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Abstract

This paper aims at estimating full-body 3D human pos-

es from monocular images of which the biggest challenge

is the inherent ambiguity introduced by lifting the 2D pose

into 3D space. We propose a novel framework focusing on

reducing this ambiguity by predicting the depth of human

joints based on 2D human joint locations and body part

images. Our approach is built on a two-level hierarchy of

Long Short-Term Memory (LSTM) Networks which can be

trained end-to-end. The first level consists of two compo-

nents: 1) a skeleton-LSTM which learns the depth informa-

tion from global human skeleton features; 2) a patch-LSTM

which utilizes the local image evidence around joint loca-

tions. The both networks have tree structure defined on the

kinematic relation of human skeleton, thus the information

at different joints is broadcast through the whole skeleton in

a top-down fashion. The two networks are first pre-trained

separately on different data sources and then aggregated in

the second layer for final depth prediction. The empirical e-

valuation on Human3.6M and HHOI dataset demonstrates

the advantage of combining global 2D skeleton and local

image patches for depth prediction, and our superior quan-

titative and qualitative performance relative to state-of-the-

art methods.

1. Introduction

1.1. Motivation and Objective

This paper aims at reconstructing full-body 3D human

poses from a single RGB image. Specifically we want to lo-

calize the human joints in 3D space, as shown in Fig. 1. Es-

timating 3D human pose is a classic task in computer vision

and serves as a key component in many human related prac-

tical applications such as intelligent surveillance, human-

robot interaction, human activity analysis, human attention

recognition,etc. There are some existing works which esti-

mate 3D poses in constrained environment from depth im-
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Figure 1. Our two-level hierarchy of LSTM for 3D pose estima-

tion. The skeleton-LSTM and patch-LSTM captures information

from global 2D skeleton and local image patches respectively at

the first level. The global and local features are integrated in the

second level to predict the depth on joints. The 3D pose is recov-

ered by attaching depth values onto the 2D pose. We render the

3D pose for better visualization.

ages [40, 26] or RGB images captured simultaneously at

multiple viewpoints [2, 10]. Different from them, we focus

on recognizing 3D pose directly from a single RGB image

which is easier to be captured from general environment.

Estimating 3D human poses from a single RGB image

is a challenging problem due to two main reasons: 1) the

target person in the image always exhibits large appear-

ance and geometric variation because of different clothes,

postures, illuminations, camera viewpoints and so on. The

highly articulated human pose also brings about heavy self-

occlusions. 2) even the ground-truth 2D pose is given, re-

covering the 3D pose is inherently ambiguous since that

there are infinite 3D poses which can be projected onto the

same 2D pose when the depth information is unknown.

One inspiration of our work is the huge progress of 2D

human pose estimation made by recent works based on deep

architectures [33, 32, 17, 37, 3]. In those works, the appear-

ance and geometric variation are implicitly modeled in feed-

forward computations in networks with hierarchical deep

structure. The self-occlusion is also addressed well by fil-

ters from different layers capturing features at different s-
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cales. Another inspiration of our work is the effectiveness

that deep CNN has demonstrated in depth map prediction

and segmentation from monocular image [8, 35, 16, 36] in-

stead of stereo images. Most of those approaches direct-

ly predict the pixel-wise depth map using deep networks

and some of them build markov random fields on the out-

put of deep networks. The largest benefit is that they are

not bothered by designing geometric priors or hand-crafted

features, and most models can be trained end-to-end using

back-propagation. Based on the two above inspirations, in

this paper, we propose a novel framework to address the

challenge of lifting 2D pose to 3D pose by predicting the

depth of joints from two cues: global 2D joint locations and

local body part images. The 2D joint locations are predicted

from off-the-shelf pose estimation methods.

