
Non-Convex Rank/Sparsity Regularization and Local Minima

Carl Olsson1,2 Marcus Carlsson2 Fredrik Andersson2 Viktor Larsson2

1Department of Electrical Engineering

Chalmers University of Technology

2Centre for Mathematical Sciences

Lund University

{calle,mc,fa,viktorl}@maths.lth.se

Abstract

This paper considers the problem of recovering either

a low rank matrix or a sparse vector from observations of

linear combinations of the vector or matrix elements. Re-

cent methods replace the non-convex regularization with ℓ1
or nuclear norm relaxations. It is well known that this ap-

proach recovers near optimal solutions if a so called re-

stricted isometry property (RIP) holds. On the other hand it

also has a shrinking bias which can degrade the solution.

In this paper we study an alternative non-convex regular-

ization term that does not suffer from this bias. Our main

theoretical results show that if a RIP holds then the station-

ary points are often well separated, in the sense that their

differences must be of high cardinality/rank. Thus, with a

suitable initial solution the approach is unlikely to fall into

a bad local minimum. Our numerical tests show that the ap-

proach is likely to converge to a better solution than stan-

dard ℓ1/nuclear-norm relaxation even when starting from

trivial initializations. In many cases our results can also be

used to verify global optimality of our method. 1

1. Introduction

Sparsity penalties are important priors for regularizing

linear systems. Typically one tries to solve a formulation

that minimizes a trade-off between sparsity and residual er-

ror such as

µ card(x) + ‖Ax− b‖2, (1)

where card(x) is the number of non-zero elements in x,

and the matrix A is of size m × n. Direct minimization of

(1) is generally considered difficult because of the proper-

ties of the card function, which is non-convex and discon-

tinuous. The method that has by now become the standard

approach is to replace card(x) with the convex ℓ1 norm
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‖x‖1 [32, 31, 8, 9, 14]. This choice can be justified with the

ℓ1 norm being the convex envelope of the card function on

the set {x; ‖x‖∞ ≤ 1}. Furthermore, strong performance

guarantees can be derived [8, 9] if A obeys a RIP

(1− δc)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δc)‖x‖2, (2)

for all vectors x with card(x) ≤ c, where c is a bound on

the number of non-zero terms in the sought solution. The

ℓ1 approach suffers from a shrinking bias since it penalizes

both small elements of x, assumed to stem from measure-

ment noise, and large elements, assumed to make up the

true signal, equally. In some sense the suppression of noise

also requires an equal suppression of signal. Therefore non-

convex alternatives able to penalize small components pro-

portionally harder have been considered [13, 10]. Conver-

gence to the global optimum is however not guaranteed.

This paper considers the non-convex relaxation

f(x) = rµ(x) + ‖Ax− b‖2, (3)

where rµ(x) =
∑

i

(

µ−max(
√
µ− |xi|, 0)2

)

. Figure 1

shows one dimensional illustrations of the card-function,

ℓ1-norm and rµ term. The regularizer rµ is a particular

case of the minmax concave penalty (MCP) introduced in

[34]. Optimization of MCP-regularized systems have been

addressed in a number of works e.g. [29, 5, 34], typically

using methods only guaranteeing convergence to a station-

ary point. It can be shown [18, 30, 19] that the convex en-

velope of

µ card(x) + ‖x− z‖2, (4)

where z is some given vector, is

rµ(x) + ‖x− z‖2. (5)

Note that similarly to the card function rµ does not penal-

ize elements that are larger than
√
µ. In fact it is easy to

show that the minimizer x∗ of both (4) and (5) is given by

thresholding of z, that is, x∗
i = zi if |zi| > √

µ and x∗
i = 0

if |zi| < √
µ. If there is an i such that |zi| = √

µ then the
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Figure 1: One dimensional illustrations of the three regular-

ization terms (when µ = 1).

minimizer is not unique. In (4) x∗
i can take either the value

0 or
√
µ and in (5) any convex combination of these.

Assuming that A fulfills (2) it is natural to wonder about

convexity properties of (3). Intuitively ‖Ax‖2 seems to be-

have like ‖x‖2 which combined with rµ(x) only has one

local minimum. In this paper we make this reasoning for-

mal and study the stationary points of (3). We show that if

xs is a stationary point of (3) and the elements of the vector

z = (I −ATA)xs +AT
b fulfill |zi| /∈ [

√
µ(1− δc),

√
µ

1−δc
]

then for any other stationary point x′
s we have card(xs −

x
′
s) > c. A simple consequence is that if we for example

find such a local minimizer with card(xs) < c/2 then this

is the sparsest possible one.

