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Abstract

Learning similarity functions between image pairs with

deep neural networks yields highly correlated activations

of large embeddings. In this work, we show how to improve

the robustness of embeddings by exploiting independence

in ensembles. We divide the last embedding layer of a deep

network into an embedding ensemble and formulate train-

ing this ensemble as an online gradient boosting problem.

Each learner receives a reweighted training sample from

the previous learners. This leverages large embedding sizes

more effectively by significantly reducing correlation of the

embedding and consequently increases retrieval accuracy

of the embedding. Our method does not introduce any ad-

ditional parameters and works with any differentiable loss

function. We evaluate our metric learning method on im-

age retrieval tasks and show that it improves over state-of-

the-art methods on the CUB-200-2011, Cars-196, Stanford

Online Products, In-Shop Clothes Retrieval and VehicleID

datasets by a significant margin.

1. Introduction

Deep Convolutional Neural Network (CNN) based met-

ric learning methods map images to a high dimensional fea-

ture space. In this space semantically similar images should

be close to each other, whereas semantically dissimilar im-

ages should be far apart from each other. Metric learn-

ing has a large variety of applications, such as image or

object retrieval (e.g. [35, 48, 53]), single-shot object clas-

sification (e.g. [35, 48, 51]), keypoint descriptor learning

(e.g. [25, 43]), face verification (e.g. [36, 40]), person re-

identification (e.g. [42, 48]), object tracking (e.g. [46]), etc.

To learn such metrics, several approaches based on image

pairs [9, 13], triplets [40, 52] or quadruples [26, 56] have

been proposed in the past. In this work we focus on learn-

ing simple similarity functions based on the dot product,

since they can be computed rapidly and can be used by ap-

proximate search methods (e.g. [33]) for large scale image

retrieval. Typically, especially with large embedding sizes,

Figure 1. BIER divides a large embedding into an ensemble of sev-

eral smaller embeddings. During training we reweight the training

set for successive learners in the ensemble with the negative gradi-

ent of the loss function. During test time we concatenate the indi-

vidual embeddings of all learners into a single embedding vector.

the accuracy of these methods saturates or declines due to

over-fitting [35].

To address this issue, we present a learning approach,

called Boosting Independent Embeddings Robustly (BIER),

which leverages large embedding sizes more effectively.

The main idea is to divide the last embedding layer of a

CNN into multiple non-overlapping groups (see Figure 1).

Each group is a separate metric network on top of a shared

feature representation. The accuracy of an ensemble de-

pends on the accuracy of individual learners as well as the

correlation between them [7]. Ideally, individual learn-

ers are highly accurate and have low correlation with each

other, so that they complement each other during test time.

Naively optimizing a global loss function for this ensem-

ble cannot show any benefits since all learners have access

to the same feature representation and the same training

samples. All groups will end up learning a highly corre-

lated embedding, which results in no performance improve-

ments. To overcome this problem, we formulate the en-

semble training as an online gradient boosting problem. In

online gradient boosting each learner reweights a training

sample for successive learners according to the gradient of

the loss function. Consequently, successive learners will fo-

cus on distinct samples from the previous learners, resulting
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in a more diverse feature representation (Section 3.1). To

encourage the individual embeddings to have low correla-

tion with each other already at the beginning of the training,

we propose a novel initialization method for our embed-

ding matrix (Section 3.2). The matrix is initialized from a

solution of an optimization problem which minimizes the

correlation between groups.

We demonstrate the effectiveness of our metric on sev-

eral image retrieval datasets [23, 29, 31, 35, 49]. In our

evaluation we show that BIER significantly reduces the cor-

relation of large embeddings (see Section 4.1) and works

with several loss functions (see Section 4.2) while increas-

ing retrieval accuracy by a large margin. BIER does not

introduce any additional parameters into a CNN and has

only negligible additional cost during training time and run-

time. The only design parameter of our method is the num-

ber of groups into which we divide our embedding. We

show that BIER outperforms state-of-the-art methods on

the CUB-200-2011 [49], Cars-196 [23], Stanford Online

Products [35], In-Shop Clothes Retrieval [31] and Vehi-

cleID [29] datasets (Section 4.6).

2. Related Work

Our work is related to metric learning and boosting in

combination with CNNs. Additionally, since we propose a

novel initialization method, we discuss related data depen-

dent initialization methods for CNNs.

2.1. Metric Learning

The main objective of metric learning in Computer Vi-

sion is to learn a function f(·) : Rk 7→ R
d which maps a k-

dimensional input vector, which is typically an input image

or a feature representation of an image, into a d-dimensional

vector space. In this vector space semantically similar im-

ages should be close to each other, and semantically dissim-

ilar images should be far apart from each other.