1.2. Method Overview

Our approach is built on a two-level hierarchy of LST-

M networks to predict the depth on human joints and then

recover 3D full-body human pose. The first level of our

model contains two key components: 1) the skeleton-LSTM

network which takes the predicted 2D joint locations to es-

timate depth of joints. This is based on the assumption that

the global human depth information such as global scale and

rough depth can be inferred from the correlation between

2D skeleton and 3D pose. This global skeleton feature can

help to remove the physically implausible 3D joint configu-

ration and predict depth with considerable accuracy; 2) the

patch-LSTM network which takes the local image patch-

es of body parts as input to predict depth. This network

addresses the correlation between human part appearance

and depth information. To better model the kinematic re-

lation of human skeletons, the two recurrent networks have

tree-structures similar to the models in [34, 19, 24]. Dur-

ing training, the features at different joints are broadcast-

ed through the whole skeleton and in testing the depth are

predicted for each joint in top-down fashion. The skeleton-

LSTM is first pre-trained on 2D-3D pose pairs without any

image so infinite training examples can be generated by pro-

jecting 3D poses onto 2D space under arbitrary viewpoint.

The patch-LSTM is pre-trained on human body patches ex-

tracted around 2D joints. To increase appearance variation

and reduce overfitting we employ multi-task learning on the

combination of two data sources: the MoCap data with the

task of depth regression and in-the-wild pose data with the

task of 2D pose regression. The two networks are aggre-

gated in the second layer and finetuned together for final

depth prediction. We evaluate our method extensively on

Human3.6M dataset [11] using two protocols. To test the

generalization ability, we test our method on HHOI dataset

using the model trained on Human3.6M dataset. The results

demonstrate that we achieve better performance over state

of the art quantitatively and qualitatively.

1.3. Related Works and Our Contributions

Monocular 3D human pose estimation. With the suc-

cess of deep networks on a wide range of computer vi-

sion tasks and especially 2D human pose estimation, the

3D pose estimation from monocular image using deep net-

works [14, 15, 23, 39, 41] have received lots of attentions

recently. Some approaches [14, 15] directly predict the 3D

pose from images so their training and testing are restricted

to the 3D MoCap data in a constrained environment, and

some methods [22, 4] reconstruct 3D poses only from the

2D landmarks which are from other off-the-shelf method-

s. Li et al. [14] applies a deep network to regress 3D pose

and detect 2D body parts simultaneously. In this method

there is no explicit constraint to guarantee that the predicted

3D pose can be projected to the detected 2D part location-

s. Li et al. [15] learn the common embedding space for

both image and 3D pose using a deep network. The match-

ing score of pose and image is computed as the dot product

between their embedding vectors. Some methods [39, 41]

use two different data sources for training 2D pose estima-

tor and 3D pose predictor. The 3D poses are recovered by

minimizing the 3D-2D projection error. The benefit is that

their 2D pose estimators can be trained from another data

source instead of the 3D Mocap data which is captured in a

constrained environment. Zhou et al. [41] predict 3D poses

from a video sequence by using temporal information. The

3D pose estimation is conducted via an EM type algorith-

m over the entire sequence and the 2D joint uncertainties

are marginalized out during inference. Yasin et al. [39] pro-

pose a dual-source approach to combine 2D pose estimation

with 3D pose retrieval. The first data source only contains

images with 2D pose annotations for training 2D pose esti-

mator and the second source consists of 3D MoCap data for

3D pose retrieval. Our approach is similar to those works

in that we also use two data sources for 3D pose prediction:

The Mocap data and in-the-wild 2D pose data, however, we

do not assume that the 3D pose is conditional independen-

t of image given 2D pose. The cues from global 2D pose

and local image patches are jointly modeled in our two-level

network. The 2D pose images are used for the auxiliary task

of 2D pose regression to compensate the lack of appearance

variation of Mocap data. Another work worth mention is

[13] which use regression forest to infer the depth informa-

tion and estimate 3D joint location probabilities from im-

age patches. The independent joint probabilities are used

with the pictorial structure model to infer the full skeleton.

We also infer joint depth from image patches, however, our

deep network is built on the pictorial structure model and

can be trained end-to-end.

