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Abstract

We present a method for Modeling Urban Scenes from

Pointclouds (MUSP). In contrast to existing approaches,

MUSP is robust, scalable and provides a more complete

description by not making a Manhattan-World assumption

and modeling both buildings (with polyhedra) as well as the

non-planar ground (using NURBS). First, we segment the

scene into consistent patches using a divide-and-conquer

based algorithm within a nonparametric Bayesian frame-

work (stick-breaking construction). These patches often

correspond to meaningful structures, such as the ground,

facades, roofs and roof superstructures. We use polygon

sweeping to fit predefined templates for buildings, and for

the ground, a NURBS surface is fit and uniformly tessel-

lated. Finally, we apply boolean operations to the polygons

for buildings, buildings parts and the tesselated ground to

clip unnecessary geometry (e.g., facades protrusions below

the non-planar ground), leading to the final model. The

explicit Bayesian formulation of scene segmentation makes

our approach suitable for challenging datasets with varying

amounts of noise, outliers, and point density. We demon-

strate the robustness of MUSP on 3D pointclouds from im-

age matching as well as LiDAR.

1. Introduction

Three-dimensional (3D) modeling of urban scenes has

received major interest in recent years [15, 18, 30, 41] due

to emerging applications in virtual and augmented reality,

simulation, etc. The ultimate goal is to generate compact

yet rich representations, making available 3D assets read-

ily understandable by other processes (e.g. rendering). Two

major technologies have made these developments possi-

ble: (1) Image matching, i.e., Structure-from-Motion and

Multi-View Stereo (SfM/MVS) and, (2) Light Detection

And Ranging (LiDAR). LiDAR is a mature technology pro-

ducing 3D points with high accuracy.

Figure 1. We propose an approach based on segmentation (random

colors are assigned to the segmented patches) and model fitting

for Modeling Urban Scenes from Pointclouds (MUSP). In this

example, MUSP transforms 35 million 3D points from a Multi-

View Stereo (MVS) reconstruction of a residential scene contain-

ing an irregular arrangement of buildings on a non-planar terrain

into a semantic watertight polygonal model. In the presence of

multiple close objects on a non-planar ground, consistent patch

segmentation in noisy pointclouds is itself a highly non-trivial

task. MUSP employs a probabilistic framework that addresses this

problem without any knowledge about the number of segments.

A template-based polygon fitting ensures consistency as well as

model completeness.

13837



However, the availability of cheap dedicated hardware

(GPUs) combined with the development of new algorithms

makes pointcloud acquisition using an SfM/MVS pipeline

an interesting alternative [10, 11, 14], amplified by the in-

herent flexibility due to the widespread of cheap consumer

cameras.

2. Related Work

Analysis of 3D data is an active topic of research with fo-

cus on semantic segmentation, object detection, automatic

modeling and compression [18, 20, 31, 26, 35, 38]. The cre-

ation of 3D models from pointclouds using classical mesh-

ing algorithms, e.g., Poisson reconstruction or Marching

cube, typically overfits the data and produces overly com-

plex triangulated meshes with little or no semantics. More-

over, meshing algorithms often fail in the presence of noise

and high point density variation which is often the case for

the pointclouds derived by SfM/MVS.

Procedural Modeling: In conjunction with shape gram-

mars and reversible jump Markov Chain Monte Carlo, pro-

cedural modeling algorithms have been widely used for

man-made structures in urban scenes [5, 12, 22, 27, 34, 39]

The idea is to define a set of basic shapes and production

rules from which further shapes evolve. However, for large-

scale urban scenes with less regular building placement,

these algorithms suffer from a lack of scalability. Addition-

ally, the convergence is difficult to ascertain, because the ba-

sic shapes might not capture the diversity. It is also difficult

to derive good proposal distributions for the Markov chain

that generalize well and are suitable for the target distribu-

tion, i.e., avoid the phenomenon called persistent rejection.

Geometric Primitive Fitting: This alternative to pro-

cedural modeling is often used for urban scene segmenta-

tion from LiDAR pointclouds [31, 43, 15, 45, 28]. Here,

a cost function is formulated to assess the quality of the

fit. The algorithms mostly operate in three different modes:

Region growing [32, 24, 30], RANdom SAmple Consensus

(RANSAC) [9, 4, 35, 33] and energy-based [13]. RANSAC

is fast and robust against noise, but requires a-priori knowl-

edge of K, the number of segments present in the scene.

