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Abstract

In this paper, we investigate deep neural networks for

blind motion deblurring. Instead of regressing for the mo-

tion blur kernel and performing non-blind deblurring out-

side of the network (as most methods do), we propose a

compact and elegant end-to-end deblurring network. In-

spired by the data-driven sparse-coding approaches that

are capable of capturing linear dependencies in data, we

generalize this notion by embedding non-linearities into

the learning process. We propose a new architecture for

blind motion deblurring that consists of an autoencoder

that learns the data prior, and an adversarial network that

attempts to generate and discriminate between clean and

blurred features. Once the network is trained, the genera-

tor learns a blur-invariant data representation which when

fed through the decoder results in the final deblurred output.

1. Introduction

Motion blur is an inevitable phenomenon under long ex-

posure times. With mobile cameras becoming ubiquitous,

there is an increasing need to invert the blurring process to

recover a clean image. However, it is well-known that the

problem of blur inversion is quite ill-posed. Many meth-

ods exist [40] that rely on information from multiple frames

captured using video or burst mode and work by harnessing

the information from these frames to solve for the underly-

ing original (latent) image. Single image blind-deblurring

is considerably more challenging as the blur kernel as well

as the latent image must be estimated from just one obser-

vation. It is this problem that we attempt to solve here.

Early works [5, 27, 19] assumed space-invariant blur

and iteratively solved for the latent image and blur ker-

nel. Although these convolutional models are simple and

straight forward to analyze using FFTs, they fail to ac-

count for space-variant blur caused by non-linear camera

motion or dynamic objects or depth-varying scenes. Nev-

ertheless, even in such situations local patch-wise convolu-

tional model can be employed to achieve deblurring. In-

stead of using a patch-wise model, works such as [32, 15]

take the space-variant blur formation model itself into con-

sideration. But the deblurring process becomes highly ill-

posed as it must now estimate blur kernel at each pixel po-

sition along with the underlying image intensities. For pla-

nar scenes or under pure camera rotations, the methods in

[32, 10] circumvent this issue by modeling the global cam-

era motion using homographies.

Major efforts have also gone into designing priors that

are apt for the underlying clean image and the blur kernel

to regularize the inversion process and ensure convergence

during optimization. The most widely used priors are total

variational regularizer [4, 25], sparsity prior on image gradi-

ents, l1/l2 image regularization [17], the unnatural l0 prior

[37] and the very recent dark channel prior [23] for images.

Even though such prior-based optimization schemes have

shown promise, the extent to which a prior is able to per-

form under general conditions is questionable [17]. Some

priors (such as the sparsity prior on image gradient) even

tend to favor blurry results [19]. In a majority of situations,

the final result requires a judicious selection of the prior, its

weightage, as well as tuning of other parameters. Depend-

ing on the amount of blur, these values need to be adjusted

so as to strike the right balance between over-smoothing and

ringing in the final result. Such an effect is depicted in Fig.

1. Note that the results fluctuate with the weightage selected

for the prior. These results correspond to the method of [23]

with varying weights for dark channel prior (λ), l0 prior (µ)

and the TV prior (λTV ). Furthermore, these methods are

iterative and quite time-consuming.

Dictionary learning is a data-driven approach and has

shown good success for image restoration tasks such as de-

noising, super-resolution and deblurring [1, 39, 38]. Re-

search has shown that sparsity helps to capture higher-order

correlations in data, and sparse codes are well-suited for

natural images [20]. Lou et al. [38] have proposed a

dictionary replacement technique for deblurring of images

blurred with a Gaussian kernel of specific variance. The au-

thors of [33] adopt this concept to learn a pair of dictionar-

ies jointly from blurred as well as clean image patches with

the constraint that the sparse code be invariant to blur. They

were able to show results for space-invariant motion deblur-
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(a) (b) (c) (d)

Figure 1: Effect of image prior. (a) Input blurred image. (b-d) Deblurred result using [23] with (λ = 0.04, µ = 0.007,

λTV = 0.001), (λ = 0.001, µ = 0.01, λTV = 0.01) and (λ = 0.004, µ = 0.005, λTV = 0.01), respectively.

ring but were again constrained to a single kernel. For mul-

tiple kernels, they learn different dictionaries and choose

the one for which the reconstruction error is the least. Even

though sparse coding models perform well in practice, they

share a shallow linear structure and hence are limited in

their ability to generalize to different types of blurs.