Depth estimation from monocular image. Predicting

depth from monocular image is a long-standing problem

and recent approaches [8, 35, 16, 5, 25] using deep neu-

ral networks have made a great progress in this area. Eigen
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Figure 2. Overview of our model structure and training process. In the first level, the skeleton-LSTM is pre-trained with 2D-3D pose

pairs to predict depth from global skeleton features. The patch-LSTM predicts depth from local image patch evidence of body parts. The

tree-structure of two networks are defined on the kinematic relation of human joints, so the state of current joint is composed of the hidden

states of its parents and the input feature of itself. The two networks are integrated into another LSTM at the second level for end-to-end

training. To reduce overfitting of patch-LSTM, we borrow in-the-wild 2D pose images and train the network with multi-task loss: the depth

prediction loss and 2D pose regression loss.

et al. [8] apply a multi-scale network to directly regress

depth. The coarse-scale network is learned to predict over-

all depth map structure and the fine-scale network refines

the rough depth map using local image evidence. Wang et

al. [35] proposed a unified framework for joint learning of

depth estimation and sematic segmentation. A deep CNN

is trained to do both tasks and a hierarchical CRF is applied

in inference to get fine-level details. Liu [16] learn a con-

tinuous CRF and a deep CNN jointly. The unary and binary

potentials are from the deep CNN. They formulate the depth

prediction as a MAP problem and provide closed-form so-

lutions. Chen [5] train a deep network with ranking loss

to produce pixel-wise depth using only annotations of rel-

ative depth. In this work, we integrate the global and local

information from 2D skeleton and local image patches to

infer the depth of human joints and our objective function

considers both absolute and relative depth loss based on the

tree-structured human skeleton.

The contribution of our approach is three-fold:

i) We explore the ability of deep network for predict-

ing the depth of human joints and then recover 3D pose.

Our framework is more flexible than others because com-

plex optimization is not needed and model can be trained

end-to-end.

ii) We incorporate both global 2D skeleton features and

local image patch features in a two-level LSTM network

and the tree-structure topology of our model naturally rep-

resents the kinematic relation of human skeleton. The fea-

tures at different joints are aggregated in top-down fashion.

iii) The extensive experiments demonstrate the superior

quantitative and qualitative performance of our work rela-

tive to other state of the art methods.

2. Models

In this section, we will first describe the relationship be-

tween 3D pose estimation and depth prediction, and then

introduce our model and its corresponding formulations.

2.1. Recover 3D Pose by Depth Prediction

The 3D human pose is represented by a set of locations

of human joints in 3D space. We use W ∈ R
3×N to denote

the 3D pose in the world’s coordinate system where N is the

number of joints. Each 3D joint location in W is denoted by

the 3D coordinate wi = [Xi, Yi, Zi], i ∈ 1, ..., N . The 2D

pose is defined in the same way as S ∈ R
2×N and each 2D

joint is denoted as si = [xi, yi]. The relationship between

each 3D joint and 2D joint can be described as a perspective

projection:

zi ·





xi

yi
1



 = f · [R|T ] ·









Xi

Yi

Zi

1









, i ∈ 1, ..., N (1)

where R ∈ R
3×3 denotes the camera rotation matrix, f de-

notes focal length and zi denotes depth of joint i. Note that

in Eq. 1 there is no weak perspective assumption about the

relationship between 3D pose and 2D pose. Given 2D joint

locations [xi, yi] and focal length f we need the depth val-

ue for each joint zi, global rotation R and translation T to

recover all 3D joint locations. Since there are infinite com-

binations of transformation matrix [R|T ] and world coordi-

nate [Xi, Yi, Zi] which can produce the same [xi, yi] and zi
with unknown camera position, therefore in this work we

focus on predicting z = [z1, ..., zN ] to recover the 3D pose

in the camera’s coordinate system Ŵ = [R|T ] · [W |1]T .
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In order to predict the depth, we define the joint distribu-

tion of depth z, 2D pose S and image I:

P (z, S, I) = P (z|S, I) · P (S|I) · P (I), (2)

where P (S|I) represents the 2D pose estimation from sin-

gle image I which can be handled by any off-the-shelf 2D

pose estimation method. The separate estimation of depth

and 2D pose allows P (S|I) to be modeled by any complex

method. Any improvement made in P (S|I) can be imme-

diately plugged into P (z, S, I) and re-training of the whole

system is not needed. P (z|S, I) is modeled as a two-level

hierarchy of LSTM which utilizes the 2D pose S and image

evidence I in the first level, and integrates two networks in

the second level for final depth prediction. The details of

our model are described below.