In its vanilla form, the inlier count is used to quantify the

fit. However, pointcloud segmentation alone only gives a

partial solution, as it does not address the generation of a

lightweight model required, e.g., for real-time rendering.

A few recent approaches simultaneously address geomet-

ric primitive detection and regularization for modeling 3D

data [3, 44, 18, 41]. However, these algorithms only handle

LiDAR, or 3D data of moderate size and amount of noise as

well as (already) triangulated 3D points [41].

Modeling beyond a Manhattan-World: The assump-

tion of a mixture of Manhattan-Frames is widely used both

implicitly [20, 1, 17] and explicitly [16, 38] for process-

ing 3D pointclouds. In this line of work, a planar ground

Figure 2. In addition to accurate and fast modeling, every stage

of our work flow is robust against noise e.g., trees or reconstruc-

tion artifacts from SfM/MVS. Here, two data sets (A: 36M points,

B:23M points) from SfM/MVS. Segmented clusters and detected

roof segments are randomly colored. Downsampled input data in

yellow superimposed on the model to show the quality of the fit on

abstracted polygons for buildings and ground.

is often assumed. However, this is valid only for indoor

scenes [23, 1]. A flexible approach fitting NURBS to

pre-segmented patches of LiDAR pointclouds is proposed

in [6]. A major challenge remain, how to robustly segment

and how to infer unique and consistent control points of the

NURBS surface in the presence of substantial noise, large

point density variations and missing data.

In summary, the state-of-the-art approaches for modeling

from pointclouds have four major deficits—they lack scala-

bility and robustness against substantial noise, they are tai-

lored only for LiDAR or already triangulated 3D points and

they cannot capture the natural smoothness of the ground

due to underlying Manhattan-World assumptions.

3. Contributions

The major contributions of our method are:

1. A robust, scalable and probabilistic pointcloud seg-

mentation algorithm which uses a nonparametric

Bayesian framework for clustering and automatically
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infers K, the number of segments present in the scene.

2. A set of basic architectural rules that enables seman-

tic decomposition of scenes into the four meaningful

categories—ground, roof elements, facades and rest.

3. Polygon-sweeping as a substitute for the more general

plane-sweeping algorithm particularly suited to detect

facades in noisy pointclouds.

The input to MUSP is an unstructured 3D pointcloud, D,

of an urban scene captured from e.g., an unmanned aerial

vehicle. The output is a watertight 3D semantic surface

model. We assume that the metric scale for D and the

vertical (up) direction v are known. Furthermore, we as-

sume that buildings with curved facades are not present in

the scene. We now present MUSP in its three main stages:

Segmentation, Semantic Decomposition as well as Surface

Fitting and Regularization.

4. Segmentation

The objective of this section is to find patches in D
which exhibit local planarity, i.e., are planar within a pre-

defined small radius. Region growing, RANSAC and en-

ergy optimization have been used to solve similar prob-

lems [35, 13, 28], however, these algorithms are not suit-

able for segmenting noisy pointclouds of large-scale scenes

with a possibly unknown number of object instances such

as in Figs 1 and 2. We have developed the following di-

vide and conquer based algorithm that divides the scene into

voxels, fits a plane within each voxel using RANSAC, and

uses a nonparametric Bayesian approach as an alternative to

traditional clustering algorithms (e.g., K-Means and spec-

tral clustering) to cluster voxels consistently (conquer). The

idea is that normals of voxels from the same patch will be-

long to the same cluster on the unit sphere. Nonparametric

Bayesian has the appealing advantage that K can be un-

known and inferred together with the underlying structure

from the data.

4.1. Divide

The goal is to estimate consistent unit normals describ-

ing the underlying surface geometry using sample space di-

vision. We divide the scene into a grid of non-overlapping

voxels and compute an adjacency graph of voxel (spatial

neighborhood) relations, Gadj . The voxel leaf size, ls, is

chosen such that the smallest object of interest, e.g., roof

superstructure, is greater than ls. We use RANSAC to fit

a plane within every voxel. The planes have local support

limited to the voxel bound, thus clipped planes. Compared

to normals of individual 3D points, clipped plane normals

(CPN) offer a number of advantages:

• Surfaces in urban scenes exhibit many small local vari-

ations which aren’t representative of the underlying

geometry, thus normals of individual 3D points often

overfit. On the other hand, coupled with the robustness

of RANSAC, CPN are stable and do not overfit.