Recently, deep learning and generative networks have

made forays into computer vision and image processing,

and their influence and impact are growing rapidly by the

day. Neural networks gained in popularity with the intro-

duction of Alexnet [18] that showed a huge reduction in

classification error compared to traditional methods. Fol-

lowing this, many regression networks based on Convo-

lutional Neural Networks (CNNs) were proposed for im-

age restoration tasks. With increasing computational speeds

provided by GPUs, researchers are investigating deep net-

works for the problem of blur inversion as well. Xu et al.

[36] proposed a deep deconvolutional network for non-blind

single image deblurring (i.e, the kernel is fixed and known

apriori). Schuler et al. [26] came up with a neural architec-

ture that mimics traditional iterative deblurring approaches.

Chakrabarti [3] trained a patch-based neural network to es-

timate the kernel at each patch and employed a traditional

non-blind deblurring method in the final step to arrive at the

deblurred result. Since these methods estimate a single ker-

nel for the entire image, they work for the space-invariant

case alone. The most relevant work to handle space-variant

blur is a method based on CNN for patch-level classifica-

tion of the blur type [28], which focuses on estimating the

blur kernel at all locations from a single observation. They

parametrize the kernels (using length and angle) and esti-

mate these parameters at each patch using a trained net-

work. However, such a parametric model is too restrictive

to handle general camera motion blur.

The above-mentioned methods attempt to estimate the

blur kernel using a deep network but finally perform non-

blind deblurring exterior to the network to get the deblurred

result. Any error in the kernel estimate (due to poor edge

content, saturation or noise in the image) will impact de-

blurring quality. Moreover, the final non-blind deblurring

step typically assumes a prior (such as sparsity on the gra-

dient of latent image) which again necessitates a judicious

selection of prior weightage; else the deblurred result will

be imperfect as already discussed (Fig. 1). Hence, kernel-

free approaches are very much desirable.

In this work, we propose a deep network that can per-

form single image blind-deblurring without the cumber-

some need for prior modeling and regularization. The core

idea is to arrive at a blur-invariant representation learned

using deep networks that facilitates end-to-end deblurring.

Performance-wise, our method is at par with conventional

methods which use regularized optimization, and outper-

forms deep network-based methods. While conventional

methods can only handle specific types of space-variant blur

such as blur due to camera motion or object motion or scene

with depth variations, our network does not suffer from

these limitations. Most importantly, the run-time for our

method is very small compared to conventional methods.

The key strength of our network is that it does end-to-end

deblurring with performance quality at par or better than

competing methods while being computationally efficient.

2. Blur-invariant Feature Learning

It is well-known that most sensory data, including

natural images, can be described as a superposition of

small number of atoms such as edges and surfaces [20].

Dictionary-based methods exploit this information and

learn the atoms that can represent data in sparse forms for

various image restoration tasks (including deblurring). With

an added condition that these representations should be in-

variant to the blur content in the image, dictionary meth-

ods have performed deblurring by learning coupled dictio-

naries [33]. However, constrained by the fact that dictio-

naries can capture only linearities in the data and blurring

process involves non-linearities (high frequencies are sup-

pressed more), their deblurring performance does not gen-

eralize across blurs.

In this paper, we extend the notion of blur-invariant rep-

resentation to deep networks that can capture non-linearities

in the data. We are not the first one to approach deep learn-

ing as a generalization of dictionary learning for sparse cod-

ing. The work in [34] combines sparse coding and denois-

4753



Decoder

Generator

Discriminator

Encoder

Figure 2: Illustration of our architecture.

ing encoders for the task of denoising and inpainiting. Deep

neural networks, in general, have yielded good improve-

ments over conventional methods for various low-level im-

age restoration problems including super-resolution [7], in-

painting and denoising [24, 34]. These networks are learned

end-to-end by exposing them to lots of example-data from

which the network learns the mapping to undo distortions.

