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Abstract

Convolutional neural networks (CNNs) provide the cur-

rent state of the art in visual object classification, but they

are far less accurate when classifying partially occluded

objects. A straightforward way to improve classification

under occlusion conditions is to train the classifier using

partially occluded object examples. However, training the

network on many combinations of object instances and oc-

clusions may be computationally expensive. This work pro-

poses an alternative approach to increasing the robustness

of CNNs to occlusion.

We start by studying the effect of partial occlusions on

the trained CNN and show, empirically, that training on

partially occluded examples reduces the spatial support of

the filters. Building upon this finding, we argue that smaller

filter support is beneficial for occlusion robustness. We pro-

pose a training process that uses a special regularization

term that acts to shrink the spatial support of the filters. We

consider three possible regularization terms that are based

on second central moments, group sparsity, and mutually

reweighted L1, respectively. When trained on normal (un-

occluded) examples, the resulting classifier is highly robust

to occlusions. For large training sets and limited train-

ing time, the proposed classifier is even more accurate than

standard classifiers trained on occluded object examples.

1. Introduction

Deep Convolutional Neural Networks [14] have recently

exhibited remarkable performance in the task of image clas-

sification [12]. The availability of large amounts of an-

notated data [3], parallel computational resources such as

GPUs, and regularization techniques [20, 9, 26] have con-

tributed greatly to CNN performance. Deeper, more so-

phisticated, network topologies have continuously provided

state-of-the-art results [19, 21, 10].

Nevertheless, CNNs, as well as other visual classifica-

tion algorithms, are far less accurate when classifying par-

tially occluded objects; see Figure (1). The decrease in per-

formance is especially severe when the classifier is trained

Figure 1: (Left) Classification error rates for AlexNet and

VGG16 under occlusions of various sizes. Note that even

the slightest partial occlusion may significantly reduce clas-

sification accuracy. (Right) Examples of partially occluded

examples used for validation.

as usual, on images of mostly unoccluded objects. This

problem could be regarded as a special case of domain adap-

tation, where the training data and the test data are drawn

from different distributions.

Thus, one possible approach to improving classification

accuracy under partial occlusion is to train the classifier on

partially occluded objects as well [17]. In the first part of

this work we experimented with this approach and indeed

found that the classification accuracy improved. We also

examined the resulting network and observed that (a) its fil-

ters (in all layers) tend to be of smaller spatial support, and

(b) every filter uses more features from the previous layer.

Intuition tells us that smaller spatial support makes the fil-

ter more robust to occlusion because the probability that a

random occluder will intersect with the filter support and

adversely affect its response is smaller. But does it really

explain the classifier’s greater robustness to occlusions?

To validate the hypothesis that smaller spatial support is

indeed important for occlusion robustness, we propose, in

the next part of this work, to reduce the spatial support in

a different way, by specialized regularization. We propose

three possible regularization terms that act to shrink the spa-

tial support of the filters. These regularization terms are

based on second central moments, group sparsity, and mu-

tually re-weighted L1, respectively. When trained on nor-

mal (unoccluded) examples, the resulting classifier is usu-

ally (for large training sets) more occlusion robust than stan-
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dard classifiers trained on occluded object examples. This

indeed shows that smaller spatial support is beneficial for

occluded object classification.

Note that the first approach requires a large number of

occluded object examples in order to represent the distri-

bution of all object instances from the class under all typ-

ical occluders. To synthesize many occluded object exam-

ples from regular images of unoccluded objects, we need to

know the object location within the image, which requires a

large labeling effort. Natural, unsynthesized occlusion ex-

amples are rare, requiring labeling as well. In both cases the

number of examples and the computational effort are large.

The proposed classifiers with the specialized regularization,

on the other hand, are trainable on the usual datasets.

Our contribution in this paper is twofold: first we analyze

the effect of training with occlusions on CNN visual clas-

sifiers, and in particular show the reduction of the filters’

spatial support, accompanied by an increase in its effective

depth. Then we show that similarly reduced spatial support

of the filters may be obtained by training on unoccluded ex-

amples by special regularization. We introduce 3 different

types of such regularization and show that it improves the

classifier’s robustness to occlusions.

The rest of this paper is organized as follows. We start

by describing some related work in Section 2. Section 3 an-

alyzes the CNN trained on occluded object examples. Sec-

tion 4 introduces the occlusion-robust CNN. Finally, we de-

scribe our experiments and conclude our work in Sections

5 and 6. Derivation details and more experimental results

(with AlexNet and VGG16) are described in the Appendix.