2.2. Components of our Model

To take advantage of the global skeleton feature and lo-

cal image feature to predict depth, we use a deep structure

of LSTMs with two levels. As shown in Fig. 2, the first

level consists of two recurrent networks: a skeleton-LSTM

stacked with a 2D pose encoding network which takes the

predicted 2D pose S as input and a patch-LSTM stacked

with image patch encoding network which takes the local

image patches I(si), i ∈ [1, ..., N ] around 2D joints as in-

put. The hidden states of the two networks at each joint are

max pooled and forwarded to the LSTM at the second level

to predict the final real valued depth di for each joint.

Inspired by those graphical model based pose estimation

methods [38, 24, 20, 18], we represent human pose as a

tree structure based on the kinematic relation of skeleton.

The articulated relation are better represented and the cor-

relation of features at parent joint and child joint are bet-

ter captured within tree structure than the flat or sequential

structure. Similar to the framework of [29], we adapt the

tree-structured LSTM for modeling human pose and inte-

grating global and local features. The aggregated contextual

information are propagated efficiently through the edges be-

tween joints. In experiments we evaluate different choices

of model structure and demonstrate the empirical strength

of tree-structure over the flat or sequential model.

The three tree-structured LSTMs in our model share the

same equation and only differ in the input data. At joint j,

the state of the LSTM unit is composed of the current input

feature xj , all hidden states hk and memory states ck from

its parents, and the output is the hidden state hj and memory

state cj which is forwarded to the child joint:

(hj , cj) = LSTM(xj , {hk}k∈N(j), {ck}k∈N(j),W,U) (3)

where W and U are weight matrices. To obtain a fixed di-

mension of the input feature, the hidden states from all par-

ents of joint j are mean pooled:

h̄j = (
∑

k∈N(j)
hk)

/

|N(j)| (4)

h̄j is used to compute LSTM gates of joint j as below:

ij = σ(W ixj + U ih̄j + bi)

fjk = σ(W fxj + Ufhk + bf )

oj = σ(W oxj + Uoh̄j + bo)

c̃j = tanh(W cxj + U ch̄j + bc)

cj = ij ⊙ c̃j +
∑

k∈N(j)
(fjk ⊙ ck)

hj = oj ⊙ tanh(cj)

(5)

where ij is the input gate, fjk is the forget gate of parent k,

oj is the output gate, σ denotes the sigmoid function and ⊙
denotes the element-wise multiplication. Note that our L-

STM has different forget gates for different parent joint and

the multiplication of each fjk and ck indicates the influence

of parent k on current joint j.

2D pose encoding. As shown on the left of Fig. 2,

the skeleton-LSTM utilize the global information from 2D

skeleton S to predict the depth. In order to have a better

representation of the 2D skeleton, we apply a multi-layer

perceptron network shared by all joints to extract the glob-

al pose feature. The input feature of the skeleton-LSTM at

joint j is xs
j = MP (Ŝj) where Ŝj is the normalized 2D

pose by subtracting each joint location by the current joint

location [xj , yj ]. The structure of the multi-layer percep-

tron is visualized in Fig. 3. It is trained together with the

skeleton-LSTM.

4096 2048 512

LSTM
fc
relu
dropout

fc
relu
dropout

fc
relu
dropout

Figure 3. The multi-layer perceptron network for 2D pose encod-

ing.

Image patch encoding. As shown on the right of Fig. 2,

the patch-LSTM utilizes the local information from image

patches of body parts for depth prediction. The input of

LSTM unit at joint j is the encoded feature of the cor-

responding image patch around that joint. We use x
p
j =

CNN(I(xj , yj)) to denote the input feature which is the

last layer of a small ConvNet shared by all joints. The struc-

ture of the ConvNet is visualized in Fig. 4.