For a complete review of metric learning approaches we

refer the interested reader to [2]. In this work we focus our

discussion on boosting based metric learning approaches

and deep CNNs based approaches.

In boosting based approaches weak learners are typically

rank one matrices. The ensemble then combines several of

these matrices to form a positive semidefinite matrix M,

e.g. [6, 30, 34, 41]. M can be factorized into M = LL
⊤,

where L ∈ R
k×d is the projection into the d-dimensional

vector space. Further, Kedem et al. [20] proposed gradient

boosted trees for metric learning.

CNN based methods typically use special loss functions

to train deep networks which operate on image pairs, triplets

or quadruples. One of the most widely used pairwise loss

functions for metric learning is the contrastive loss function,

e.g. [9, 13, 35]. This loss function minimizes the squared

Euclidean distance between positive feature vectors while

encouraging a margin between positive and negative pairs.

To train networks with this loss function, a Siamese archi-

tecture, i.e. two copies of a network with shared weights, is

commonly used, e.g. [9, 13].

Other approaches adopt the Large Margin Nearest

Neighbor (LMNN) formulation [52] and sample triplets

consisting of a positive image pair and a negative image

pair, e.g. [35, 36, 40, 53]. The loss function encourages

a margin between distances of positive and negative pairs.

Hence, positive image pairs are mapped closer to each other

in the feature space compared to negative image pairs.

Recent approaches propose new loss functions for metric

learning. Song et al. [35] propose to lift a mini-batch to a

matrix of pairwise distances between samples. Further, they

use a structural loss function on this distance matrix to train

the neural network. Ustinova et al. [48] propose a novel

histogram loss. They also lift a mini-batch to a distance

matrix and compute a histogram of positive and negative

distances. Their loss operates on this histogram and mini-

mizes the overlap between the distribution of positive and

negative distances. Huang et al. [17] introduce a position

dependent deep metric unit which is capable of learning a

similarity metric adaptive to the local feature space. Sohn et

al. [44] generalize the triplet loss to n-tuples and propose a

more efficient batch construction scheme. Rippel et al. [37]

propose a “magnet” loss function which models multimodal

data distributions and minimizes the overlap between distri-

butions of different classes. Our work is complementary

to the above approaches. We show that combining existing

loss functions with our method yields significant improve-

ments (see Section 4.2).

Yuan et al. [55] propose a hard-aware deeply cascaded

embedding. They leverage the benefits of deeply supervised

networks [27, 45] by employing a contrastive loss function

and train lower layers of the network to handle easier exam-

ples, and higher layers in a network to handle harder exam-

ples. In contrast to this multi-layer approach, we focus on

reducing the correlation on just a single layer. To achieve

this, we split our high dimensional embedding into several

learners which we train with online gradient boosting. Suc-

cessive learners are trained on reweighted samples, which

significantly reduces the correlation between the learners

and consequently within the embedding. Further, in con-

trast to the hard-aware deeply cascaded embedding, our

method allows continuous weights for samples depending

on the loss function.

2.2. Boosting for CNNs

Boosting is a greedy ensemble learning method, which

iteratively trains an ensemble from several weak learn-

ers [10]. The original boosting algorithm, AdaBoost [10],

minimizes an exponential loss function. Friedman et

al. [11] extend the boosting framework to allow minimiz-
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ing arbitrary differentiable loss functions. They show that

one interpretation of boosting is that it performs gradient de-

scent in function space and propose a novel method leverag-

ing this insight called gradient boosting. Successive learn-

ers in gradient boosting are trained to have high correla-

tion with the negative gradient of the loss function. There

are several algorithms which extend gradient boosting for

the online learning setting, e.g. [4, 5, 8, 28]. In contrast to

offline boosting, which has access to the full dataset, on-

line boosting relies on online weak learners and updates

the boosting model and their weak learners one sample at

a time.

In the context of CNNs these methods are rarely used.

Several works, e.g. [19, 54] use CNN features in an offline

boosting framework. These approaches, however, do not

train the network and the weak learners end-to-end (i.e. the

CNN is used as feature extractor). In contrast to these ap-

proaches, we train our system end-to-end. We directly in-

corporate an online boosting algorithm into training a CNN.

Similarly, Walach et al. [50] leverage gradient boosting

to train several CNNs within an offline gradient boosting

framework for person counting. The ensemble is then fine-

tuned with a global loss function. In contrast to their work,

which trains several copies of full CNN models, our method

trains a single CNN with an online boosting method. Simi-

lar to dropout, all our learners share a common feature rep-

resentation. Hence, our method does not introduce any ad-

ditional parameters.