We investigate the possibility of such a deep network for the

task of single image motion deblurring.

For blind-deblurring, we first require a good feature

representation that can capture image-domain information.

Autoencoders have shown great success in unsupervised

learning by encoding data to a compact form [12] which

can be used for classification tasks. This motivated us to

train an autoencoder on clean image patches for learning

the feature representation. Once a good representation is

learned for clean patches, the next step is to produce a blur-

invariant representation (as in [33]) from blurred data. We

propose to use a generative adversarial network (GAN) for

this purpose which involves training of a generator and dis-

criminator that attempt to compete with each other. The

purpose of the generator is to confuse the discriminator by

producing clean features from blurred data that are similar

to the ones produced by the autoencoder so as to achieve

blur-invariance. The discriminator, on the other hand, tries

to beat the generator by identifying the clean and blurred

features.

A schematic of our proposed architecture is shown in

Fig. 2. Akin to dictionary learning that represents any data

X as a sparse linear combination of dictionary atoms D i.e,

X = Dα, our encoder-decoder module performs this in

non-linear space. Hence, the encoder can be thought of as

an inverse dictionary D−1 that projects the incoming data

into a sparse representation. The decoder acts as the dic-

tionary D that reconstructs the input from the sparse repre-

sentation. Generator training can be treated as learning the

blur dictionary that can project the blurred data Y into the

same sparse representation of X i.e, α = D−1X = D−1
b Y .

Once training is done, the input blurry image (Y ) is passed

through the generator to get a blur-invariant feature which

when projected to the decoder yields the deblurred result as

X̂ = Dα = DD−1
b Y .

Thus, by associating the feature representation learned

by the autoencoder with GAN training, our model is able

to perform single image blind deblurring in an end-to-end

manner. Ours is a kernel-free approach and does away with

the tedious task of selecting priors, a serious bottleneck of

conventional methods. Unlike other deep learning methods,

our network directly regresses for the clean image.

The main contributions of our work are as follows :

• We propose a compact end-to-end regression network

that directly estimates the clean image from a single

blurred frame without the need for optimal prior selec-

tion and weighting, as well as blur kernel estimation.

• The proposed architecture is new and consists of an

autoencoder in conjunction with a generative network

for producing blur-invariant features to guide the de-

blurring process.

• Our method is computationally efficient and can re-

store both space-invariant and space-variant blur due

to camera motion.

• The network is even able to account for blur caused by

object motion/depth changes (to an extent) although it

was not trained explicitly for such a situation.

3. Network Architecture

Our network consists of an autoencoder that learns the

clean image domain and a generative adversarial network

that generates blur-invariant features. We train our network

in two stages. We first train an autoencoder to learn the

clean image manifold. This is followed by the training of

a generator that can produce clean features from a blurred

image which when fed to the decoder gives the deblurred

output. Note that instead of combining the task of data-

representation and deblurring into a single network, we rel-

egate the task of data-learning to the autoencoder and use

this information to guide image deblurring. Details of the

architecture and the training procedure are explained next.

3.1. Encoder­Decoder

Autoencoders were originally proposed for the purpose

of unsupervised learning [12] and have since been extended

to a variety of applications. An autoencoder projects the

input data into a low-dimensional space and recovers the

input from this representation. When not modeled properly,

it is likely that the autoencoder learns to just compress the

data without learning any useful representation. Denoising

encoders [30] were proposed to overcome this issue by cor-

rupting the data with noise and letting the network undo this

effect and get back a clean output. This ensures that the au-

toencoder learns to correctly represent clean data. Deepak
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Figure 3: Autoencoder architecture with residual networks.

et al. [24] extended this idea from mere data representation

to context representation for the task of inpainiting. In ef-

fect, it learns a meaningful representation that can capture

domain information of data.

We investigated different architectures for the autoen-

coder and observed that including residual blocks (ResNet)

[11] helped in achieving faster convergence and in improv-

ing the reconstructed output. Residual blocks help by by-

passing the higher-level features to the output while avoid-

ing the gradient vanishing problem. The training data was

corrupted with noise (30% of the time) to ensure encoder

reliability and to avoid learning an identity map. The ar-

chitecture used in our paper along with the ResNet block is

shown in Fig. 3. A detailed description of the filter and fea-

ture map sizes along with the stride values used are as given

below.

