they were below 30 epochs - the RGB CNN was pre-

trained for 15 epochs which took approximately 1 month

on 4 Nvidia Titan X GPUs, and the RGB-D CNN was pre-

trained for 10 epochs, taking 3 weeks.

We use the Stochastic Gradient Descent optimiser with

momentum of 0.95 and no weight regularisation. Unfortu-

nately there is no official validation set on the NYUv2 or the

SUN RGB-D dataset, so for all fine-tuning experiments we

perform early stopping and give the validation performance.

Generally fine-tuning required ✙50 epochs.

7.3. Results

The results of our experiments are summarised in Ta-

bles 2 & 3. For RGB we see that in both datasets the

network pre-trained on SceneNet RGB-D outperformed the

network initialised with VGG-16 ImageNet weights on

all three metrics. For the NYUv2 the improvement was

+8.4%,+5.9%, and +8.1% for the class average, pixel av-

erage, and mean IU respectively, and for the SUN RGB-

D dataset the improvement was +1.0%,+2.1%, and +3.5%

respectively. This result suggests that a large-scale high-

quality synthetic RGB dataset with task-specific labels can

be more useful for CNN pre-training than even a quite large

(✙1M image) real-world generic dataset such as ImageNet,

which lacks the fine-grained ground truth data (per-pixel

labelling), or domain-specific content (indoor semantics).

The trend between the two datasets is also clear, the im-

provement from pre-training on the synthetic data is less

significant when fine-tuning on the larger 5K image SUN
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NYUv2: 13 Class Semantic Segmentation
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No pre-training RGB 42.6 11.8 57.5 15.5 76.1 55.5 37.9 48.2 17.9 18.8 35.5 78.4 51.1 42.1 55.8 29.0

ImageNet 45.7 29.4 56.4 35.9 84.1 51.3 43.4 58.6 24.4 26.2 18.8 80.8 63.8 47.6 60.2 33.7

SceneNet RGB 54.7 30.0 65.0 48.3 86.2 59.7 52.5 62.1 50.2 32.5 40.5 82.4 64.5 56.0 66.1 41.8

No pre-training RGB-D 58.2 1.7 75.5 48.7 94.8 54.6 47.6 38.2 42.2 32.8 23.2 82.5 43.0 49.5 63.4 36.9

SceneNet RGB-D 69.4 22.7 71.1 63.8 94.8 64.4 56.8 61.2 68.9 41.0 43.1 84.3 66.9 62.2 71.7 48.2

Table 2. NYUv2 validation set results: Segmentation performance using U-Net architectures described in the text. After the listed form

of pre-training, all networks are then fine-tuned on the NYUv2 train set. All evaluations performed at ✸✷✵✂ ✷✹✵ resolution.

SUN RGB-D: 13 Class Semantic Segmentation
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No pre-training RGB 47.0 26.9 50.0 57.7 88.9 38.4 31.2 39.7 43.0 55.8 18.2 84.6 61.2 49.4 68.9 36.5

ImageNet RGB 56.8 42.2 58.0 64.7 88.6 42.9 49.2 59.1 59.2 51.9 22.6 84.1 59.2 56.8 71.2 40.3

SceneNet RGB 56.4 29.0 66.7 68.9 90.1 53.0 43.4 50.4 51.6 60.1 28.7 83.5 69.0 57.8 73.3 43.8

No pre-training RGB-D 69.0 19.3 68.0 68.8 94.3 46.7 37.8 41.6 55.8 59.0 5.7 86.7 50.5 54.1 73.9 41.4

SceneNet RGB-D 67.2 33.8 76.2 71.6 93.9 55.4 46.5 56.1 63.1 72.8 35.8 88.2 61.7 63.3 78.3 49.8

Table 3. SUN RGB-D validation set results: Segmentation performance using the U-Net architectures described in the text. After the

listed form of pre-training, all networks are then fine-tuned on the SUN RGB-D train set. All evaluations performed at ✸✷✵✂✷✹✵ resolution.

RGB-D dataset vs. the 795 image NYUv2 dataset.

The inclusion of depth as an additional input channel re-

sulted in a significant performance improvement over RGB-

only in both datasets (+6.2%,+5.6%,+6.4% in the NYUv2,

and +5.5%,+5.0%,+6.0% in the SUN RGB-D for the class

average, pixel average, and mean IU respectively). When

compared against training from scratch for the depth chan-

nel, pre-training showed a clear performance improvement.

We found training the architecture from scratch on the

depth modality challenging, taking longer to converge (300

epochs) and with infrequent classes, such as books and TV

showing particularly poor results in both datasets.

8. Conclusion

Our aim was to produce and evaluate realistic synthetic

per-pixel labelled data of indoor scenes. We anticipate the

scale and quality of this dataset could help to better bridge

the gap between simulations and reality and be suitable for

domain adaption tasks [3]. We highlight problems we have

tackled such as physically realistic scene layouts, random

camera trajectory generation, and photorealistic rendering.

The randomness inherent in our pipeline also allows for

a continuous stream of unseen training examples, dynam-

ically designed to target the current limitations of a model

being trained. In the future, it is likely that the generation of

training data and the training of models will become more

tightly interleaved, as the advantages of automatically gen-

erated tailored training data becomes clear.

The results of our experiments, to the best of our knowl-

edge, are the first to show an RGB-only CNN pre-trained

from scratch on synthetic RGB images improve upon the

performance of an identical network initialised with weights

from a CNN trained on the large-scale real-world ImageNet

dataset. This illustrates the value synthetic datasets can

bring to real-world problems. The additional performance

improvement achieved by including the depth also serves

to highlight the importance of the flexibility and ease with

which synthetic data can produce alternative modalities.

Certain capabilities of the dataset still remain to be ex-

plored. The availability of video data enables experimenta-

tion on CNNs with a temporal capacity. The ability to mod-

ify identical geometric scenes with varying lighting and tex-

tures enables training invariance to such changes. Finally,

the smooth trajectories, and availability of perfect camera

pose data provides multi-view correspondences, and lends

itself to the exploration of dense semantic SLAM problems.
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