The meaning of the vector z can in some sense be un-

derstood by seeing that the stationary point xs fulfills xs ∈
argmin

x
rµ(x)+‖x−z‖2 (see Section 3). Hence xs can be

obtained through thresholding of the vector z. Our results

essentially state that if the elements |zi| are not too close to

the threshold
√
µ then card(xs−x

′
s) > c holds for all other

stationary points x′
s.

In a recent related work [21] the stationary points of

MCP-regularized linear least squares are studied. Using the

the RIP-like notion of restricted strong convexity they show

that if A is sub-Gaussian (and some additional technical as-

sumptions hold) then with high probability there will be a

unique stationary point. In two very recent papers [30, 11]

the relationship between (both local and global) minimizers

of (3) and (1) is studied. Among other things [11] shows

that if ‖A‖ ≤ 1 then any local minimizer of (3) is also a

local minimizer of (1), and that their global minimizers co-

incide. Hence results about the stationary points of (3) are

also relevant to the original discontinuous objective (1).

The theory of rank minimization largely parallels that of

sparsity with the elements xi of the vector x replaced by the

singular values σi(X) of the matrix X . Typically we want

to solve a problem of the type

µ rank(X) + ‖AX − b‖2, (6)

where A : Rm×n 7→ R
p is some linear operator on the set

of m× n matrices. In this context the standard approach is

to replace the rank function with the convex nuclear norm

‖X‖∗ =
∑

i σi(X) [28, 6]. It was first observed that this

is the convex envelope of the rank function over the set

{X;σ1(X) ≤ 1} in [15]. In [28] the notion of RIP was

generalized to the matrix setting requiring that A is a linear

operator Rm×n → R
k fulfilling

(1− δr)‖X‖2F ≤ ‖AX‖2 ≤ (1 + δr)‖X‖2F , (7)

for all X with rank(X) ≤ r. Since then a number of gener-

alizations that give performance guarantees for the nuclear

norm relaxation have appeared [26, 6, 7]. Non-convex al-

ternatives have also been shown to improve performance

[25, 24].

Analogous to the vector setting it was recently shown

[19] that the convex envelope of µ rank(X) + ‖X −M‖2F ,

is given by

rµ(σ(X)) + ‖X −M‖2F , (8)

where σ(X) is the vector of singular values of X . In [1]

an efficient fixed-point algorithm is developed for objective

functions of the type rµ(σ(X)) + q‖X −M‖2F with linear

constraints. The approach is illustrated to work well even

when q < 1 which gives a non-convex objective.

In this paper we consider

F (X) = rµ(σ(X)) + ‖AX − b‖2, (9)

where A obeys (7). The objective (9) is a special case of

the MCP framework considered in e.g [33, 22, 23]. Our

main result states that if Xs is a stationary point of (9) and

Z = (I − A∗A)Xs + A∗
b has no singular values in the

interval [
√
µ(1 − δr),

√
µ

1−δr
] then for any other stationary

point we have rank(Xs −X ′
s) > r.

A number of recent papers [3, 27, 16] parametrize X us-

ing UV T and studies the local minimizers of ‖A(UV T ) −
b‖2 under the RIP constraint. They essentially bound the

distance between the global and any local solution in terms

of the residual error. As a consequence they are able to show

that (with hight probability) all local minima are close to the

global solution (and in the noise free case they are all opti-

mal). In contrast to our results this cannot be used to rule

out the existence of multiple minima (in the noisy case) and

additionally requires that the rank of the sought solution is

known beforehand.

2. Notation and Preliminaries

In this section we introduce some preliminary material

and notation. In general we will use boldface to denote a

vector x and its ith element xi. By ‖x‖ we denote the stan-

dard euclidean norm ‖x‖ =
√
xTx. We use σi(X) to de-

note the ith singular value of a matrix X . The vector of all

singular values is denoted σ(X). A diagonal matrix with
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diagonal elmenents x will be denoted Dx. The scalar prod-

uct is defined as 〈X,Y 〉 = tr(XTY ), where tr is the trace

function, and the Frobenius norm ‖X‖F =
√

〈X,X〉 =
√

∑n
i=1 σ

2
i (X). The adjoint of a linear matrix operator A is

denoted A∗. For functions taking values in R such as rµ we

will frequently use the convention that rµ(x) =
∑

i rµ(xi).