Encoder: C5
3→8 ↓ 2 → R

5(2)
8 → C5

8→16 ↓ 2 → R
5(2)
16 →

C3
16→32 ↓ 2 → R3

32

Decoder: R3
32 → C2

32→16 ↑ 2 → R
5(2)
16 → C4

16→8 ↑ 2 →

R
5(2)
8 → C4

8→3 ↑ 2
where Cc

a→b ↓ d represents convolution mapping from a

feature dimension of a to b with a stride of d and filter

size of c, ↓ represents down-convolution, ↑ stands for up-

convolution, and R
b(c)
a represents the residual block which

consists of a convolution and a ReLU block with output fea-

ture size a, filter size b, and c represents the number of rep-

etitions of residual blocks.

Fig. 4 shows the advantage of the ResNet block. Fig.

4(a) is the target image and Figs. 4(c) and (d) are the out-

put of autoencoders with and without ResNet block for the

same number of iterations for the input noisy image in Fig.

4(b). Note that the one with ResNet converges faster and

preserves the edges due to skip connections that pass on the

information to deeper layers.

(a) (b) 26.1 dB (c) 29.5 dB (d) 23.1 dB

Figure 4: Effect of ResNet on reconstruction. (a) The tar-
get image. (b) Noisy input to the encoder-decoder module.
(c) Result of encoder-decoder module of Fig. 3. (d) Result
obtained by removing ResNet for the same number of iter-
ations. PSNR values are given under the respective figures.
(Enlarge for better viewing).

3.2. GAN for feature mapping

The second stage of training constitutes learning a gen-

erator that can map from blurred image to clean features.

For this purpose, we used a generative adversarial network.

GANs were first introduced by Goodfellow [9] in 2014.

Since then, they have been widely used for various image

related tasks. GANs consists of two models: a Genera-

tor (G) and a Discriminator (D) which play a two-player

mini-max game. D tries to discriminate between the sam-

ples generated by G and training data samples, while G tries

to fool the discriminator by generating samples close to the

actual data distribution. The mini-max cost function [9] for

training GANs is given by

min
G

max
D

C(G,D)

= Ex∼Pdata(x)[logD(x)] + Ez∼Pz(z)[log(1−D(G(z))]

where D(x) is the probability assigned by the discriminator

to the input x for discriminating x as a real sample. Pdata

and Pz are the respective probability distributions of data x
and the input random vector z. The main goal of [9] is to

generate a class of natural images from z.

GANs that just accept random noise and attempt to

model the probability distribution of data over noise are dif-

ficult to train. Sometimes their instability leads to artifacts

in the generated image. Hence, instead of a vanila network

for GAN, we used conditional GAN which was introduced

by Mirza et al. [22] and which enables GANs to accomo-

date extra information in the form of a conditional input.

The inclusion of adversarial cost in the loss function has

shown great promise [24], [14]. Training conditional GANs

is a lot more stable than unconditional GANs due to the ad-

ditional guiding input. The modified cost function [14] is

given by

min
G

max
D

Ccond(G,D) = Ex,y∼Pdata(x,y)[logD(x, y)]

+ Ex∼Pdata(x),z∼Pz(z)[log(1−D(x,G(x, z))] (1)

where y is the clean target feature, x is the conditional im-

age (the blurred input), and z is the input random vector.
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(a) (b) (c)

Figure 5: Effect of direct regression using generative net-

works. (a) Input blurred image. (b-c) Output of the network

and the expected output.

In conditional GANs, the generator tries to model the dis-

tribution of data over the joint probability distribution of x
and z. When trained without z for our task, the network

learns a mapping for x to a deterministic output y which is

the corresponding clean feature.

[14] proposes an end-to-end network using a generative

model to perform image-to-image translation that can be

used in multiple tasks. Following this recent trend, we ini-

tially attempted regressing directly to the clear pixels using

off-the-shelf generative networks. However, we observed

that this can lead to erroneous results as shown in Fig. 5.