2. Related Work

Partial occlusion is one of the major challenges in visual

object classification. Fukushima [5] suggests that human

vision tends to struggle when the occlusion pattern is unno-

ticeable. He proposes a neural network algorithm that first

detects the occlusion and then nullifies the corresponding

activation map locations. BoW methods [2, 13, 23] gen-

erate local pieces of evidence and therefore should be, in

principle, relatively robust to occlusions. Nonetheless, they

often fail when the object is partially occluded. DPM al-

gorithms [4] still respond positively when one of the parts

is undetected, but their performance deteriorates. Other ap-

proaches, which relies on HOG features, model the occlu-

sion as a binary coarse grid and explicitly infers it, using a

computationally expensive algorithm [25, 6].

CNNs provide the best visual classification results but

their accuracy decreases when the network that was trained

on unoccluded training images is fed with partially oc-

cluded test images [17]. They found that training several

sub-networks for each occlusion ratio is sub-optimal, and

suggest that architectural changes may be required to im-

prove occlusion robustness. The authors of [8] quantify

Figure 2: An illustration of how filter support amplifies par-

tial occlusion effect. A 3× 3 image with a partial occlusion

(red) is filtered with a 2 × 2 filter. 25% of the feature map

elements are corrupted. When filtered with a 3 × 3 filter,

36% of the feature map elements are corrupted.

the invariance of different features of the network to sev-

eral transformations. They suggest that weight sparsity may

contribute to occlusion invariance. A recent contribution fo-

cuses on face recognition and achieves occlusion robustness

by a specialized loss that relies on classifiers that use local-

ized information [16].

3. The Effect of Occlusions on CNNs

Our first goal is to characterize the networks that are

more successful with respect to recognition under partial

occlusion. One example is a network trained on partially

occluded training examples, which is therefore more robust

to occlusions. Since CNNs are composed of linear filters,

they are greatly affected by occlusions. A linear filter that

sums values from all the objects’ regions responds very dif-

ferently when some of these values change significantly, as

is the case under occlusion. Therefore an occlusion-robust

classifier should use features that do not rely on the spa-

tial support of the entire object but only on part of it. We

are interested in the spatial support of the filters’ receptive

fields. Instead of using a strict definition of spatial support,

namely the set of locations associated with nonzero filter

weights, we prefer softer measures that take into considera-

tion the magnitude and location of the filter weights and are

referred to as effective spatial support; see Section 3.1.

To examine the change in effective spatial support, we

trained two CNNs. One was trained in the usual way, with

(unoccluded) images taken from the ImageNet data set [18].

The other was trained on both unoccluded and partially oc-

cluded images. We are interested in comparing the corre-

sponding filters across the two networks, and more specif-

ically the effective spatial support of their receptive fields.

To establish a correspondence between the filters from both

CNNs, we conducted a somewhat more complex experi-

ment; see Section 5.1 for details. As expected, we found

that networks trained with occluded examples are better

able to recognize partially occluded objects. We also found

that these networks are composed of filters with smaller spa-

tial support relative to filters in networks trained as usual.

Smaller spatial support means that more neurons would re-

spond independently of the occlusion; see Figure 2. We

argue that the smaller spatial support is indeed a major rea-
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son for the advantage of the occlusion trained networks and

shall provide further evidence for this claim in Section 5.

In the rest of this section we elaborate on this finding,

suggest several measures for spatial support, and show em-

pirically that training with occluded examples indeed results

in filters of lower spatial support.

3.1. Measures of Spatial Support

We start by briefly describing the CNN structure we use,

and the associated notations. A CNN is typically composed

of several convolution layers, and then several fully con-

nected layers topped by a classifier. A convolution layer is

composed of K linear filters followed by nonlinearities and

optional pooling stages. Every filter is specified by a 3D

matrix of size D × M × N. We will use the tensor nota-

tion [7], with a 4D W
l tensor, where l represents the layer

number. A single element (i.e. a weight) of this tensor is

denoted W
l
kdmn, where k is the filter index, d is the filter

depth (or input channel), and m,n are the spatial indexes.