For the final LSTM at the second layer, the input fea-

ture at joint j is the element-wise max pooling of hid-

den states from skeleton-LSTM and patch-LSTM: xj =
max(hs

j , h
p
j ). The real-value depth in log space log(zj) at

each joint is predicted by attaching another fully-connected

layer on the hidden state hj : log(zj) = σ(W zhj + bz).
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Figure 4. The convolutional network for image patch encoding.

3. Learning

The model weights that we need to learn include the

weights of three LSTMs, and the weights of the 2D pose

encoding network and image patch encoding network. The

learning process consists of three phrases:

1) The skeleton-LSTM and skeleton encoding network

are first pre-trained from Mocap data using the 2D-3D pose

pairs with depth prediction loss. The RGB images are not

needed and infinite 2D-3D pose pairs can be generated by

projecting each 3D pose into 2D poses under different cam-

era viewpoints.

2) The patch-LSTM and image encoding network are

first pre-trained on RGB images from both MoCap dataset

and in-the-wild 2D pose dataset with multi-task loss. Al-

though the 2D pose dataset does not have depth data, they

act as a regulariser with loss function of 2D pose regression.

3) The last step is to combine the two LSTMs in the sec-

ond layer for end-to-end training.

3.1. Objective Function

The loss functions for depth regression at the above three

phrases share the same formulation but use different input

feature and hyper parameters. Inspired by [8], we define the

loss based on both relative error and absolute error:

di = log(zi)− log(z∗i )

dij = (log(zi)− log(zj))− (log(z∗i )− log(z∗j ))

L(z, z∗) = λ
1

n

n
∑

i=1

d2i + β
1

|E|

∑

(i,j)∈E

d2ij

(6)

where z is the vector of all depth values on joints, n is the

number of joints and E denotes the set of edges in the tree

structure. The first term of L(z, z∗) is the mean squared

error which enforces the absolute depth at each joint to be

correct and the second term penalizes the difference of rel-

ative depth between each parent-child pairs. Instead of con-

sidering all pairwise depth relations in [8], we focus on the

parent-child depth relations represented by edges in the tree

structure of our model. The hyper parameters λ and β con-

trol the balance between absolute depth loss and relative

depth loss. We set different λ and β for training skeleton-

LSTM and patch-LSTM since they are good at minimizing

different losses with different features.

3.2. Multitask learning for patchLSTM

As mentioned in Section 3.1, the patch-LSTM needs to

be trained on image data with depth values of joints, and

the images from Mocap data are captured from a highly

constrained environment with small appearance variation

which may lead to severe over-fitting. To decrease over-

fitting, we argument training data using in-the-wild images

with annotations of 2D poses from public pose datasets. Al-

though the 2D pose datasets do not have depth, we apply the

multi-task learning [7] to combine it with Mocap dataset

in the same network. Specifically, we add another fully-

connect layer on top of the hidden state of LSTM to regress

the 2D joint locations which are normalized following [33].

The overall training loss is the sum of depth prediction loss

which only operates on Mocap data and 2D pose regression

loss which operates on both Mocap data and 2D pose data.

4. Results

Datasets. For empirical evaluation of our 3D pose esti-

mation we use two datasets: Human3.6M dataset (H3.6M)

[11] and UCLA Human-Human-Object Interaction Dataset

(HHOI) [27]. The Human3.6M dataset is a large-scale

dataset which includes accurate 3.6 million 3D human pos-

es captured by Mocap system. It also includes synchronized

videos and projected 2D poses from 4 cameras so the 2D-

3D pose pairs are available. There are total 11 actors per-

forming 15 actions such as Sitting, Waiting and Walking.

This dataset is captured in a controlled indoor environment.

The HHOI dataset contains human interactions captured by

MS Kinect v2 sensor. It includes 3 types of human-human

interactions: shake hands, high five and pull up and 2 types

of human-object-human interactions: throw and catch, hand

over a cup. There are 8 actors performing 23.6 instances

per interaction on average. The data is collected in a com-

mon office with clutter background. For in-the-wild 2D

pose dataset, we use the MPII-LSP-extended dataset [21]

which is a combination of the extend LSP [12] and the MPII

dataset [1]. After flipping each image horizontally, we get a

total of 80000 images with 2D pose annotations.