The main reason for this could be that the network becomes

unstable when trained on higher-dimensional data. Also

GANs are quite challenging to train and have mainly shown

results for specific class of images. When trained for large

diverse datasets, training does not converge [31]. Hence,

we used the apriori-learned features of the autoencoder for

training GAN.

Training a perfect discriminator requires it’s weights to

be updated simultaneously along with the generator such

that it is able to discriminate between the generated sam-

ples and data samples. This task becomes easy and viable

for the discriminator in the feature space for two reasons:

i) In this space, the distance between blurred features and

clean features is higher as compared to the image space.

This helps in faster training in the initial stage.

ii) The dimensionality of the feature-space is much lower

as compared to that of image-space. GANs are known

to be quite effective in matching distributions in lower-

dimensional spaces [6].

We train GAN using normal procedure but instead of

asking the discriminator to discern between generated im-

ages and clean images, we ask it to discriminate between

their corresponding features. The generator and the dis-

criminator architectures are as given below.

Generator: C5
3→8 ↓ 2 → R

5(2)
8 → C5

8→16 ↓ 2 → R
5(2)
16 →

C3
16→32 ↓ 2 → R

5(2)
32 → C3

32→128 ↓ 2 → R
3(2)
128 →

C3
128→32 ↑ 2

Discriminator: C5
32→32 → C5

32→32 ↓ 2 → C5
32→16 →

C5
16→16 ↓ 2 → C5

16→8 → C3
8→8 ↓ 2 → C3

8→1

Each convolution is followed by a Leaky ReLU and batch-

normalization in the discriminator, and ReLU and batch-

normalization in the generator.

Once the second stage is trained, we have a generator

module to which we pass the blurred input during the test

phase. The generator produces features which correspond

to clean image features which when passed through the de-

coder deliver the final deblurred result. It may be noted that

our network is compact with 34 convolutional layers (gen-

erator and decoder put together) despite performing end-to-

end deblurring.

3.3. Loss function

We trained our network using the following loss func-

tions. For autoencoder training, we used Lmse + λLgrad.

Adding the gradient-loss helps in preserving edges and re-

covering sharp images as compared to Lmse alone. We use

normalized l2 distance on the expected and observed image

as our loss function i.e.

Lmse = ‖De(E(I +N ))− I‖22 (2)

where De is the decoder, E the encoder, N is noise and I
is the target (clean) image. The MSE error captures overall

image content but tends to prefer a blurry solution. Hence,

training only with MSE loss results in loss of edge details.

To overcome this, we used gradient loss as it favours edges

as discussed in [21] for video-prediction.

Lgrad = ‖∇De(E(I +N ))−∇I‖22 (3)

where ∇ is the gradient operator.

GAN is trained with the combined cost given by

λadvLadv + λ1Labs + λ2Lmse in the image and feature

space. Even though l2 loss is simple and easy to back-

propagate, it under performs on sparse data. Hence, we used

l1 loss for feature back-propagation i.e.

Labs = ‖G(B)− E(I)‖1 (4)

where B is the blurred image. The adversarial loss function

Ladv (given in Eq. (1)) requires that the samples output by

the generator should be indistinguishable to the discrimina-

tor. This is a strong condition and forces the generator to

produce samples that are close to the underlying data dis-

tribution. As a result, the generator outputs features that

are close to the clean feature samples. Another advantage

of this loss is that it helps in faster training (especially dur-

ing the initial stages) as it provides strong gradients. Apart

from adversarial and l1 cost on the feature space, we also

used MSE cost on the recovered clean image after passing

the generated features through the decoder. This helps in

fine-tuning the generator to match with the decoder. Fig.

2 shows the direction of error back-propagation along with

the network modules.
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Dataset [29] Xu & Jia [35] Xu [37] Pan [23] Whyte et al. [32] Ours

PSNR 28.21 28.11 31.16 26.335 30.54

MSSIM 0.9226 0.9177 0.9623 0.8528 0.9553

Table 1: Average quantitative performance on the dataset [29].