The function g(x) = rµ(x) + x2 will be useful when

considering stationary points, since it is convex with a well

defined sub-differential. We can write g as

g(x) =

{

µ+ x2 |x| ≥ √
µ

2
√
µ|x| 0 ≤ |x| ≤ √

µ
. (10)

Its sub-differential is given by

∂g(x) =











{2x} |x| ≥ √
µ

{2√µsign(x)} 0 < |x| ≤ √
µ

[−2
√
µ, 2

√
µ] x = 0

. (11)

Note that the sub-differential consists of a single point

for each x 6= 0. By ∂g(x) we mean the set of vec-

tors {z; zi ∈ ∂g(xi), ∀i}. Figure 2 illustrates g and its

sub-differential. For the matrix case we similarly define

Figure 2: The function g(x) (left) and its sub-differential

∂g(x) (right). Note that the sub-differential contains a

unique element everywhere except at x = 0.

G(X) = rµ(σ(X)) + ‖X‖2F . It can be shown [20] that

a matrix Z is in the sub-differential of G at X if and only if

Z = UDzV
T , where z ∈ ∂g(σ(X)) (12)

and UD
σ(X)V

T is the SVD of X .

In Section 4 we utilize the notion of doubly sub-

stochastic (DSS) matrices [2]. A matrix M is DSS if its

rows and columns fulfill
∑

i |mij | ≤ 1 and
∑

j |mij | ≤ 1.

The DSS matrices are closely related to permutations. Let

π denote a permutation and Mπ,v the matrix with elements

mi,π(i) = vi and zeros otherwise. It is shown in [2] (Lemma

3.1) that an m × m matrix is DSS if and only if it lies in

the convex hull of the set {Mπ,v;π is a permutation, |vi| =
1 ∀i}. The result is actually proven for matrices with com-

plex entries, but the proof is identical for real matrices.

3. Sparsity Regularization

In this section we consider stationary points of the pro-

posed sparsity formulation (3). The function f can equiva-

lently be written

f(x) = g(x) + x
T (ATA− I)x− 2xTAT

b+b
T
b. (13)

Taking derivatives we see that the stationary points solve

2(I −ATA)xs + 2AT
b ∈ ∂g(xs). (14)

The following lemma clarifies the connection between a sta-

tionary point xs and the vector z = (I −ATA)xs +AT
b.

Lemma 3.1. The point xs is stationary in f if and only if

2z ∈ ∂g(xs) and if and only if

xs ∈ argmin
x

rµ(x) + ‖x− z‖2. (15)

Proof. By (14) we know that xs is stationary in f if and

only if 2z ∈ ∂g(xs). Similarly, inserting A = I and b = z

in (14) shows that xs is stationary in rµ(x) + ‖x− z‖2 if

and only if 2z ∈ ∂g(xs). Since rµ(x)+‖x− z‖2 is convex

in x, this is equivalent to solving (15).

The above result shows that stationary points of f are

sparse approximations of z in the sense that small elements

are suppressed. The elements of xs are either zero or have

magnitude larger than
√
µ assuming that the vector z has no

elements that are precisely ±√
µ.

3.1. Stationary points under the RIP constraint

We now assume that A is a matrix fulfilling the RIP (2)

and write

f(x) = g(x)− δc‖x‖2 + h(x) + ‖b‖2, (16)

where

h(x) = δc‖x‖2 +
(

‖Ax‖2 − ‖x‖2
)

− 2xTAT
b. (17)

The term ‖b‖2 is constant with respect to x and we can

therefore drop it without affecting the optimizers. The point

x is a stationary point of f if 2δcx−∇h(x) ∈ ∂g(x), that is

there is a vector 2z ∈ ∂g(x) such that 2δcx−∇h(x) = 2z.

Our goal is now to find constraints that assure that this

system of equations have only one sparse solution. Before

getting into the details we outline the overall idea. For sim-

plicity consider two differentiable strictly convex functions

h̃ and g̃. Their sum is minimized by the stationary point

xs fulfilling −∇h̃(xs) = ∇g̃(xs). Since g̃ is strictly con-

vex its directional derivative 〈∇g̃(xs+ tv),v〉 is increasing

for all directions v 6= 0. Similarly 〈−∇h̃(xs + tv),v〉
is decreasing for all v 6= 0 since −h̃ is strictly concave.