Very recently, Han et al. [14] proposed to use boosting to

select discriminative neurons for facial action unit classifi-

cation. They employ decision stumps on top of single neu-

rons as weak learners, and learn weighting factors for each

of these neurons by offline AdaBoost [10] applied to each

mini-batch separately. Weights are then exponentially av-

eraged over several mini-batches. They combine the weak

learner loss functions with a global loss function over all

learners to train their network. In contrast to this work, we

use weak learners consisting of several neurons (i.e. linear

classifiers). Further, our method is more tightly integrated

in an online boosting framework. We reweight the training

set according to the negative gradient of the loss function

for successive weak learners. This encourages them to fo-

cus on different parts of the training set. Finally, our method

does not rely on optimizing an explicit global loss function.

2.3. Initialization Methods

Most initialization methods for CNNs initialize weights

randomly either with carefully chosen variance parameters,

e.g. [24], or depending on the fan-in and fan-out of a weight

matrix, e.g. [12, 15]. Rather than focusing on determining

the variance of the weight matrix, Saxe et al. [39] propose

to initialize the weight matrix as orthogonal matrix.
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Figure 2. Illustration of triplet loss, contrastive loss (for negative

samples) and binomial deviance loss (for negative samples) and

their gradients. Triplet and contrastive loss have a non-continuous

gradient, whereas binomial deviance has a continuous gradient.

Binomial Dev. log(1 + e−(2y−1)α(s−β)Cy )
Contrastive (1− y)max(0, s−m) + y(s− 1)2

Triplet max(0, s− − s+ +m)

Table 1. Overview of loss functions used in our work.

Recently, several approaches which initialize weights

depending on the input data were proposed, e.g. [22, 32].

These methods typically scale a random weight matrix such

that the activations on the training set have unit variance.

Several works, e.g. [3, 16], greedily initialize a network

layer-by-layer, by applying unsupervised feature learning

such as Autoencoders or Restricted Bolzman Machines

(RBMs). These methods seek for a weight matrix which

minimizes the reconstruction error or a matrix which learns

a generative model of the data.

In contrast to these works, we initialize the weight matrix

from a solution of an optimization problem which explicitly

minimizes correlation between groups of features. With this

initialization our weak learners already have low correlation

at the beginning of the training process.

3. Boosting a Metric Network

Our method builds upon metric CNNs, e.g. [17, 35, 44,

48]. The main objective of these networks is to learn a

high-dimensional non-linear embedding f(x) which maps

an image x to a feature space R
d. In this space similar im-

age pairs should be close to each other and dissimilar image

pairs should be far apart from each other. To achieve this,

instead of relying on a softmax output layer, these methods

use a final linear layer consisting of an embedding matrix

W ∈ R
h×d, which maps samples from the last hidden layer

of size h into the feature space Rd. To learn this embedding

matrix W and the parameters of the underlying network,

these networks are typically trained on pairs or triplets of

images and use loss functions to encourage that similar pairs

should be close to each other and dissimilar pairs should be

far apart from each other, e.g. [35].

As opposed to learning a distance metric, in our

work we learn a cosine similarity score s(·, ·) which

we define as dot product between two embeddings:
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Figure 3. We divide the embedding of a metric CNN into several

weak learners and cast training them as online gradient boosting

problem. Each learner iteratively reweights samples according to

the gradient of the loss function. Training a metric CNN this way

encourages successive learners to focus on different samples than

previous learners and consequently reduces correlation between

learners and their feature representation.

s(f(x(1)), f(x(2))) = f(x(1))⊤f(x(2))

‖f(x(1))‖·‖f(x(2))‖
. This has the ad-

vantage that the similarity is bounded between [−1,+1].
In our framework, we do not use a Siamese architecture,

e.g. as [9, 13]. Instead, we follow recent work, e.g. [35, 40,

48], and sample a mini-batch of several images, forward

propagate them through the network and sample pairs or

triplets in the last loss layer of the network. The loss is then

backpropagated through all layers of the network.

We consider three different loss functions (defined in Ta-

ble 1 and illustrated in Figure 2), which are commonly used

to train metric networks, e.g. [25, 36, 40, 42]. To avoid clut-

tering the notation, let s = s(f(x(1)), f(x(2))) be the sim-

ilarity score between image x
(1) and x

(2). Let y ∈ {1, 0}
denote the label of the image pair (i.e. 1 for similar pairs,

and 0 for dissimilar pairs). Let s− denote the similarity

score for a negative image pair and s+ denote the similarity

score for a positive image pair. m denotes the margin for

the contrastive and triplet loss, which is set to 0.5 and 0.01,

respectively, in all our experiments. α and β are scaling

and translation parameters and are set to 2 and 0.5, simi-

lar to [48]. Finally, we follow [48] and set the cost Cy to

balance positive and negative pairs as

Cy =

{

1 if y = 1
25 if y = 0.