We shall be interested in the spatial distribution of the

weight values. Therefore, we focus on sub-filters of size

M × N, corresponding to common k, d values. These 2D

sub-filters are called kernels. We consider each kernel sepa-

rately, and characterize the distribution of its weight values

as described below. Then we get more concise characteriza-

tions by summing these measures over the different kernels

and the different filters in each layer.

The measures of spatial distribution should not depend

on the magnitude of the weights or on their signs. There-

fore, we use their normalized values. Formally, let Wl
kd::

be the 2D matrix of weight associated with the (k, d)-th
kernel. Then, the tensor V of the absolute value of the filter

weights and the tensor V̂ of the normalized filter weights

are specified by:

V
l
kd:: = |W

l
kd::|, V̂

l
kd:: =

|Wl
kd::|

||Wl
kd::||1

. (1)

The resulting normalized weight kernels may be interpreted

as a (2D) probability distribution.

We shall use two alternative measures for characterizing

the spatial support of the filter weights.

Spatial entropy - Entropy, which is a measure of un-

certainty for random variables, may be applied to positive

vectors of unit L1 length as a diversity measure. We shall

use it here as a measure for the scattering of filter weights,

and refer to it as spatial entropy. Thus, the spatial entropy

HS of the (k, d)-th 2D kernel Wl
kd:: is:

(HS)
l
k,d = −

∑

m,n

V̂
l
kdmnlog(V̂

l
kdmn). (2)

The entropy of the filter is the average of its kernel en-

tropies, weighted by the relative L1 energy:

(HS)
l
k =

D∑

d=1

H l
k,d ·
‖Wl

kd::‖1
‖Wl

k:::‖1
. (3)

(Other types of weighting could be used as well.) Note that

the entropy is indifferent to permutations of the weights,

and therefore it is only indicative of the spatial support. If

the entropy value is large, then the distribution is closer to

uniform and the support is large as well. When it is small,

however, it could correspond to two significant weights in

nearby locations (small spatial support) or to two significant

weights in far locations (large spatial support). We call this

spatial entropy because it refers to the scattering of weights

along spatial coordinates in the different kernels and not to

their scattering for different filters or depths.

Second central moment - Another measure that can be

used to estimate the scattering of the filter weights is the

second moment. Here, again, we begin by normalizing the

weights so that their sum is one. Then, following rigid body

mechanics, we calculate the center of mass and the second

moment relative to it. A filter with substantial weights far

from its center will have a large second central moment.

Consider a 2D discrete grid of masses {wmn}. The ij
moment is Mij =

∑
m,n wmnm

inj . Specifically, M00 is

the zeroth moment, which is simply the sum of the weights,

and M10,M01 are the first moments. The center of mass is

defined as (µx = M10/M00, µy = M01/M00). The second

central moments are Cij =
∑

m,n wmn(m−µx)
i(n−µy)

j .

The latter moments (known as moments of inertia in me-

chanics) are common measures for the concentration of

mass.

We shall use the absolute and the normalized

weights specified in eq.(1), and treat these filter weights

as point masses. The moments and the associ-

ated centers of mass are calculated from the abso-

lute and normalized weights separately for each ker-

nel, and denoted (Mij)
l
kd, (µx)

l
kd, (µy)

l
kd, (Cij)

l
kd and

(̂Mij)
l

kd
, (̂µx)

l

kd, (̂µy)
l

kd
, (̂Cij)

l

kd
respectively.

We use the sum of the two normalized second central

moments,

τ lkd = (̂C20)
l

kd + (̂C02)
l

kd, (4)

to characterize the effective spatial support of the kernel. To

characterize a filter, we shall take again a weighted sum of

this measure over all the kernels in the filter,

τ lk =

D∑

d=1

τ lkd ·
‖Wkd::‖1
‖Wk:::‖1

. (5)

In principle, we could normalize the filter weights, the cor-

responding moments, and the weights of the kernels in

eq.(5) differently, using, say, Euclidean norms. The results
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are similar. We kept the L1 norm so that the same nor-

malization works for the spatial entropy. Interestingly, the

effective spatial support τ lk may be written in a simplified

way, using the unnormalized moments:

τ lk =
1

‖Wk:::‖1

D∑

d=1

[(C20)
l
kd + (C02)

l
kd]. (6)

See eq.(24) in the Appendix for details; This simplification

is used later in Section 4.