Therefore 〈−∇h̃(xs + tv),v〉 < 〈∇g̃(xs + tv),v〉 which
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means that xs is the only stationary point. In what follows

we will estimate the growth of the directional derivatives

of the functions involved in (16) in order to show a similar

contradiction. For the function h we do not have convexity,

however due to (2) we shall see that it behaves essentially

like a convex function for sparse vectors x. Additionally,

because of the non-convex perturbation −δc‖x‖2 we need

somewhat sharper estimates than just growth of the direc-

tional derivatives of g.

We first consider the estimate for the derivatives of h.

Note that ∇h(x) = 2δcx + 2(ATA − I)x − 2AT b, and

therefore

〈∇h(x+v)−∇h(x),v〉 = 2δc‖v‖2+2
(

‖Av‖2 − ‖v‖2
)

.

Applying (2) now shows that

〈∇h(x+v)−∇h(x),v〉 ≥ 2δc‖v‖2−2δc‖v‖2 = 0, (18)

when card(v) ≤ c.
Next we need a similar bound on the sub-gradients of g.

In order to guarantee uniqueness of a sparse stationary point

we need to show that they grow faster than 2δc‖v‖2.

Lemma 3.2. Assume that 2z ∈ ∂g(x). If the elements zi
fulfill |zi| /∈ [(1 − δc)

√
µ,

√
µ

1−δc
] for every i, then for any z

′

with 2z′ ∈ ∂g(x+ v) we have

〈z′ − z,v〉 > δc‖v‖2, (19)

as long as ‖v‖ 6= 0.

The proof, which is somewhat technical, is given in the

supplementary material. We are now ready to consider the

distribution of stationary points. Set z = (I − ATA)xs +
AT

b and recall that 2z ∈ ∂g(xs) for stationary points xs

(Lemma 3.1).

Theorem 3.3. Assume that xs is a stationary point of f and

that each element zi fulfills |zi| /∈ [(1− δc)
√
µ,

√
µ

1−δc
]. If x′

s

is another stationary point of f then card(x′
s − xs) > c.

Proof. Assume that card(x′
s − xs) ≤ c. We first note that

2δcx−∇h(x) = 2(I −ATA)x+ 2AT
b. (20)

Since xs and x
′
s are both stationary points we have 2δcxs−

∇h(xs) = 2z and 2δcx
′
s − ∇h(x′

s) = 2z′, where 2z ∈
∂g(xs) and 2z′ ∈ ∂g(x′

s). Taking the difference between

the two equations gives

2δ(x′
s − xs)− (∇h(x′

s)−∇h(xs)) = 2(z′ − z), (21)

which implies

2δc‖v‖2−〈∇h(x+v)−∇h(x),v〉 = 2〈z′−z,v〉, (22)

where v = x
′
s − xs. However, according to (18) the left

hand side is less than 2δ‖v‖2 if card(v) ≤ c which contra-

dicts Lemma 3.2.

In the supplementary material we give a simple example

that shows that the constraint |zi| /∈ [(1 − δc)
√
µ,

√
µ

1−δc
] is

necessary and cannot be made tighter.

4. Low Rank Regularization

Next we generalize the vector formulation from the pre-

vious section to a matrix setting. We let F be as in (9) and

assume that A is a linear operator Rm×n → R
k fulfilling

(7) for all X with rank(X) ≤ r. As in the vector case we

can (ignoring constants) equivalently write

F (X) = G(X)− δr‖X‖2F +H(X), (23)

where H(X) = δr‖X‖2F +
(

‖AX‖2 − ‖X‖2F
)

−
2〈X,A∗

b〉 and G(X) = g(σ(X)), with g as in (10). The

first estimate

〈∇H(X + V )−∇H(V ), V 〉 ≥ 0 (24)

follows directly from (7) if rank(V ) ≤ r. Our goal is now

to show a matrix version of Lemma 3.2.

Lemma 4.1. Let x,x′,z,z′ be fixed vectors with non-

increasing and non-negative elements such that x 6= x
′,

2z ∈ ∂g(x) and 2z′ ∈ ∂g(x′). Define X ′ = U ′Dx
′V ′T ,

X = UDxV
T , Z ′ = U ′Dz

′V ′T , and Z = UDzV
T as

functions of unknown orthogonal matrices U , V , U ′ and

V ′. If

a∗ = min
U,V,U ′,V ′

〈Z ′ − Z,X ′ −X〉
‖X ′ −X‖2F

≤ 1 (25)

then

a∗ = min
π

〈Mπ,1z
′ − z,Mπ,1x

′ − x〉
‖Mπ,1x

′ − x‖2 , (26)

where 1 is a vector of all ones.