(1)

3.1. Online Gradient Boosting CNNs for Metric
Learning

To encourage diverse learners we borrow ideas from

online gradient boosting. Online gradient boosting itera-

tively minimizes a loss function using a fixed number of

M weak learners, e.g. [4, 5, 8, 28]. Learners are trained

on reweighted samples according to the gradient of the loss

function. Correctly classified samples typically receive a

lower weight while misclassified samples are assigned a

higher weight for successive learners. Hence, successive

learners focus on different samples than previous learn-

ers, which consequently encourages higher diversity among

weak learners.

More formally, for a loss ℓ(·), we want to find a set of

weak learners {f1(x), f2(x), . . . , fM (x)} and their corre-

sponding boosting model:

F (x(1),x(2)) =

M
∑

m=1

αms(fm(x(1)), fm(x(2))), (2)

where F (x(1),x(2)) denotes the ensemble output and αm is

the weighting factor of the m-th learner. The m-th learner

of the ensemble is trained on a reweighted training set ac-

cording to the negative gradient −ℓ′(·) of the loss function

at the ensemble prediction until stage m− 1.

To train the weak learners fm(·) in an online fash-

ion we adapt an online gradient boosting learning algo-

rithm [4] with fixed weights αm and integrate it within a

CNN. Naively training multiple CNNs within the boost-

ing framework is, however, computationally too expensive.

To avoid this additional computational cost, we divide the

embedding layer of our CNN into several non-overlapping

groups, as illustrated in Figure 3. A single group represents

a weak learner. All our weak learners share the same un-

derlying feature representation, which is a pre-trained Ima-

geNet CNN in all our experiments.

Our network is trained end-to-end on mini-batches with

Stochastic Gradient Descent (SGD) and momentum. We il-

lustrate the training procedure for loss functions operating

on pairs and a single example per batch in Algorithm 1. Our

algorithm also works with triplets, but for the sake of clarity

we omit a detailed explanation here and refer the interested

reader to the supplemental material. The training proce-

dure can be easily integrated into the standard backpropaga-

tion algorithm, introducing only negligible additional cost,

since most time during training is spent on computing con-

volutions. First, in the forward pass we compute similarity

scores smn for each input sample n and each group m. In the

backward pass we backpropagate the reweighted losses for

each group iteratively. The weight wn for the n-th sample

and the m-th learner is computed from the negative gradient

−ℓ′(·) of the ensemble prediction until stage m−1. Hence,

successive learners focus on examples which have high gra-

dients (i.e. are misclassified) by previous learners.

This online gradient boosting algorithm yields a con-

vex combination of weak learners fm(·), 1 ≤ m ≤ M .

Successive learners in the ensemble typically have to fo-

cus on more complex training samples compared to pre-

vious learners and therefore, should have a larger embed-

ding size. We exploit this prior knowledge and set the

group size of learner m to be proportional to its weight

αm = ηm ·
∏M

n=m+1(1− ηn) in the boosting algorithm.

We experimentally verify this design choice in Section 4.1.

5192



Let ηm = 2
m+1 , for m = 1, 2, . . . ,M ,

M = number of learners, I = number of iterations

for n = 1 to I do

/* Forward pass */

Sample pair (x
(1)
n , x

(2)
n ) and label yn

s0n := 0
for m = 1 to M do

smn := (1− ηm)sm−1
n + ηms(fm(x

(1)
n ), fm(x

(2)
n ))

end

Predict sn = sMn

/* Backward pass */

wn := 1
for m = 1 to M do

Backprop wnℓ(s(fm(x
(1)
n ), fm(x

(2)
n )), yn)

wn := −ℓ′(smn , yn)
end

end

Algorithm 1: Online gradient boosting algorithm for our

CNN.

During test time our method predicts a single feature

vector for an input image x, which can be used by approx-

imate search methods, e.g. [33]. We simply compute the

embeddings from all weak learners f1(·), f2(·), . . . fM (·),
L2-normalize each of them individually and weight each of

them according to the boosting weights αm. Finally, we

concatenate all vectors to a single feature vector, which is

the embedding f(x) of the input image x.

3.2. Weight Initialization

We want to encourage that learners in our ensemble have

low correlation with each other already at the beginning of

the training. To this end we initialize the weight vector W

of the last layer of our network such that the activations of

the training set are independent across different groups.

More formally, let M denote the number of groups (i.e.

weak learners) and Gi denote the index set of neurons of

group i, 1 ≤ i ≤ M . We want to learn the initialization

of an embedding matrix W ∈ R
h×d, where d denotes the

embedding size and h the input feature dimensionality (i.e.

the size of the last hidden layer in a CNN). Finally, let X =
{

x
(1),x(2), . . . ,x(N)

}

denote the training set. In all our

experiments we use feature vectors extracted from the last

hidden layer of a pre-trained CNN. Intuitively, we want to

ensure that activations are not correlated between groups.