• Normals of individual 3D points can wrap-around the

unit sphere when estimated with eigenvector analysis

of the covariance matrix. This problem is exacerbated

in pointclouds with substantial noise, such as those

commonly encountered in data from SfM/MVS of ur-

ban scenes (see Fig. 3 middle column). Conversely,

CPN do not wrap-around (cf. Fig. 3 right column).

RANSAC chooses a single “best” plane to the inliers,

i.e., without influence of points from adjacent surfaces.

• CPN computation is far less expensive than normal es-

timation of individual 3D points. The strong planarity

within most voxels means that RANSAC converges in

a few iterations and also the number of CPN is many

magnitudes lower than the number of 3D points.

Next, we introduce the clustering framework for CPN based

on Bayesian nonparametrics, hence combining voxels con-

sistently. The algorithm assumes that CPN exhibit a mul-

tivariate Gaussian distributions on the unit sphere. Hence,

the goal is inference for Gaussian mixture models with an

unknown number of components and structure—the pa-

rameters of the individual mixture components. Taking

a Bayesian setting, we place a Normal-Inverse-Wishart

(NIW) prior on the mean and covariance parameters jointly

for every mixture component.

MUSP uses Dirichlet Process (DP) [8, 19, 29] mixture

of Gaussians as a nonparametric Bayesian representation

given by G=DP (α,G0), where G0 is the base distribution,

α is a positive scalar known as the concentration param-

eter representing the strength of belief in G0. We fully

specify G0 as the NIW distribution, itself parameterized

by G0 = NIW (µ0,κ0,Ψ0,υ0). However, the concentra-

tion parameter, α, remains unspecified and is set manually.

The choice of α will affect the clustering performance as

we present in section 7. Furthermore, to construct the DP,

the stick-breaking construction [37] is used to capture the

possibly infinite mixture of components. It is defined by the

following hierarchy,

G=

∞
∑

j=1

wjδθj (θ) (1)

G∼DP (α,G0), θj∼G
(

x1,· · ·,xNcpn

)

∼f (x,θj)
(2)

where wj represent the weights or proportions of the various

components and δθj (θ) is the component indicator which is

zero everywhere, except for δθj (θ) = 1. The weights are

interpreted as the length of the pieces broken off iteratively
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Figure 3. Comparison of normals of pointclouds from the Kinect

sensor of an office scene (A), and from SfM/MVS (B) of an urban

scene. Normals of individual 3D points can wrap-around the unit

sphere, and can over-fit for urban scenes (middle column). On the

other hand, normals of clipped planes (3rd column) form distinct

clusters.

from a unit length stick (hence the name) given by Equation

(3),

w1=V1,wl=Vl

∏

j<l

(1−Vj) , l=2,3.· · · (3)

At each iteration, the proportion to break-off from the re-

maining stick, Vl, is sampled from a beta distribution as fol-

lows

Vl∼Beta (1,α) (4)

4.2. Conquer

Ensuring proper clustering of unit normals poses several

challenges that would require directional statistics, e.g., von

Mises Distribution [7]. However, since CPN do not wrap-

around, we cluster them without considering the direction-

ality using the Gibbs sampling inference within a nonpara-

metric Bayesian setting depicted in Algorithm 1.

Gibbs sampling is fundamentally sequential, hence (usu-

ally) requires a good initialization to guarantee fast conver-

gence. MUSP employs the two-level approach shown in

Fig. 4 to overcome this problem. In the first level, we cluster

a subset, the “coreset”, of the CPN that preserves its salient

relationships using random assignments of 30 clusters for

initialization. The inferred underlying primary structure,

θ
0

1,θ
0

2,· · ·,θ
0

K0 , is then used as the initialization for cluster-

ing the full CPN containing Ncpn data items. The “coreset”

is obtained using stratified resampling as follows:

1. Divide the unit sphere into polygons of approximately

equal size.

2. Sample Ncoreset≪Ncpn in proportional to the number

of CPN per polygon.