Proof. We may assume that U = Im×m and V = In×n.

We first note that (U ′, V ′) is a minimizer of (25) if and only

if

〈Z ′ − Z,X ′ −X〉 ≤ a∗‖X ′ −X‖2F . (27)

This constraint can equivalently be written

C − 〈Z ′ − a∗X ′, X〉 − 〈Z − a∗X,X ′〉 ≤ 0, (28)

where C = 〈Z ′, X ′〉 + 〈Z,X〉 − a∗(‖X ′‖2F + ‖X‖2F ) is

independent of U ′ and V ′. Thus any minimizer of (25) must

also maximize

〈U ′Dz
′−a∗

x
′V ′T , Dx〉+ 〈Dz−a∗

x, U
′Dx

′V ′T 〉. (29)

For ease of notation we now assume that m ≤ n, that is, the

number of rows are less than the columns (the opposite case

can be handled by transposing). Equation (29) can now be

written

x
TM(z′ − a∗x′) + (z− a∗x)TMx

′, (30)
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where M = U ′ ⊙ V ′
1,1, V ′

1,1 is the upper left m ×m block

of V ′ and ⊙ denotes element wise multiplication. Since

both U ′ and V ′ are orthogonal it is easily shown (using the

Cauchy-Schwartz inequality) that M is DSS.

Note that objective (30) is linear in M and therefore opti-

mization over the set of DSS matrices is guaranteed to have

an extreme point Mπ,v that is optimal. Furthermore, since

a∗ ≤ 1 the vectors x,x′,z − a∗x and z
′ − a∗x′ all have

positive entries, and therefore the maximizing matrix has

to be Mπ,1 for some permutation π. Since Mπ,1 is or-

thogonal and Mπ,1 = Mπ,1 ⊙ Mπ,1, U ′ = Mπ,1 and

V ′
1,1 = Mπ,1 will be optimal when maximizing (30) over

U ′ and V ′
1,1. An optimal V ′ in (29) can now be chosen to be

V ′ =

[

Mπ,1 0
0 I

]

. Note that this choice is somewhat arbi-

trary since only the upper left block of V ′ affects the value

of (29). The matrices U ′Z ′V ′T and U ′X ′V ′T are now di-

agonal, with diagonal elements Mπ,1z
′ and Mπ,1x

′, which

concludes the proof.

Corollary 4.2. Assume that 2Z ∈ ∂G(X). If the singular

values of the matrix Z fulfill zi /∈ [(1− δr)
√
µ,

√
µ

1−δr
], then

for any 2Z ′ ∈ ∂G(X ′) we have

〈Z ′ − Z,X ′ −X〉 > δr‖X ′ −X‖2F , (31)

as long as ‖X ′ −X‖F 6= 0.

Proof. We will first prove the result under the assumption

that σ(X) 6= σ(X ′) and then generalize to the general case

using a continuity argument. For this purpose we need to

extend the infeasible interval somewhat. Since δr < 1 and

the complement of [(1 − δr)
√
µ,

√
µ

1−δr
] is open there is an

ǫ > 0 such that zi /∈ [(1−δr−ǫ)
√
µ,

√
µ

1−δr−ǫ
] and δr+ǫ < 1.

Now assume that a∗ > 1 in (25), then clearly

〈Z ′ − Z,X ′ −X〉 > (δr + ǫ)‖X ′ −X‖2F , (32)

since δr + ǫ < 1. Otherwise a∗ ≤ 1 and we have

〈Z ′ − Z,X ′ −X〉
‖X ′ −X‖2F

≥ 〈Mπ,1z
′ − z,Mπ,1σ(X

′)− σ(X)〉
‖Mπ,1σ(X ′)− σ(X)‖2 .

(33)

According to Lemma 3.2 the right hand side is strictly larger

than δr + ǫ, which proves that (32) holds for all X ′ with

σ(X ′) 6= σ(X).
For the case σ(X ′) = σ(X) and ‖X ′ −X‖F 6= 0 it can

now be proven that

〈Z ′ − Z,X ′ −X〉 ≥ (δr + ǫ)‖X ′ −X‖2F , (34)

using continuity of the scalar product and the Frobenius

norm. (The technical details of this argument are given in

the supplementary material.) Since ǫ > 0 this proves the

result.