We formulate this with the following optimization problem:

argmin
W

N
∑

n=1

M
∑

i=1,
j=i+1

∑

k∈Gi,
l∈Gj

(a
(n)
k · a

(n)
l )2 + λ

d
∑

i=1

(w⊤
i wi − 1)2

s.t. a(n) = x
(n)⊤

W , (3)

where a
(n) denotes the activation of feature vector x

(n),

a
(n)
k the k-th dimension of a(n), wi (with 1 ≤ i ≤ d) are

the column vectors of W and λ is a regularization parame-

ter. The regularization term is necessary to avoid the trivial

solution W = 0. It forces the squared norms of the column

vectors of W to be close to 1 and hence avoids a trivial

solution. We set λ to 100 in all our experiments, which is

large enough such that all column-vectors have a squared

norm close to 1± 1e−3.

We optimize this problem with SGD and momentum.

We initialize W uniformly random according to the method

proposed by Glorot et al. [12] and normalize the column-

vectors to have a norm of 1. For this particular optimiza-

tion problem to initialize W we do not train our network

end-to-end. Instead, we fix the feature representation and

just optimize for W . Thus, the optimization converges typ-

ically within seconds to a few minutes, depending on the

embedding size d and the dataset size N . This is negligible

compared to neural network training, which typically takes

several hours to converge. We show the effectiveness of our

initialization method in Section 4.5.

4. Evaluation

In our evaluation we first run several experiments on the

CUB-200-2011 [49] dataset. We follow the evaluation pro-

tocol proposed in [35] and use the first 100 classes (5, 864
images) for training and the remaining 100 classes (5, 924
images) for testing.

For evaluation we use the Recall@K metric [35]. For

each image in the test set, we compute the feature vectors

from our CNN and then retrieve the K most similar images

from the remaining test set. If one of the K retrieved images

has the same label as the query image, it is a match and

increases the recall score by 1. The final Recall@K score

is the average over all test images.

We implement our method with Caffe [18] and

Theano [47]. As network architecture, we follow previous

works (e.g. [35, 48]) and use a GoogLeNet [45] which is

pre-trained on the ImageNet dataset [38]. As optimization

method we use ADAM [21] with a learning rate of 1e−6.

We sample a mini-batch by first sampling a fixed number of

categories from the dataset and then sampling several im-

ages for each of these categories. Each mini-batch consists

of approximately 5-10 images per category. We follow pre-

vious work [35] and use a batch size of 128.

In Section 4.1 we show the impact of an ensemble trained

with BIER on the strength (i.e. accuracy) and correlation

of an embedding. Next, we show that BIER works with

several widely used loss functions (Section 4.2). Fur-

ther, we analyse the impact of the number of groups in

an embedding (Section 4.3) and the embedding size (Sec-

tion 4.4). Then, we demonstrate the effectiveness of our

initialization method (Section 4.5). Finally, we show that

our method outperforms state-of-the-art methods on several

datasets [23, 29, 31, 35, 49] (Section 4.6).
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4.1. Strength and Correlation

Performance of an ensemble depends on two elements:

the strength (i.e. accuracy) of individual learners and the

correlation between the learners [7]. Ideally, learners of an

ensemble are highly accurate and lowly correlated, so that

they can complement each other well.

To evaluate the impact of our contributions on strength

and correlation, we compare several different models. First,

we train a model with a regular loss function with an em-

bedding size of 512 (Baseline). Next, we use a simple

model averaging approach, where we split the last embed-

ding layer into three non-overlapping groups of size 170,

171 and 171 respectively, initialize them with our initializa-

tion method and optimize a loss function on each of these

groups separately (Init-170-171-171). Finally, we apply

our boosting based reweighting scheme on the three groups

(Ours-170-171-171).

As discussed in Section 3.1, we propose to use groups

of different sizes proportional to the weighting of the online

boosting algorithm. To that end, we divide the embedding

into differently sized groups. We assign the first learner a

size of 96 neurons, the second learner 160 neurons and the

last learner 256 neurons. Finally, we train a model with our

initialization method (Init-96-160-256) and add our boost-

ing method (Ours-96-160-256) on top of these learners.

As shown in Table 2, just initializing the weight matrix

such that activations are independent already achieves a no-

table improvement over our baseline model. Additionally,

our boosting method significantly increases the accuracy of

the ensemble. Without boosting the individual classifiers

are highly correlated. By training successive classifiers on

reweighted samples, the classifiers focus on different train-

ing examples leading to less correlated classifiers. Inter-

estingly, the individual weak learners trained with just our

initialization method achieve similar accuracy compared to

our boosted learners (e.g. 51.94 vs 51.47 of Learner-1-170),

but the combination achieves a significant improvement,

since each group focuses on a different part of the data set.