Compared to the entropy based measure, this measure,

based on central moments, is a more direct measure of the

concentration of the filter weights. It explicitly considers

the spatial location associated with the weights and calcu-

lates their distance from the center of mass. A large sec-

ond moment means that some non-negligible weights are

far from the center of mass, implying larger effective spa-

tial support. Therefore, we prefer this measure over the en-

tropy based measure, but shall use both of them below to

strengthen the evidence of the shrinking receptive fields.

3.2. The Effect of Occlusions on Spatial Support

We are interested in the change of effective spatial sup-

port caused by training the CNN on images of partially oc-

cluded objects. Training two CNN networks separately, one

on occluded objects and one on unoccluded objects, would

result in two sets of unrelated filters. To compare the spatial

support of specific filters, we need to maintain a correspon-

dence between pairs of filters, one from each network. To

maintain this correspondence, we conducted a more careful

experimental procedure, described in Section 5.1. This pro-

cedure produces two CNN networks with correspondence

between the filters. We calculated the spatial entropy (3)

and the second central moment (6) of every filter, as well as

the fraction of filters for which the measures were larger in

the network trained only with unoccluded examples; see Ta-

ble 1 and Table6 in the appendix. The results clearly show

that the spatial support tends to be smaller when training

with occluded examples. Note that the differences in spatial

support are actually very small. This is a result of the pro-

cedure we use and the price paid for maintaining the corre-

spondence; see Section 5.1 for more details and for related

results without filter correspondence.

As discussed above, filters with smaller support are less

likely to be influenced by partial occlusion than filters with

larger support. This seems to be the source of the prefer-

ence for smaller support filters observed when training on

occluded objects. Note, however, that filters with larger

support are more sensitive, in principle, to additional ob-

ject parts and details, and are therefore potentially more dis-

criminative. Still, the results indicate that the lower sensi-

tivity to occlusion is more significant than the decrease in

discriminative power.

conv layer 1 4 7 10 12

Fraction of filters in net A

with larger spatial entropy than 0.551 0.667 0.672 0.684 0.652

corresponding filters in net B.

Fraction of filters in net A with

larger 2nd central moments than 0.557 0.633 0.649 0.761 0.612

corresponding filters in net B.

Table 1: The fraction of filters in network A, (VGG16

trained only with unoccluded examples) that have a larger

effective support than the corresponding filters in network

B (trained also with occluded examples). The spatial sup-

port of the filters tends to be lower if the training images are

partially occluded; see appendix A for additional results.

3.3. The Effect of Occlusions on the Effective Depth

The filter spatial support is smaller when training on oc-

cluded object images. The influence of the different kernels

on the overall filter response is different as well. To mea-

sure the contribution of the various kernels to each filter, we

consider the energy of the kernel weights, ||Wl
kd::||

2
2. The

normalized energy:

Sl
kd =

||Wl
kd::||

2
2∑D

i=1 ||W
l
ki::||

2
2

, (7)

serves as a measure of the contribution of every kernel to

the filter response. Note that the normalized energy values

sum to 1. The distribution of these contributions within a

filter may be estimated by the depth entropy HD, where the

subscript D stands for filter depth.

(HD)lk =

D∑

j=1

−Sl
kj · log(S

l
kj). (8)

This entropy can serve as an indication of the number of

kernels that significantly influence the filter response, and

we refer to it as effective depth. A filter that depends, for

example, on a single kernel, would correspond to zero en-

tropy and minimal effective depth, while a filter depending

on all kernels equally would correspond to logD entropy

and maximal effective depth.

In the same way that we calculated the change in the spa-

tial support, we now calculate the fraction of filters where

the depth entropy (8) was larger in the network that was

trained only with unoccluded examples, relative to the net-

work that was trained also with occluded examples. The

results (Table 2) indicate that the kernel energy in the net-

work trained also on occluded examples is distributed more

evenly, i.e., more kernels contribute to the response. This

larger effective depth may have two related but different ex-

planations. First, the network trained on partially occluded
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conv layer 1 4 7 10 12

Fraction of filters in net A with

larger depth entropy than 0.432 0.271 0.368 0.244 0.268

corresponding filters in net B.

Table 2: The fraction of filters in network A, (VGG16

trained only with unoccluded examples) that have a larger

depth entropy than the corresponding filters in network B

(trained also with occluded examples). When training on

partially occluded examples, more kernels play a meaning-

ful role in the feature extraction process; see appendix A for

additional results.

examples uses a smaller part of the object to derive the in-

termediate pieces of evidence and therefore requires more

of them to be discriminative. In addition, because differ-

ent parts of the object may be occluded in different test im-

ages, the network should use alternative configurations of

features, which again increases the diversity of the kernels.