Theorem 4.3. Assume that Xs is a stationary point of F ,

that is, (I−A∗A)Xs+A∗
b = Z, where 2Z ∈ ∂G(X) and

the singular values of Z fulfill σi(Z) /∈ [(1− δr)
√
µ,

√
µ

1−δr
].

If X ′
s is another stationary point then rank(X ′

s −Xs) > r.

The proof is similar to that of Theorem 3.3 and therefore

we omit it.

5. Experiments

In this section we evaluate the proposed formulation on

a few synthetic experiments. We compare the two formula-

tions

µ′‖X‖∗ + ‖AX − b‖2 (35)

rµ(σ(X)) + ‖AX − b‖2 (36)

for low rank recovery for varying regularization strengths µ
and µ′. Note that the proximal operator of the nuclear norm,

argminX µ′‖X‖∗+‖X−W‖2, performs soft thresholding

at µ′

2 while that of rµ, argminX rµ(σ(X)) + ‖X −W‖2,

thresholds at
√
µ [19]. In order for the methods to roughly

suppress an equal amount of noise we therefore use µ′ =
2
√
µ in (35). For completeness we also include a similar

sparse recovery experiment in the supplementary material.

5.1. Optimization Method

Because of its simplicity we use the GIST approach from

[17]. Given a current iterate Xk this method uses a trust

region formulation that approximates the data term ‖AX −
b‖2 with the linear function 2〈A∗AXk−A∗

b, X〉. In each

step the algorithm therefore finds Xk+1 by solving

min
X

rµ(σ(X)) + 2〈A∗AXk −A∗
b, X〉+ τk‖X −Xk‖2.

(37)

Here the third term τk‖X − Xk‖2 restricts the search to a

neighborhood around Xk. Completing squares shows that

the above problem is equivalent to

min
X

rµ(σ(X)) + τk ‖X −M‖2 , (38)

where M = Xk − 1
τk
(A∗AXk − A∗

b). Note that if

τk = 1 then any fixed point of (38) is a stationary point

by Lemma 3.1. The optimization of (38) will be separa-

ble in the singular values of X . For each i we minimize

−max(
√
µ − σi(X), 0)2 + τk(σi(X) − σi(M))2. Since

singular values are always positive there are three possible

minimizers: σi(X) = σi(M), σi(X) = 0 and σi(X) =
τkσi(M)−

√
µ

τk−1 . In our implementation we simply test which

one of these yields the lowest objective value. (If τk = 1
it is enough to test σi(X) = σi(M) and σi(X) = 0.) For

initialization we use X0 = 0.

In summary our algorithm consists of repeatedly solving

(38) for a sequence of {τk}. In the experiments we noted
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that using τk = 1 for all k sometimes resulted in divergence

of the method due to large step sizes. We therefore start

from a larger value (τ0 = 5 in our implementation) and re-

duce towards 1 as long as this results in decreasing objective

values. Specifically we set τk+1 = τk−1
1.1 +1 if the previous

step was successful in reducing the objective value. Other-

wise we increase τ according to τk+1 = 1.5(τk − 1) + 1.

5.2. Low Rank Recovery

In this section we test the proposed method on synthetic

data. We generate 20 × 20 ground truth matrices of rank

5 by randomly selecting 20 × 5 matrices U and V with

N (0, 1) elements and multiplying X = UV T . By column

stacking matrices the linear mapping A : Rm×n → R
p can

be represented by a p × mn matrix Â. For a given rank

r < min(m,n) it is a difficult problem to determine the

exact δr for which (7) holds. However if we consider un-

restricted solutions (r = min(m,n)) (7) reduces to a sin-

gular value bound. It is easy to see that if p ≥ mn and√
1− δr ≤ σi(Â) ≤

√
1− δr for all i then (7) clearly holds

for all X . For under-determined systems finding the value

of δr is much more difficult. However for a number of ran-

dom matrix families it can be proven that (7) will hold with

high probability when the matrix size tends to infinity. For

example [9, 28] mentions random matrices with Gaussian

entries, Fourier ensembles, random projections and matri-

ces with Bernoulli distributed elements.