Implementation details. We use the public deep learn-

ing library Keras [6] to implement our method. The train-

ing and testing are conducted on a single NVIDIA Titan

X (Pascal) GPU. To train the skeleton-LSTM, we use the

2D-3D pose pairs down-sampled at 5 fps from Human3.6M

dataset. Each 3D pose is projected onto 2D poses under

4 camera viewpoints. The 2D pose encoding network is

stacked with skeleton LSTM for joint training with parame-

ter λ = 0.5 and β = 0.5. To train the patch-LSTM, we use

image frames down-sampled at 25 fps from Human3.6M

and all images from MPII-LSP-extended dataset. The im-

age patch encoding network is stacked with patch-LSTM

for joint training with parameter λ = 0.2 and β = 0.8.
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Methods Direct Discuss Eat Greet Phone Pose Purchase Sit SitDown Smoke Photo Wait Walk WalkDog WalkTo Mean

Yasin[39] 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0 170.8 108.2 142.5 86.9 92.1 165.7 102.0 110.2

Gall[13] − − − − − − − − − − − − − − − 115.7

Rogez[23] − − − − − − − − − − − − − − − 88.1

our(s) 70.8 71.0 81.0 83.2 87.6 73.3 80.7 103.4 121.7 95.1 91.2 80.8 71.8 89.3 73.0 84.9

our(p) 93.5 88.0 116.7 105.4 111.3 80.0 99.7 136.7 173.2 111.5 117.6 86.9 89.1 118.8 97.5 108.4

our(s+p) 62.8 69.2 79.6 78.8 80.8 72.5 73.9 96.1 106.9 88.0 86.9 70.7 71.9 76.5 73.2 79.5

Table 1. Quantitative comparison of mean per joint errors (mm) on Human3.6M dataset (Protocol 1).

Methods Direct Discuss Eat Greet Phone Pose Purchase Sit SitDown Smoke Photo Wait Walk WalkDog WalkTo Mean

Tekin[30] 102.4 158.5 87.9 126.8 118.4 185.0 114.7 107.6 136.2 205.7 118.2 146.7 128.1 65.9 77.2 125.3

Zhou[41] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Rogez[23] − − − − − − − − − − − − − − − 121.2

our(s+p) 90.1 88.2 85.7 95.6 103.9 92.4 90.4 117.9 136.4 98.5 103.0 94.4 86.0 90.6 89.5 97.5

Table 2. Quantitative comparison of mean per joint errors (mm) on Human3.6M dataset (Protocol 2).

After separate training of the two networks, we finally com-

bine them with the final LSTM for end to end training using

λ = β = 0.5. RMSprop [31] is used for mini-batch gradi-

ent descent and the learning rate is 0.00001 for all networks.

The batch size is 128 for skeleton-LSTM and 64 for others.

Baseline. In addition to comparing our final system

with state of the art methods, we also use two variations

of our method as baselines : 1) To isolate the impact of im-

age feature, we only keep the skeleton-LSTM and the 2D

pose encoding network and train them jointly to predict the

depth and then recover 3D pose. This baseline is denoted

as ‘ours(s)’; 2) We only keep patch-LSTM and image patch

encoding network and it is denoted as ‘ours(p)’.

4.1. Evaluation on Human3.6M Dataset

We compare our results with state of the art approaches

in 3D pose estimation on Human3.6M dataset. We follow

the evaluation protocol in [39]. The image frames and poses

from subject S1, S5, S6, S7, S8 and S9 are used for training

and S11 for testing. The testing data from S11 is down-

sampled at 64fps and some poses without synchronized im-

ages are removed so the total testing set has 3612 poses.

The training set has around 1.8 million 2D/3D poses with

synchronized images. The 3D pose error is measured by

the mean per joint position error (MPJPE) [11] at 13 joints

up to a rigid transformation. We refer to this protocol by P1.