Figure 4. Two-level clustering of CPN. The first level clusters only

the “coreset” (a subset of the data capturing the salient structure)

using random assignments for initialization. The second level

clusters the full data items employing the output of level one for

the initial assignments. In both levels, Algorithm 1 is employed.

While the clustered “coreset” captures the salient structure, it con-

tains only 10% data as opposed to the full CPN. Colors of clusters

are randomly choosen.

This ensures variance reduction in the downsampled CPN

as compared to a naive simple uniform random sampling

strategy [2, 42]. An example “coreset” for the pointcloud

depicted in Fig. 1 is shown in Fig. 4.

When appropriate values for the parameters α, θ0 =
(µ0,κ0,Ψ0,υ0) and G0 = NIW (θ0) are specified, the out-

put of Algorithm 1 is an approximate posterior distribution

which can be used for the data assignment to the clusters,

p
(

zi:Ncpn

∣

∣xi:Ncpn
,µ,κ,Ψ ,υ

)

. It is important to note that,

although the stick-breaking construction can capture clus-

ters with infinite structure (number of components), it is

usually required to truncate the number of components by

an upper bound, Kb, for practical reasons. In section 7, we

present the parameters for θ0 = (µ0,κ0,Ψ0,υ0) and default

values for Kb, and the number of iterations of the Gibbs

sampling algorithm for both the first (Itcoreset) and second

(Itcpn) levels used for all experiments.

Although the computed approximate posterior distribu-

tion defines a set of consistent partitions for CPN on the unit

sphere (e.g., Fig. 5B), it poses a further challenge: Two unit

normals, n1 and n2 sampled from voxels of two parallel

facades belong to the same cluster. To address this prob-

lem, we use the voxel adjacency graph, Gadj , and compute

connected components within a cluster while imposing a

voxel-neighborhood-parallelism constraint as follows: Any

two neighboring voxels, v1 and v2 are connected only if

the normals n1 and n2 of their clipped planes are such that

|1−n1·n2|<ǫ1 .

Connected components suffer from discontinuities (zig-

zag effect) at the component boundaries (see Fig. 5C). We

remedy this problem in a region growing way by extend-

ing the support of the boundary voxels while maintaining

their normals. The extent to which the regions are grown is

constrained to the pre-defined voxel leaf size, ls. It should
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Input: G0=NIW (µ0,κ0,Ψ0,υ0), data items

x1, . . . , xNcpn
, truncation level Kb = 40

Output: p
(

zi:Ncpn

∣

∣xi:Ncpn
,µ,κ,Ψ ,υ

)

, a set of new

cluster parameters θ̂∗

Get initial cluster assignment z1, . . . , zNcpn
, i.e.,

assign data items randomly to initial clusters with

parameters θ∗

foreach Gibbs sampling iteration do

1. Sample new assignments z̃i, (with i∈{1,. . .,Ncpn})

with p (z̃i=k)∝wk

Kb−1
∏

j=1

(1−wj) f (xi,θk) ,k≤Kb

2. Resample new cluster parameters for

underlying structure, θ∗k, from the posterior

p
(

θ̃∗k |x1,· · ·, xNcpn

)

∝G0

(

θ̃∗k

)

∏

z̃i=k

f
(

xi,θ̃
∗

k

)

3. Resample new stick-breaking weights, w̃k,

w̃k∼Beta

(

1+mk,α+
Kb
∑

j=k+1

mj

)

, where

mk=
Ncpn
∑

j=k+1

δk (z̃j) and δ() is the component

indicator as described in Equations (1) and (2).

end

Algorithm 1: Posterior approximation of DP using Gibbs

sampling.

Figure 5. Segmentation: For a dataset from SfM/MVS (A) con-

taining 26 million points, CPN are clustered (B), connected com-

ponents extracted (C) and smoothed leading to an accurate seg-

mentation (D).

be noted that the probabilistic clustering provides a good

initial segmentation for merging neighboring voxels consis-

tently. Without this, it would be difficult to develop good

voxel merging criteria that generalize well.

5. Semantic Decomposition

In this section, we assign one of the four distinct labels,

ground, facade, roof element and the rest (unspecified ) to

the segmentation results from Section 4. First, we identify

the ground segment, then we use RANSAC and fit planes

to the remaining segments. Finally, we identify facades,

flat roofs, gable roof segments and discard the unspecified

(probably vegetation) based on the segments spatial config-

uration and orientation.