For Figure 3 we randomly generated problem instances

for low rank recovery. Each instance uses a matrix Â of

size 202 × 202 with δ = 0.2 which was generated by first

randomly sampling the elements of a matrix Ã a Gaus-

sian N (0, 1) distribution. The matrix Â was then con-

structed from Ã by modifying the singular values to be

evenly distributed between
√
1− δ and

√
1 + δ. To gener-

ate a ground truth solution and a b vector we then computed

b = AX+ǫ, where all elements of ǫ are N (0, σ2). We then

solved (35) and (36) for varying noise level σ and regular-

ization strength µ and computed the distance between the

obtained solution and the ground truth.

The averaged results (over 50 random instances for each

(σ, µ) setting) are shown in Figure 3. (Here black means

low and white means a high errors. Note that the color-

maps of left and middle image are the same. The red curves

show the area where the computed solution has the correct

rank.) From Figure 3 it is quite clear that the nuclear norm

suffers from a shrinking bias. It consistently gives the best

agreement with the ground truth data for values of µ that are

not big enough to generate low rank. The effect becomes

more visible as the noise level increases since a larger µ
is required to suppress the noise. In contrast, (9) gives the

best fit at the correct rank for all noise levels. This fit was

consistently better than that of (35) for all noise levels. To

the right in Figure 3 we show the fraction of problem in-

stances that could be verified to be optimal (by computing

Z = (I − A∗A)Xs + A∗
b and checking that σi(Z) /∈

[(1 − δ)
√
µ,

√
µ

1−δ
]). It is not unexpected that verification

works best when the noise level is moderate and a solution

with the correct rank has been recovered. In such cases the

recovered Z is likely to be close to low rank. Note for ex-

ample that in the noise free case, that is, b = AX0 for some

low rank X0 then Z = (I −A∗A)X0 +A∗AX0 = X0.

In Figure 4 we randomly generated under-determined

problems with Â of size 300×202 with Gaussian N (0, 1
300 )

elements and b vector as described previously. Even though

we could not verify the optimality of the obtained solu-

tion (since δ is unknown) our approach consistently out-

performed nuclear norm regularization which exhibits the

same tendency to achieve a better fit for non-sparse solu-

tions. In this setting (35) performed quite poorly, failing to

simultaneously achieve a good fit and a correct rank (even

for low noise levels).

5.3. Non­rigid Reconstruction

Given projections of a number 3D points on a deforming

object, tracked through several images, the goal of non-rigid

SfM is to reconstruct the 3D positions of the points. The

problem is typically regularized by assuming that all possi-

ble object shapes are spanned by a low dimensional linear

basis [4]. Specifically, let Xf be a 3× n-matrix containing

the coordinates of the 3D points when image f was taken.

Here column i of Xf contains the x-,y- and z-coordinates

of point i. Under the linearity assumption there is a set of

basis shapes Bk, k = 1, ...,K such that

Xf =

K
∑

k=1

cfkBk. (39)

Here the basis shapes Bk are of size 3 × n and the coeffi-

cients cfk are scalars. The projection of the 3D shape Xf

into the image is modeled by xf = RfXf . The 2 × 3 ma-

trix Rf contains two rows from an orthogonal matrix which

encodes camera orientation.

Dai et al. [12] observed that (39) can be interpreted as

a low rank constraint by reshaping the matrices. First, let

X#
f be the 1 × 3n matrix obtained by concatenation of the

3 rows Xf . Second, let X# be F × 3n with rows X#
f ,

f = 1, ..., F . Then (39) can be written X# = CB#, where

C is the F × K matrix containing the coefficients cfk and

B# is a K × 3n matrix constructed from the basis in the

same way as X#. The matrix X# is thus of at most rank

K. Furthermore, the complexity of the deformation can be

constrained by penalizing the rank of X#.

To define an objective function we let the 2F × n ma-

trix M be the concatenation of all the projections xf , f =
1, ..., F . Similarly we let the 3F × n matrix X be the con-
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Figure 3: Low rank recovery results for varying noise level (x-axis) and regularization strength (y-axis) with random 400×400
A with δ = 0.2. Left: Average distances between (35) and the ground truth for µ between 0 and 12. (red curves marks the

area where the obtained solution has rank(X) = 5). Middle: Average distances between (36) the ground truth. Right:

Number of instances where (36) could be verified to be optimal for δ = 0.2 (white = all, black = none).