Interestingly, this effect is more significant for the deeper

layers; see Table 2. Neurons in these layers detect coarser

level features or full object parts. With training under oc-

clusion, they may be collecting alternative sets of evidence,

such as different subsets of the object’s parts.

4. Enforcing Small Spatial Support via Regu-

larization

As discussed in the introduction, and empirically verified

(Section 3), a straightforward way to improve classification

under occlusion conditions is to train the classifier using

partially occluded examples. We propose here an alterna-

tive approach: training the classifier on normal, unoccluded

examples, with bias to smaller spatial support filters. This

bias, which relies on the observation from the previous sec-

tion, is implemented by several special regularization terms.

Our motivation is two-fold:

1. Training on many combinations of object instances

and occlusions is computationally expensive and/or re-

quires detailed localization annotation; see Figures 5,3.

Therefore, an algorithm trainable only on unoccluded

object instances, but which still provides robustness to

occlusion, is desirable.

2. While we have shown that training on partially oc-

cluded examples reduces the filters’ spatial support,

we did not provide evidence that this reduction con-

tributes significantly to occlusion robustness. It could

be that other properties of the network, learned from

the occluded examples, provide this robustness and the

reduced spatial support is only a side effect. By show-

ing that a network trained only on unoccluded object

Figure 3: Different occlusion scenarios. When the object’s

location is not given (as is the case in ImageNet), creating

synthetic partial occlusions by placing an occluder in a ran-

dom location may be problematic. For example, the owl oc-

cluder, covering 10% of the full image may partially cover

the tractor target, completely cover it, or not cover it as all.

examples is robust to occlusion, we provide direct evi-

dence that small spatial support provides robustness.

4.1. Convolution layer regularization terms

We shall train CNNs composed of convolution layers and

fully connected layers. The training is carried out by mini-

mizing a loss function:

L = L0 +

L∑

l=1

λlRl, (9)

where L0 is the data loss function, λl are regularization

strength coefficients, which may differ for each layer, and

Rl is a regularization term for the l-th layer, which penal-

izes for large spatial support of the filters in this layer. We

shall consider several alternative regularization options.

4.1.1 Regularization by minimizing second central

moments

We first propose to use the second central moment of the

different convolution filters as a regularization term. Thus,

the regularization term Rl becomes:

Rl
CM =

K∑

k=1

τ lk. (10)

Following eq.(24), this term and its derivative become:

Rl
CM =

K∑

k=1

1

||wk:::||1

D∑

d=1

[(C20)
l
kd + (C02)

l
kd]. (11)

∂Rl
CM

∂Wl

kdij

=
[
sign(Wl

kdij)

||wk:::||1
−

Wl

kdij

||wk:::||21

]
· [(i− (µx)

l
kd)

2 + (j − (µy)
l
kd)

2];

(12)

see appendix A. Note that the term
Wl

kdij

||wk:::||21
is negligible

in comparison to
sign(Wl

kdij)

||wk:::||1
, in each case where the filter
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is not extremely sparse, which is a reasonable assumption.

This means that the sign of the derivative is determined only

by sign(Wl
kdij). The term 1

||wk:::||1
only changes the rela-

tive importance of the regularization term within the overall

loss function, and therefore may be replaced by changing

λl. Moreover, ||wk:::||1 changes very slowly in practice.

Thus, a simplified expression for the derivative, which we

use in the optimization, is:

∂Rl
CM

∂Wl
kdij

≈ sign(Wl
kdij)[(i− (µx)

l
kd)

2 + (j − (µy)
l
kd)

2].

(13)

This regularization term shrinks weights that are far from

the center of mass of each kernel.

4.1.2 Regularization by enforcing group sparsity

Another way to reduce the effective support of the kernels

is to shrink together specific filter weight subsets, chosen

to explicitly reduce the support, instead of shrinking each

filter weight independently using the usual L2 regulariza-

tion. We propose to use structured sparsity regularization,

and specifically group sparsity regularization (also known

as group Lasso [28]), used for sparse signal representation.