(a) Input (b) [35] (c) [23] (d) Ours

Figure 6: Comparisons for space-invariant deblurring. (a) Input blurred image. (b-c) Deblurred output using methods in [35]

and [23], respectively. (d) Our result.

Method Run time

Ours (Torch, GPU/CPU) 3.4 sec/2 min

Xu & Jia [35] (Executable) 3 min (800 × 600 pixels)

Xu [37] (Matlab, CPU) 34 sec

Pan [23] (Matlab, CPU) 40 min

Whyte [32] (Matlab, CPU) 4 min

Table 2: Run-time for each method for average image size

of 1024 × 700.

3.4. Training

We trained our autoencoder using clean patches of size

128 × 128 from the Pascal VOC 2012 dataset [8]. The in-

puts were randomly corrupted with Gaussian noise (stan-

dard deviation = 0.2) 30% of the time to ensure learning

of useful data representation. For learning, we used Adam

[16] with an initial learning rate of 0.0002 and momentum

0.9 with batch-size of 8. The training took around 105 iter-

ations to converge. The gradient cost was scaled by λ = 0.1

to ensure that the final results are not over-sharpened.

The second stage of training involved learning a blur-

invariant representation from blurred data. For creating the

blurred data, we used around 105 kernels generated using

the code provided by Chakrabarthi et al. [3]. The input

images from PASCAL dataset were blurred using these ker-

nels and patches of size 128 × 128 were extracted. Around

35 × 105 training data was used to train the generator-

discriminator pair. The Adam optimizer with initial setting

as before was used with a batch-size of 16. To improve

GAN stability, we also used smooth labeling of blur and

clean features as discussed in [2]. For around 2 × 105 iter-

ations, the training was done with feature costs alone with

λadv = 0.01 and λ1 = 1. Fine tuning of the generator was

subsequently done by adding the MSE cost and weighing

down the adversarial cost (λ2 = 1, λ1 = 1 and λadv = 0.001).

4. Experiments

We evaluated the efficacy of our network for deblurring,

both quantitatively and qualitatively. We also compared

performance with conventional as well as deep networks.

For conventional methods, we selected the very recent dark

channel prior of [23], l0 unnatural prior by Xu et al. [37],

deblurring method of Whyte et al. [32] and the two-phase

kernel method of Xu & Jia [35]. Codes were downloaded

from the authors’ websites. We also did comparisons with

deep learning-based approaches [3] and [28]. In addition to

the above, we also tested on images affected by object mo-

tion and compared our results with the generalized video

deblurring method of [13].

4.1. Comparisons with Conventional Methods

Quantitative evaluation: We performed quantitative

comparisons of our method with state-of-the-art methods

[23, 37, 32, 35] on the dataset of [29]. The dataset consists

of 80 images and 8 kernels totaling to 640 images each

of size 1024 × 700 (on average). The average PSNR

and MSSIM (Mean SSIM) measures obtained on each of

these images is provided in Table 1. It can be observed

from the quantitative measures in Table 1 that our method

performs at par with the state-of-the-art. Importantly, our

method offers a significant advantage in terms of run-time.

The images tested here had an average size of 1024 ×
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(a) Input (b) [37] (c) [32] (d) [23] (e) Ours

Figure 7: Examples for space-variant deblurring and comparisons with conventional state-of-the-art methods. (a) Input

blurred image. (b-e) Results obtained by the methods in [37, 32, 23] and our result, respectively.

(a) Input (b) Ours (c) Network output of [3] (d) Final output of [3]

Figure 8: Comparison with [3]. (a) Input blurred image. (b) Output of our network. (c-d) Network output and final non-blind

deblurred output of [3].

700 and we have reported the run-time for each method

(run on Intel I-7 3.4GHz CPU with 8 cores) in Table

2. Note that our method implemented in Torch and run

using a Titan-X GPU is at least an order faster than the

fastest competitive method [37]. The CPU runtime of our

method is 2 minutes which is still faster than most of the

comparative methods. Traditional methods are sequential

in nature with kernel and image estimated in an alternating

fashion. This inherently limits the extent to which they can

utilize the parallel processing capability of GPU. Even a

GPU re-implementation of these methods will not provide

much time savings.