Figure 4: Low rank recovery results varying noise level (x-

axis) and regularization strength (y-axis) with random 300×
400 A (and unknown δ). Left: Average distances between

(35) and the ground truth. (red curves marks the area where

the obtained solution has rank(X) = 5). Middle: Average

distances between (36) the ground truth.

catenation of the Xf matrices. The objective function pro-

posed by [12] is then

µ rank(X#) + ‖RX −M‖2F , (40)

where R is a 2F ×3F block-diagonal matrix containing the

Rf , f = 1, ..., F matrices. Dai et al. proposed to solve

(40) by replacing the rank penalty with ‖X#‖∗. In this

section we compare this to our approach that instead uses

rµ(σ(X
#)). We test the approach on the 4 MOCAP se-

quences Drink, Pick-up, Stretch and Yoga used in [12], see

Figure 5. Note that the MOCAP data is generated from mo-

tions recorded using real motion-capture-systems and the

ground truth is therefore not of low rank. In Figure 6 we

compare the two relaxations

rµ(σ(X
#)) + ‖RX −M‖2F (41)

and

2
√
µ‖X#‖∗ + ‖RX −M‖2F , (42)

for varying values of µ. We plot the obtained data fit ver-

sus the obtained rank for µ = 1, ..., 50. The stair case

shape of the blue curve is due to the nuclear norm’s bias

to small solutions. When µ is modified the strength of this

bias changes and modifies the value of the data fit even if

the modification is not big enough to change the rank. In

contrast the data fit seems to take a (roughly) unique value

for each rank when using (41).

The relaxation (41) consistently generates better data fit

for all ranks and as an approximation of (40) it clearly per-

forms better than (42). This is however not the whole truth.

In Figure 7 we also plotted the distance to the ground truth

solution. When the obtained solutions are not of very low

rank (42) is generally better than (41) despite consistently

generating a worse data fit. A feasible explanation is that

when the rank is larger than roughly 3-4 there are multiple

solutions with the same rank giving the same projections

(witch also implies that the RIP (7) does not hold). Note

that in Figure 6 the data fit seems to take a unique value for

every rank. In short; when the space of feasible deforma-

tions becomes too large we cannot uniquely reconstruct the

object from image data without additional priors. In con-

trast the ground truth distance can take several values for a

given rank in Figure 7. The nuclear norm’s bias to small

solutions seems to have a regularizing effect.

Dai et al. [12] also suggested to further regularize the

problem by penalizing derivatives of the 3D trajectories.

For this they use a term ‖DX#‖2F , where the matrix D :
R

F → R
F−1 is a first order difference operator. For com-

pleteness we add this term and compare

rµ(σ(X
#)) + ‖RX −M‖2F + ‖DX#‖2F (43)

and

2
√
µ‖X#‖∗ + ‖RX −M‖2F + ‖DX#‖2F . (44)

Figures 8 and 9 show the results. Our relaxation (43) gen-

erally finds better data fit at lower rank than what (44) does.

Additionally, for low ranks (43) provides solutions that are

closer to ground truth. When the rank increases most of the

regularization becomes more dependent on the derivative

prior leading to both methods providing similar results.
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Drink Pick-up Stretch Yoga

Figure 5: Four images from each of the MOCAP data sets.

Figure 6: Results obtained with (41) and (42) for the four sequences. Data fit ‖RX−M‖F (y-axis) versus rank(X#) (x-axis)

is plotted for various regularization strengths. Blue curve uses 2
√
µ‖X#‖∗ and red curve rµ(σ(X

#)) with µ = 1, ..., 50.

Figure 7: Results obtained with (41) and (42) for the four sequences. Distance to ground truth ‖X −Xgt‖F (y-axis) versus

rank(X#) (x-axis) is plotted for various regularization strengths. Blue curve uses 2
√
µ‖X#‖∗ and red curve rµ(σ(X

#))
with µ = 1, ..., 50.

Figure 8: Results obtained with (43) and (44) for the four sequences. Data fit ‖RX −M‖F versus rank(X#) is plotted for

various regularization strengths. Blue curve uses 2
√
µ‖X#‖∗ and red curve rµ(σ(X

#)) with µ = 1, ..., 50.

Figure 9: Results obtained with (43) and (44)for the four sequences. Distance to ground truth ‖X −Xgt‖F (y-axis) versus

rank(X#) (x-axis) is plotted for various regularization strengths. Blue curve uses 2
√
µ‖X#‖∗ and red curve rµ(σ(X

#))
with µ = 1, ..., 50.
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