4.2. Loss Functions

To show that BIER works with several loss functions

such as triplet loss or contrastive loss, we train a baseline

CNN with embedding size of 512 and then with our boost-

ing based method. For our method, we set the group size to

96, 160 and 256 respectively. In Table 3 we see that bino-

mial deviance, triplet loss and contrastive loss can benefit

from our method.

Further, we see that our method performs best for loss

functions with smooth (i.e. continuous) gradient. We hy-

pothesize that this is due to the fact that non-smooth loss

functions convey less information in their gradient. The gra-

dient of triplet and contrastive loss (for negative samples) is

either 0 or 1, whereas the gradient of binomial deviance has

Method Clf. Corr. Feature Corr. R@1

Baseline-512 - 0.1530 51.76

Init-170-171-171 0.8362 0.1005 53.73

Learner-1-170 51.94

Learner-2-171 51.99

Learner-3-171 52.26

Init-96-160-256 0.9008 0.1197 53.93

Learner-1-96 50.35

Learner-2-160 52.60

Learner-3-256 53.36

Ours-170-171-171 0.7882 0.0988 54.76

Learner-1-170 51.47

Learner-2-171 52.28

Learner-3-171 52.38

Ours-96-160-256 0.7768 0.0934 55.33

Learner-1-96 49.95

Learner-2-160 52.82

Learner-3-256 54.09

Table 2. Evaluation of classifier (Clf.) and feature correlation on

CUB-200-2011 [49]. Best results are highlighted.

continuous values between 0 and 1. Therefore, the bino-

mial deviance loss conveys more information for successive

learners compared to triplet or contrastive loss.

Method Feature Corr. R@1

Triplet-512 0.2122 50.12

Triplet-96-160-256 0.1158 53.31

Contrastive-512 0.1639 50.62

Contrastive-96-160-256 0.1246 53.8

Binomial-Deviance-512 0.1530 51.76

Binomial-Deviance-96-160-256 0.0934 55.33

Table 3. Evaluation of loss functions on CUB-200-2011 [49].

4.3. Number of Groups

We demonstrate the influence of the number of groups

on our method. To this end, we fix the embedding size to

512 and run our method with M = {2, 3, 4, 5} groups. The

group size is proportional to the final weights of our boost-

ing algorithm (see Algorithm 1). In Table 4 we report the

correlation of the feature embedding, the R@1 score and the

average of the R@1 score of each individual learner. We see

that with a fixed embedding size of 512, the optimal num-

ber of learners for our method is 3-4. For larger group sizes

the strength of individual learners declines and hence per-

formance decreases. For smaller group sizes the individual

embeddings are larger. They achieve higher individual ac-

curacy, but are highly correlated with each other, since they

benefit less from the gradient boosting algorithm.

4.4. Embedding Sizes

Next, we show the effect of different embedding sizes.

We train a CNN with embedding sizes 384, 512, 1024 with

our method and with a regular CNN. For our method, we
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Group Sizes Clf. Corr. Avg R@1 R@1

Baseline - - 51.75

170-342 0.8252 53.06 54.66

96-160-256 0.7768 52.29 55.33

52-102-152-204 0.7091 50.67 55.62

34-68-102-138-170 0.6250 48.5 54.9

Table 4. Evaluation of group sizes on CUB-200-2011 [49].

split the embeddings into several groups. We divide the 384
sized embedding into groups of size 64, 128 and 192, re-

spectively. For the embedding of size 512 we use groups

of size 96, 160 and 256. Finally, for the largest embedding

we use groups of size 50, 96, 148, 196, 242 and 292 (see

Section 3.1).

We use the binomial deviance loss function, as it consis-

tently achieves best results compared to triplet loss or con-

trastive loss (recall Table 3). In Table 5 we see that our

method yields a consistent gain for a variety of different

embedding sizes. For larger embedding sizes a larger num-

ber of groups is more beneficial. We found that the main

reason for this is that larger embeddings are more likely to

over-fit. Hence, it is more beneficial to train several smaller

embeddings which complement each other better.

Method Feature Corr. R@1

Baseline-384 0.1453 51.57

Ours-64-128-192 0.0939 54.66

Baseline-512 0.1530 51.76

Ours-96-160-256 0.0934 55.33

Baseline-1024 0.1480 52.89

Ours-50-96-148-196-242-292 0.0951 55.99

Table 5. Evaluation of embedding size on CUB-200-2011 [49].