5.1. Ground Detection

MUSP assumes the input data, D, depicts scenes with-

out extremely tall buildings. Therefore, the ground segment

is the segment with the largest convex-hull area (area of

the convex-hull of a segment), e.g., turquoise segment in

Fig. 5D and green segment in Fig. 1.

5.2. Facades and Flat or Mansard Roof Detection

Since we assume that the vertical (up) direction, v, is

given and buildings with curved facades are not present in

the scene, the geometry of facades can be well approx-

imated by planes. We impose orthogonality of the seg-

ment normals to the vertical (up) direction, v, as a con-

straint for facade detection. If for a given segment, S1,

RANSAC fits a plane with normal n1, then, S1 is a facade

if |n1·v| ≤ǫ1 . Similarly, S1 is regarded as a flat or mansard

roof if |1−n1·v|<ǫ1 .

5.3. Generic Gable Roof Detection

In [41, 44], a general rotational Z-symmetry for gable

roofs is assumed. However, the corresponding constraints

are too stringent and allow little or no architectural imper-

fections and asymmetry. They also do not permit noise or

data acquisition artifact as often present in pointclouds de-

rived from SfM/MVS. Moreover, neighboring buildings are

very often close to one another so that a Z-symmetry in

the opposite direction is present e.g., the multi-gable roofs

Fig. 6A. We use the following rules and the template shown

in Fig. 6C to detect generic gable roofs. Two segments S1

and S2 form a generic gable roof segment pair, with the

ridge line, i.e, line of intersection of the two planes formed

by RANSAC plane fitting for S1 and S2, if:

Proximity: S1 is close to S2.

Concavity: Angles ωa<0.5π,ωb<0.5π (see Fig. 6C).

Downward Concavity: The centroid of both segments lie

below the ridge line.

A major disadvantage of this relaxation as compared to

the more restrictive Z-symmetry assumption is that both,

symmetric and asymmetric (half)-hipped as well as pavilion

roof types are falsely detected as generic gable roofs. We

resolve this ambiguity during the regularization and model

fitting as described in the next section.
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Figure 6. (A) Z-symmetry in the wrong direction because build-

ings are close to one another. Roof hypothesis defined by in-

tersecting segment pair, segmenta and segmentb (A) for gable

roofs, and approximate rectangle of segments for flat roofs (B in

grey). Polygon sweeping along and orthogonal to the sweeping

line (yellow line in BCD) to determine the true location of the fa-

cade. (B,E) Varying locations p5, p6 or values hm, hc captures

other roof models e.g., mansard.

6. Surface Fitting and Regularization

MUSP proceeds with the work flow shown in Fig. 7, fit-

ting polygons to the labelled segments. The idea is to gen-

erate competing configurations, cu, score them consistently

with a likelihood function, and finally select the “best”.

The form of the likelihood function follows directly from

the polygon chain constituting a configuration. We use an

MSAC (M-Estimator SAmple Consensus) [40] based like-

lihood to determine if a 3D point from D is within the close

vicinity of the polygon chain defined by a configuration. It

is defined as follows:

L (cu)= exp



−
∑

j

ρ (ej)



 , ρ (ej)=

{

ej ej<T

T ej≥T

(5)

where ej is the shortest Euclidean distance from point pj in

the pointcloud to the surface of the polygon chain defined

by configuration cu, and T the inlier threshold.

6.1. Association of Roofs and Facades

The goal here is to search for the facades correspond-

ing to a detected generic gable roof segment pair, or a flat

roof, approximated by the bounding rectangle (grey region

in Fig. 6B) of its segment. This problem reduces to search-

ing for planar inliers underneath the roof segments. Ide-

ally, these are already labelled as facade segments from sec-

tion 5. Unfortunately, a well-defined segmentation cannot

be guaranteed for all facades, e.g., due to missing data or

Figure 7. Work flow for generating, scoring and selecting compet-

ing configurations.

non-isolated buildings with complex footprints. We thus re-

sort to polygon sweeping, as shown in Fig. 6 and described

in the next section.