Sparsity with group regularization prefers not only that the

number of non-zero weights will be small, but also that

these weights will come from a minimal number of weight

subsets (or groups); see Figure 6 in Appendix A for an il-

lustration of the groups used in our experiments. The regu-

larization term Rl in this case is:

Rl
GS =

∑

k,d

∑

r

√∑

i,j

(Wl
kd::)

2. ∗Gr, (14)

where every Gr is an indicator matrix, the same dimension

as the kernel, which indicates whether the (i, j)-th weights

is a member of the group. The derivative of this term with

respect to Wl
kdij is:

∂Rl
GS

∂Wl
kdij

=
∑

r

Wl
kdijGr(i, j)√∑

m,n(W
l
kd::)

2. ∗Gr

. (15)

It is possible to shrink all the kernels using several sparsity

groups, using the same sparsity group, or using a different

group for each one. In our implementation we randomly

chose a single group for each kernel.

4.1.3 Regularization by mutually re-weighted L1

Finally, inspired by the results of [8], which showed that

promoting sparsity in the network weights increases net-

work invariance to various deformations, we suggest using a

variation of weighted L1 regularization. It is known that L1

regularization induces sparsity, while retaining the desired

Figure 4: Generating occluded examples. (Left) An occlud-

ing patch is acquired from a different object category using

intelligent scissors and is re-scaled to a certain occlusion

ratio, with respect to the target image. (Right) The target

image is occluded using the previously acquired occluder.

convexity attribute that the L0 norm lacks. Sparsity can

be achieved effectively using an iterative sequence of mini-

mizations, known as the iterative reweighted L1 minimiza-

tion (IRWL1) [1]. Each iteration minimizes a reweighted

L1 norm, where the weights used for the next iteration

are computed from the value of the current solution. We

propose to use a variation of this algorithm. The original

reweighting scheme uses the size of each entry to calculate

the weight of this entry (in the next iteration) while we use

the other entries of the vector to calculate this weight in the

next iteration. In the context of CNN kernels, for a partic-

ular filter weight X in some kernel, we use the other filter

weights in the same kernel to calculate the weight of X .

We call this algorithm Mutually Re-WeightedL1 (MRWL1)

and specify the corresponding regularization term:

Rl
MRWL1 =

∑

k,d

∑

i,j

|Wl
kdij |·

∑

m 6=i,n 6=j

|Wl
kdmn|. (16)

In comparison to L1 regularization, where the weights

shrink at the same rate, MRWL1 constantly changes the

shrinking rate for each weight, with respect to its spatial

neighbors. MRWL1 tends to shrink smaller weights more

rapidly then larger weights, effectively promoting sparsity.

The derivative of Rl
MRWL1 with respect to Wl

kdij is:

∂Rl
MRWL1

∂Wl
kdij

= sign(Wl
kdij) ·

∑

m 6=i,n 6=j

|Wl
kdmn|. (17)

Note that the weight
∑

m 6=i,n 6=j |W
l
kdmn| has a similar ef-

fect as the weight 1/(|Wl
kdmn|+ǫ), which would be used if

we followed the reweighting proposed in [1], provided that

the sum (or norm) of the weights in the kernel is constant.

4.2. Fully connected layer regularization

The first fully connected layer is the deepest layer in the

CNN for which the spatial information of the input is ex-

plicit. The output of this layer lacks any direct spatial in-

formation that can be traced back to the input location of

the pixels. Following the discussion in Section 3, we argue
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that recognition of partially occluded objects would benefit

from shrinking the filters’ support. The same regularization

terms, proposed in Section 4.1 for the convolution filters,

can also be used for the optimization of the first fully con-

nected layer weights, while promoting smaller support and

sparsity; see Section 5 for experimental results.

4.3. The learning algorithm

The regularization terms presented above are indepen-

dent with respect to the different kernels, implying that

training using the stochastic gradient descent algorithm is

efficient. Algorithm 1 describes the SGD training process.

The algorithm depends, via a parameter R, on one of the

regularization terms,(10),(14) or (16), and uses the associ-

ated derivative (13),(15) or (17). The algorithm’s other pa-

rameters are the learning rate function γt, the batch size B,

and the regularization strength coefficients {λl}Ll=1. Addi-

tional learning techniques such as momentum, L2 regular-

ization and batch normalization, may be incorporated.