4.5. Impact of Initialization

To show the effectiveness of our initialization method,

we compare it with random initialization, as proposed

by Glorot et al. [12] and an orthogonal initialization

method [39]. All networks are trained with binomial de-

viance as loss function with our proposed boosting based

reweighting scheme. We report mean R@1 and standard

deviation of the three methods.

In Table 6 we see that BIER with our initialization

method achieves better accuracy compared to orthogonal or

random initialization. Note that our method significantly re-

duces the standard deviation and hence achieves more con-

sistent results. We hypothesize that this is due to the fact

that with our initialization method learners are already low

correlated at the beginning of the training.

4.6. Comparison with the State­of­the­Art

We show the robustness of our method by comparing it

with the state-of-the-art on the CUB-200-2011 [49], Cars-

Method R@1

Glorot 54.41± 0.43
Orthogonal 54.58± 0.12
Ours 55.33 ± 0.05

Table 6. Evaluation of Glorot, orthogonal and our initialization

method on the CUB-200-2011 [49] dataset.

196 [23], Stanford Online Product [35], In-Shop Clothes

Retrieval [31] and VehicleID [29] datasets.

CUB-200-2011 consists of 11, 788 images of 200 bird

categories. The Cars-196 dataset contains 16, 185 images of

196 cars classes. The Stanford Online Product dataset con-

sists of 120, 053 images with 22, 634 classes crawled from

Ebay. Classes are hierarchically grouped into 12 coarse cat-

egories (e.g. cup, bicycle, . . . ). The In-Shop Clothes Re-

trieval dataset consists of 54, 642 images with 11, 735 cloth-

ing classes. VehicleID consists of 221, 763 images with

26, 267 vehicles.

For training on CUB-200-2011, Cars-196 and Stanford

Online Products, we follow the evaluation protocol pro-

posed in [35]. For the CUB-200-2011 dataset, we use the

first 100 classes (5, 864 images) for training and the re-

maining 100 classes (5, 924 images) for testing. We further

use the first 98 classes of the Cars-196 dataset for train-

ing (8, 054 images) and the remaining 98 classes for testing

(8, 131 images). For the Stanford Online Products dataset

we use the same train/test split as [35], i.e. we use 59, 551
images of 11, 318 classes for training and 60, 502 images

of 11, 316 classes for testing. For the In-Shop Clothes Re-

trieval dataset, we use the predefined 25, 882 training im-

ages of 3, 997 classes for training. The test set is partitioned

into a query set (14, 218 images of 3, 985 classes) and a

gallery set (12, 612 images of 3, 985 classes). When evalu-

ating on VehicleID, we use the predefined 110, 178 images

of 13, 134 vehicles for training and the predefined test sets

(Small, Medium, Large) for testing [29].

We fix all our parameters and train our method with the

binomial deviance loss function and an embedding size of

512 and group size of 3 (i.e. we use groups of size 96, 160,

256). For the CUB-200-2011 and Cars-196 dataset we fol-

low previous work, e.g. [35] and report our results in terms

of Recall@K, K ∈ {1, 2, 4, 8, 16, 32}. For Stanford On-

line Products we also stick to previous evaluation proto-

cols [35] and report Recall@K, K ∈ {1, 10, 100, 1000},

for the In-Shop Clothes Retrieval dataset we compare with

K ∈ {1, 10, 20, 30, 40, 50} and for VehicleID we evaluate

with K ∈ {1, 5}. We also report the results for the last

learner in our ensemble (BIER Learner-3), as it was trained

on the most difficult examples.

Results and baselines are shown in Tables 7, 8, 9, 10

and 11. Our method in combination with a simple loss

function operating on pairs is able to outperform state-of-

the-art methods relying on higher order tuples [44, 35] or
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CUB-200-2011 Cars-196

R@ 1 2 4 8 16 32 1 2 4 8 16 32

Contrastive [35] 26.4 37.7 49.8 62.3 76.4 85.3 21.7 32.3 46.1 58.9 72.2 83.4

Triplet [35] 36.1 48.6 59.3 70.0 80.2 88.4 39.1 50.4 63.3 74.5 84.1 89.8

LiftedStruct [35] 47.2 58.9 70.2 80.2 89.3 93.2 49.0 60.3 72.1 81.5 89.2 92.8

Binomial Deviance [48] 52.8 64.4 74.7 83.9 90.4 94.3 - - - - - -

Histogram Loss [48] 50.3 61.9 72.6 82.4 88.8 93.7 - - - - - -

N-Pair-Loss [44] 51.0 63.3 74.3 83.2 - - 71.1 79.7 86.5 91.6 - -

HDC [55] 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4

Ours Baseline 51.8 63.8 74.1 83.1 90.0 94.8 73.6 82.6 89.0 93.5 96.4 98.2

BIER Learner-3 54.1 66.1 76.5 84.7 91.2 95.3 76.5 84.9 90.9 94.9 97.6 98.7

BIER 55.3 67.2 76.9 85.1 91.7 95.5 78.0 85.8 91.1 95.1 97.3 98.7

Table 7. Comparison with the state-of-the-art on the CUB-200-2011 [49] and Cars-196 [23] dataset. Best results are highlighted.