6.2. Polygon Sweeping

This is a restricted form of the widely used plane sweep-

ing. Polygons are swept along and orthogonal to a sweep-

ing line (yellow line in Figures 6BCD). For gable roofs, the

ridge line is used as sweeping line. The approximate bound-

ing rectangle (hc×hm in Figure 6B) defines the sweeping

directions, hence, the sweeping lines for flat roofs. The

polygon is swept along lb (see Figure 6D). For every sweep-

ing step, the polygon is scored using MSAC. The process is

repeated in the orthogonal direction to the sweeping line.

Here, the polygons are swept along la. The locations la and

lb defining the extent on which to sweep are defined based

on the convex-hull polygons of the roof segments along and

orthogonal to the sweeping line. For example, in the gable

roof case, if hmax defines the location of the convex-hull

orthogonal to the ridge line and the vertical (up) direction,

then lb is defined as: lb = hmax + d, with tolerance d. Sim-

ilarly, if the maximum extent of the hull along the direction

of the ridge-line is rmax, then the width of the sweeping

polygon orthogonal to the ridge-line direction is: la = rmax

+ d. The value of the tolerance is determined based on how

close the buildings are to one another. Throughout our ex-

periments, the value d = 1m is used (see Table 1). To

account for missing data, we have developed the following

heuristics: If one facade is not there, we assume symmetry

and replicate it from the detected parallel facade. If both

parallel facades for a detected roof segment are missing, we

use the convex-hull of the roof segment as facade locations.

Next, using the detected facades and the planes derived

from the roof segments, we compute the points p0, . . . , p3
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(see Figure 6C) by the intersection of three planes: two ad-

jacent facade planes and one roof segment plane.

6.3. Model Regularization and Selection

Polygon sweeping leads to models with basic gable and

flat roofs. We capture symmetric and asymmetric (half)-

hipped as well as pavilion roof models using the work flow

in Fig. 7, by varying the locations of points p5, p6 along the

ridge line (see Figure 6E). Similarly, by varying the size of

the approximated rectangle, hc×hm in Figure 6B, yet not

beyond the detected facades, we capture other derivatives

of the flat roof, e.g., mansard roof (see Fig 9). We score

the resulting new configurations, cu, using the likelihood

function L (cu). MUSP assume that all configurations are

equally likely, and selects the best configuration as the one

with the highest likelihood.

6.4. Ground Modeling and Surface Trimming

Modeling the ground with a plane provides the lowest

possible complexity in terms of number of polygons used.

Yet this often result in lost of the natural smoothness. We

solve this problem using Non-Uniform Rational B-Spline

(NURBS) surfaces. Surface modeling with NURBS has two

major difficulties: (1) Finding appropriate control points

and (2) the points that will form a mesh. For the former,

we project centroids of voxels belonging to the ground to

their clipped planes and use these as control points. The

second problem is called tessellation. For complexity and

efficiency reasons, MUSP uses uniform tessellation.

To achieve a more compact representation while preserv-

ing the semantic, we limit the extent of the facade beyond

the tessellated ground. For this, we perform Boolean opera-

tions on the geometry by locating collision points of the fa-

cade polygons to the tessellated ground mesh and trimmed

them off.

7. Experiments and Discussion

We perform experiments with real-world 3D pointclouds

generated by state-of-the-art SfM/MVS work flows (Agisoft

Photoscan, Pix4Dmapper and [14, 36]). As MUSP inher-

ently assume aerial data acquisition, it may be difficult to

model scenes captured from terrestrial sensors. Yet, we also

experimented with terrestrial LiDAR scans from [25]. The

size ranges from a few million 3D points to very large scale

data sets containing billions of 3D points [25]. MUSP is a

fully automatic system, but has only a few adjustable pa-

rameters summarized alongside their default values in Ta-

ble. 1.

We use the Normal-Inverse-Wishart (NIW) distribution

as base distribution, G0, in Algorithm 1. For all experi-

ments, we specify this distribution by setting its four pa-

rameters to: µ0=(0,0,0) , κ0=1, Ψ0=I3, υ0=4, where I3

is the R
3 identity matrix.