The quantitative results are presented in Table 1. The

method ‘our(s)’ and ‘our(p)’ are two method variations and

‘our(s+p)’ is our final system. In all model variations, we

apply the pre-trained off-the-shelf 2D pose estimator from

[9] to detect 2D poses without any re-training or fine-tuning

because it is easy for the model to overfit the Human3.6M

dataset which is captured in a highly constrained environ-

ment with limited appearance variation.

Table 1 shows that our model variation ‘our(s)’ outper-

forms other approaches which demonstrates the powerful-

ness of predicting depth from only 2D pose. The human 2d

pose can be seen as a strong cue to estimate the correspond-

ing 3D pose. Although there are some ambiguities in the

perspective projection, with only 2D pose features our mod-

el already captures helpful information to predict the depth

of joint. This result also indicates that predicting the joint

depth is more robust than predicting the whole 3D pose.

Our method variation ‘our(p)’ achieves similar results

with [13] which also uses image patches to predict 3D joint

locations. To train the patch-LSTM, we focus on the pair-

wise relative losses as shown in Eq. 6 because it is hard to

predict the absolute depth with resized body part images.

After integrating the skeleton-LSTM and patch-LSTM we

further decrease the error to 79.5mm which outperforms the

second best result by 9.8%.

We also report results for protocol 2 (P2) which is em-

ployed in [41, 30, 23]. The 2D/3D poses and image frames

of subject S1, S5, S6, S7 and S8 are used for training and

S7, S9 are used for testing. The estimated 3D pose and

ground truth pose are aligned with their root locations and

MPJPE is calculated without rigid transformation. The re-

sults of our final system and state-of-the-art approaches are

presented in Table 2. Our method clearly outperforms the

second best result [41] by 13.72% even though they use

temporal information to help 3D pose estimation.

4.2. Evaluation on HHOI Dataset

To evaluate how our method can be generalized to da-

ta from a totally different environment, we train model on

Human3.6M dataset and test it on HHOI dataset which is

captured with Kinect in a casual environment. We pick 13

joints defined by Kinect and use mean per joint error as the

evaluation metric. Each action instance is down-sampled

at 10fps for efficient computation and both persons in each

action are evaluated. We still use the focal length from Hu-

man3.6M to recover 3D poses and the poses are compared
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Figure 5. Qualitative results from HHOI dataset. We visualize ten frames and their estimated 3D poses from action ‘Pull Up’ and ‘Hand

Over’. Besides the original results, we show pose rendering results for better visualization.

up to a rigid transformation and also scale transformation.

The method of [9] is used to produce 2D poses. Some quali-

tative results are presented in Fig. 5. For better visualization

of 3D pose, we do pose rendering using the code released

from [42]. The two poses at each frame are recovered in-

dependently so their relative depth may not be correct. We

regress the relative mean depth between two persons using

the 2d distance on y axis between two persons’ feet.

There is no public code for recent methods compared in

Human3.6M dataset so we implement another baseline ‘N-

earest’ which match the predicted 2D pose with 2D poses

from Human3.6M and select the depth from the 3D pose

paired with the nearest 2D pose as the predicted depth.

Note that the Kinect may produce unreasonable 3D poses

because of occlusions and the evaluation with those poses

cannot reflect true performance of compared methods, thus

we looked at each action video and carefully select some

of them for quantitative comparison. Specifically we keep

all videos from ‘PullUp’ and ‘HandOver’, and a few videos

from ‘HighFive’ and ‘ShakeHands’. We select the small-

er error calculated among the predicted pose and its flipped

one due to the left-right confusion of Kinect. The quanti-

tative results are summarized in Table 3. The action ‘Pull

Up’ gets the biggest error among all actions due to the large

Method PullUp HandOver HighFive ShakeHands

Nearest 161.2 126.2 117.3 129.6

our(s) 139.8 105.2 98.4 113.1

our(p) 132.4 102.5 103.0 129.0

our(s+p) 124.8 101.9 96.1 118.6

Table 3. Quantitative comparison of mean per joint errors (mm)

on HHOI dataset.

pose variation. Our final model outperforms other baselines

in three actions.