CUB-200-2011 Cars-196

R@ 1 2 4 8 16 32 1 2 4 8 16 32

PDDM + Triplet [17] 50.9 62.1 73.2 82.5 91.1 94.4 46.4 58.2 70.3 80.1 88.6 92.6

PDDM + Quadruplet [17] 58.3 69.2 79.0 88.4 93.1 95.7 57.4 68.6 80.1 89.4 92.3 94.9

HDC [55] 60.7 72.4 81.9 89.2 93.7 96.8 83.8 89.8 93.6 96.2 97.8 98.9

Ours Baseline 58.9 70.1 79.8 87.6 92.6 96.0 82.6 88.8 93.1 96.1 97.5 98.7

BIER Learner-3 62.8 73.5 81.9 89.0 93.7 96.7 85.8 91.7 94.8 97.2 98.4 99.2

BIER 63.7 74.0 82.5 89.3 93.8 96.8 87.2 92.2 95.3 97.4 98.5 99.3

Table 8. Comparison with the state-of-the-art on the cropped versions of the CUB-200-2011 [49] and Cars-196 [23] dataset.

R@ 1 10 100 1000

Contrastive [35] 42.0 58.2 73.8 89.1

Triplet [35] 42.1 63.5 82.5 94.8

LiftedStruct [35] 62.1 79.8 91.3 97.4

Binomial Deviance [48] 65.5 82.3 92.3 97.6

Histogram Loss [48] 63.9 81.7 92.2 97.7

N-Pair-Loss [44] 67.7 83.8 93.0 97.8

HDC [55] 69.5 84.4 92.8 97.7

Ours Baseline 66.2 82.3 91.9 97.4

BIER Learner-3 72.5 86.3 93.9 97.9

BIER 72.7 86.5 94.0 98.0

Table 9. Comparison with the state-of-the-art on the

Stanford Online Products [35] dataset.

R@ 1 10 20 30 40 50

FasionNet + Joints [31] 41.0 64.0 68.0 71.0 73.0 73.5

FasionNet + Poselets [31] 42.0 65.0 70.0 72.0 72.0 75.0

FasionNet [31] 53.0 73.0 76.0 77.0 79.0 80.0

HDC [55] 62.1 84.9 89.0 91.2 92.3 93.1

Ours Baseline 70.6 90.5 93.4 94.7 95.5 96.1

BIER Learner-3 76.4 92.7 95.0 96.1 96.6 97.0

BIER 76.9 92.8 95.2 96.2 96.7 97.1

Table 10. Comparison with the state-of-the-art on the In-Shop Clothes

Retrieval [31] dataset.

histograms [48]. We consistently improve our strong base-

line method by a large margin at R@1 on all datasets, which

demonstrates the robustness of our approach. On CUB-200-

2011 and Cars-196 we can improve over the state-of-the-

art significantly by about 2-4% at R@1. The Stanford On-

line Products, the In-Shop Clothes Retrieval and VehicleID

datasets are more challenging since there are only few (≈ 5)

images per class. On these datasets we achieve a notable im-

provement of 3%, 14.8% and 3-8%, respectively. Notably,

the last learner in our ensemble (BIER Learner-3) already

outperforms the state-of-the-art on most of the datasets.

5. Conclusion
In this work we cast training an ensemble of metric

CNNs with a shared feature representation as online gra-

dient boosting problem. Our method does not introduce

any additional parameters and has only negligible additional

Small Medium Large

R@ 1 5 1 5 1 5

Mixed Diff+CCL [29] 49.0 73.5 42.8 66.8 38.2 61.6

GS-TRS loss [1] 75.0 83.0 74.1 82.6 73.2 81.9

Ours Baseline 78.0 87.5 73.0 84.7 67.9 82.4

BIER Learner-3 82.6 90.5 79.3 88.0 75.5 86.0

BIER 82.6 90.6 79.3 88.3 76.0 86.4

Table 11. Comparison with the state-of-the-art on VehicleID [29].

cost during training and test time. Our extensive experi-

ments show that BIER significantly reduces correlation on

the last hidden layer of a CNN and works with several

different loss functions. Finally, BIER outperforms state-

of-the-art methods on the Stanford Online Products [35],

CUB-200-2011 [49], Cars-196 [23], In-Shop Clothes Re-

trieval [31] and VehicleID [29] datasets.
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