Table 1. Parameters with default values used
MUSP Stage Parameter Default

Segmentation

RANSAC inlier thresh. 0.3m

Voxel size ls 1.0m

Itcoreset, Itcpn 500, 10

Upper bound Kb 40

Semantic Decomp. ǫ1 0.10

Fitting & Regul.
d 1.0m

MSAC inlier T 0.3m

7.1. Evaluation

MUSP depends on robust patch segmentation in point-

clouds which itself relies on a combination of RANSAC,

nonparametric Bayesian clustering and region grow-

ing. Under well-defined conditions, the performance of

RANSAC and region-growing have widely been studied.

Hence, we limit our discussions on the convergence and ac-

curacy of nonparametric Bayesian clustering of CPN. The

concentration parameter α determines the number of clus-

ters, K, inferred [21]. The higher the value of α, the more

clusters are found since many isolated CPN on the unit

sphere will become distinct clusters. Fortunately, the pre-

sented divide and conquer framework inherently adapts to-

wards this behaviour since connected component analysis

resolves issues that may arise if too many clusters are cre-

ated e.g., due to noise from vegetation. We study this be-

haviour by computing two Monte-Carlo approximations of

the posterior using Algorithm 1 for the data set shown in

Fig. 10(B) containing a single building in a single major

Manhattan-Frame. We use the values α = 5, and α = 15
respectively. The complete analysis is performed on the first

level of our two-level hierarchy, i.e., using “coreset” hence

initial random assignments. The clustering dynamics—

number of clusters, number of CPN per cluster, and num-

ber of Gibbs sampling iterations required to convergence—

is shown in Fig. 10(B). Although a random initialization is

used, the Gibbs sampling converges on average in less than

50 samples to the correct K.

Evaluation of Modeling: Currently, there are no bench-

marks in this line of work because the generation of ground-

truth for outdoor scenes still requires immense manual la-

bor. We use the setup shown in Fig. 10A to evaluate MUSP

in the most likely case of incomplete data e.g., due to oc-

clusion. Our test dataset is from SfM/MVS and contains 20

million 3D points. The scene shows a gable roof building

in its immediate surrounding. To simulate missing data, we

manually perturb, i.e, segment ten different combinations

of the facades from the test data. First we model the scene

without perturbation, then we model all perturbed versions

of the test data and compute the Jaccard coefficient defined
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Figure 8. Results of our work flow for three data sets. Terrestrial LiDAR scan (A) from [25] containing 2.2 billion 3D points and data sets

from SfM/MVS (B and C). The input pointcloud for data set B is shown in Fig. 3B. Segmented patches are represented with random colors.

Figure 9. MUSP models a mansard roof building from pointclouds

derived from SfM/MVS.

by,

J (A,B)=
|A∩B|

|A∪B|
(6)

where A and B are the volumes of the model with and with-

out perturbations (Fig. 10A, red and green polyhedra re-

spectively). We achieve an average Jaccard coefficient of

0.93 for this gable roof building. Further discussions of

evaluation with respect to increasing noise level and incom-

plete data can be found in the supplementary material.

Due to diversity of buildings and the local planarity as-

sumption, it can be difficult to correctly model buildings

with curved facade or roof surfaces exhibiting strong local

curvatures with MUSP. Furthermore, voxelized space with

fixed voxel size of 1m means lots of finer features in a build-

ing such as the chimney or windows will be lost.

8. Conclusion

We have proposed an algorithm for modeling from point-

clouds. Our work flow is probabilistic, and scales to

datasets with billions of noisy 3D points. It is based on

an accurate scene segmentation using a combination of

RANSAC and nonparametric Bayesian clustering, a set of

basic rules for scene decomposition as well as polygon-

sweeping and NURBS surface fitting for modeling both nat-

ural (the ground) and man-made surfaces (buildings). Be-

sides robustness against substantial noise and scalability,

Figure 10. (A) Evaluation of modeling by comparing volumes of

polyhedra, (Jaccard Coefficient). Analysis of the convergence of

the Gibbs sampling based clustering of CPN for a data set with a

single Manhattan-Frame (B).

our approach offers several advantages compared to exist-

ing approaches such as standard meshing algorithms. First,

it abstracts the scene to a compact but accurate representa-

tion while maintaining semantics. Second, it retains the nat-

ural smoothness inherent in the ground by modeling with

NURBS. An obvious next step is to refine the extracted

models to include windows and doors. Also, the strongly

template-based modeling of buildings can be extended to in-

clude free-form surfaces, e.g., by using NURBS for curved

facades and roofs.
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