4.3. Diagnostic Experiments

To better justify the contribution of each component of

our method, we do several diagnostic comparisons in the

following. The Human3.6M and protocol 1 is used for all

comparisons.

Effect of 2D poses. We first evaluate our method on 3D

pose estimation when ground truth 2D poses are given and

compare it with [39]. The results are presented in Table 4

(a) and indicate the potential of improvement when a more

accurate 2D pose estimator is available.

We also consider the effect of performance of 2D pose

estimation. To generate 2D poses with different errors, we
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(a)

Method Error

Yasin et al. [39] 70.3

our(s) 46.3

our(p) 79.3

our(s+p) 42.9

(b)

Method No scale scale

our(s) 84.9 80.6

our(p) 108.4 105.4

our(s+p) 79.5 74.0

Table 4. Quantitative comparison of mean per joint errors (mm) on

Human3.6M (a) given ground truth 2D poses; (b) with and without

scale transformation.

Figure 6. Depth and 3D pose error with different number of dis-

turbed joints.

add disturbance to locations of different number of joints.

Specifically, for each testing 2D pose, we randomly choose

certain number of joints and add a uniform random noise in

the range [0, e], e = 0.1 · max(h,w), where h and w are

the height and width of the pose respectively. The absolute

depth error and 3D pose error are calculated at each number

of disturbed joints. The results are visualized in Fig. 6. Al-

though the absolute depth error increases quickly with the

error of 2D pose estimation, the 3D pose error increases s-

lowly which indicates that the relative depth relations are

not effected too much by the disturbed 2D pose.

Scale transformation. In general, it is impossible to es-

timate the global scale of the person from monocular image

so we evaluate different variations of our model with a s-

cale transformation. The results are presented in Table 4 (b)

which show that there is a consistent improvement on all

model variations when the scale transformation is allowed.

Different model structures. We consider the effect of

model structure on the 3D pose estimation performance

when only 2D skeleton features are used. We compare the

following structures with the loss function defined in Eq. 6:

-ske-econding. We remove the tree-structure LSTM net-

work and only keep the 2D pose encoding network. In this

setting, the effect of explicit modeling of relations between

joints are removed.

Method Error

ske-encoding 113.0

ske-seq 89.0

ske-tree 84.9

whole-vgg 169.8

patch-seq 118.6

patch-tree 108.4

Table 5. Comparison between different model structures.

-ske-seq. We change the tree structure of the skeleton

LSTM to a sequential chain structure with a fixed order of

joints. It is impossible to evaluate all permutations of joints

so we choose the order which is more similar to the tree

structure: head-left limb-right limb.

-ske-tree. The skeleton-LSTM used in our final system.

We also evaluate the effect of the model structure when

only body part image features are used. We remove 2D pose

features and compare the three model variations:

-whole-vgg. We apply the VGG model [28] to predict

the depth from the cropped image of the whole person in-

stead of body part.

-patch-seq. It has the same sequential structure as ske-

seq.

-patch-tree. The patch-LSTM used in our final system.

The results are shown in Table 5. The method with L-

STM network boost performance a lot on both skeleton

features (84.9 vs 113.0) and image patch features (108.4

vs 169.8) which demonstrates that the modeling of rela-

tionships between joints are essential for predicting depth.

The comparison between sequential chain structure and tree

structure demonstrates that the latter is more appropriate for

modeling human skeleton than the former on both features.

5. Conclusions

In this paper, we propose a framework to predict the

depth of human joints and recover the 3D pose. Our ap-

proach is built on a two level hierarchy of LSTM by uti-

lizing two cues: the 2D skeleton feature which is captured

by skeleton-LSTM and image feature of body part which

is captured by patch-LSTM. The whole framework can be

trained end to end and it allows any off-the-shelf 2D pose

estimator to be plugged in. The experiments demonstrate

our better performance qualitatively and quantitatively. In

the future, we plan to extend this work to video-domain

and combine it with 3D scene reconstruction by consider-

ing temporal constraints and person-object relations.
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