Qualitative evaluation: Figs. 6 and 7 provide qualitative

performance of our network compared to conventional

methods on space-invariant and space-variant blur, respec-

tively. The results in Fig. 6 clearly reveal that our method

(Fig. 6(d)) produces results devoid of any ringing artifacts

when compared to [35] and [23]. The butterfly’s wing and

the lady’s collar look sharp and clear. Though the result in

Fig. 6(c) also appears to be sharp, there is ringing at the

boundaries. The same issue is present in Fig. 6(b) as well.

The efficacy of our method to deal with space-variant

blur due to non-uniform camera motion is given in Fig. 7.

Here, the input images (first column) are affected by differ-

ent blurs at different locations. We compared our method

with that of [37, 32, 23]. It can be clearly observed that our

method outperforms all others. The zoomed-in patch of the

bag in the second row as well as the bottle in the fourth row

are quite clear and sharp in our result (Fig. 7(e)), in com-

parison with other outputs. It has to be noted here that we

ran all the comparisons using the default settings provided
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(a) Input (b) [28] (c) Ours

Figure 9: Comparison with [28]. (a) Space-variantly blurred

input images. (b) Result of [28] and (c) our result.

(a) Input (b) [13] (c) Ours

Figure 10: Object motion deblurring. (a) Input. (b) Deblurred

result of [13], and (c) our output.

by the authors in their codes. The result of these methods

could perhaps improve with parameter tuning (although the

’subway’ comparison results are taken directly from [23]);

but as already explained in section 1, this is very cumber-

some exercise; more so, given the fact that the run-time for

the competing methods is quite high. In stark contrast, our

method elegantly avoids these pitfalls.

4.2. Comparisons with Deep networks

We also compared our deblurring results with that of [3]

and [28]. These are deep network-based approaches but per-

form the task of kernel estimation. The deblurred results for

these methods are obtained by using a non-blind deblurring

scheme in the final step. For comparisons with [3] (shown

in Fig. 8), we ran our network on the images provided in

their paper. The results are compared here with the network

output of [3] (Fig. 8(c)) and the final output (Fig. 8(d)) ob-

tained post non-blind deblurring. It must be noted here that

our network output (Fig. 8(b)) is significantly better than

the network output of Fig. 8(c). Moreover, the method [3]

can only handle space-invariant blur.

We also compared our network with [28] that performs

parametrized estimation of space-variant blur using deep

networks and then uses a conventional method for deblur-

ring. We again ran our network on the images provided by

the authors in their paper (Fig. 9 (a)). Note that our model

produces results (Fig. 9(c)) that are comparable to that pro-

duced by final deblurring in [28] (Fig. 9(b)). The zoomed-in

patches of the man and the woman’s face in the second row

as well as the masked man’s face and reporter’s hands in the

forth row are much sharper in our result.

4.3. Object Motion Deblurring

We also tested on images with blur due to object motion

and observed that our network is able to handle even such

cases to a resonable extent although it was not trained with

such examples. In contrast, conventional deblurring meth-

ods [23, 37, 32, 35] that model blur due to camera motion

(alone) cannot handle blur due to object motion. Fig. 10 de-

picts examples of object motion deblurring where the inputs

in Fig. 10(a) have blur in the background due to camera

motion while the foreground (which is at a differnt depth

from the background) incurs blur due to object as well as

camera motion. We compared our results (Fig. 10(c)) with

the video-based dynamic scene deblurring method of [13]

(Fig. 10(b)). The results reveal that our method (Fig. 10(c))

(although single image based) is able to perform at par with

the video-based method that uses information from multiple

frames.

Additional results and comparisons are provided in the

supplementary material.

5. Conclusions

In this paper, we proposed an end-to-end deep network

for single image blind-deblurring using autoencoder and

GAN. Instead of directly regressing for clean pixels, we

perform regression over encoder-features to arrive at a blur-

invariant representation which when passed through the de-

coder produces the desired clean output. Our network is

kernel-free, does not require any prior modeling, and can

handle both space-invariant and space-variant blur. When

evaluated on standard datasets as well as on our own exam-

ples, our network performs at par or even better than com-

peting methods while being faster by at least an order.
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