Algorithm 1 Small support regularized SGD

1: Input: training set D = {x1:N , y1:N},R,B,γt, {λ
l}Ll=1

2: winit ← N(0, σ),winit ∈ RL
K×D×M×N

3: while (epoch ≤ numberofepochs) do

4: for n = 1...BatchNumber do

5: wn ← wn−1 −
γt

B

∑B
b=1[

∂L0(xb)
∂w + λl ∂R(xb)

∂w ]
6: end for

7: epoch← epoch+ 1
8: end while

9: return w

5. Experiments and Results

We start by describing experiments that demonstrate the

influence of training under occlusion on the properties of the

network, as discussed in Section 3. We then turn to evalu-

ating the categorization accuracy of algorithms that use the

proposed specialized regularization. We use three popular

datasets: CIFAR-10/CIFAR100 [11], and ImageNet [18].

Since, to our knowledge, there is no large scale data set

that contains occlusion annotations, we generated and used

several types of artificial occlusions. The occluders were

crops from image of other categories obtained by running

the intelligent scissors [15] in random locations. We also

experimented with random rectangles and got similar re-

sults. The occluders’ sizes were characterized by the ratio δ
between their sizes and the entire image. Note that δ = 0.1
may correspond to a square occluder whose sides equal 0.32
of the full image—not a small image part. All experiments

were done using the MatConvNet toolbox [24].

5.1. Training with partially occluded examples

In the following, we elaborate on the experimental set-

tings used for obtaining the results in Section 3, and show

additional results. To evaluate the effect of training with

partially occluded examples on the spatial support of the

filters, we conducted two types of experiments.

In the first type, we trained 2 CNN networks as follows.

Our goal here was to maintain a correspondence between

the filters of the two networks. Thus, we first trained both

networks identically for 15 epochs on unoccluded examples

(from ImageNet [18]). We then continued the training for 5

epochs, with a learning rate that was 100 times smaller than

that used in the first 15 epochs. For these last five epochs,

the first network was trained on unoccluded examples but

the second network was trained on partially occluded ex-

amples. In the resulting networks, the corresponding filters

are not identical but essentially extracted features with the

same functionality. A comparison between the properties

of these filters is described in Section 3. We experimented

with AlexNet [12], and VGG16 [19], both with batch nor-

malization [10].

In the experiments of the second type, we trained the

two CNNs separately, one on unoccluded examples and the

other on occluded examples only. Here, correspondence be-

tween filters is not known (or does not exist), so comparing

specific filters is meaningless. Thus, we only compared the

average of the effective spatial support, over all filters in the

same layer; see Table 8 in Appendix A. These results fur-

ther confirm our findings regarding the smaller filter support

caused by training on occluded objects.

5.2. Regularization for occlusion robustness

5.2.1 The CIFAR Datasets

The CIFAR-10/CIFAR100 datasets [11] are both drawn

from 80 Million Tiny Images [22]. They both contain 50K

training examples and 10K test examples, all of which are

32×32 RGB. CIFAR10 consists of 10 distinct classes while

CIFAR100 consists of 100. Both training and test data are

distributed uniformly in both datasets. We evaluated the

recognition accuracy under partial occlusion by training a

LeNet [14] CNN with different choices of the proposed reg-

ularization terms; see Table 3.

When training on unoccluded object examples, with-

out regularization, the error associated with classifying oc-

cluded objects (2nd line in Table 3) is much higher than that

associated with classifying unoccluded objects (top line).

As expected, when training on occluded object examples,

the error associated with classifying partially occluded ob-

jects decreases (3rd line). The proposed classifiers, when

trained on normal (unoccluded examples), reduced the clas-

sification error on occluded objects as well, regardless of the

choice of regularization term. This improvement came, as
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LeNet-CIFAR10 LeNet-CIFAR100

δ = 0.1 δ = 0.2 δ = 0.1 δ = 0.2

ut+uv 18.97 51.55

ut+ov 27.31 40.03 60.17 72.17

ot+ov 22.89 27.71 56.43 60.34

RCM conv 23.47 34.90 56.78 68.11

RCM conv+fc 23.00 34.30 56.22 67.16

RGS conv 24.20 36.70 58.74 70.01

RGS conv+fc 23.72 36.09 56.21 69.22

RMRWL1 conv 25.05 35.51 58.68 69.21

RMRWL1 conv+fc 24.45 35.33 59.78 69.17

RL1 conv+fc 27.52 39.93 60.10 72.31

RIRWL1[1] conv+fc 26.45 38.78 58.71 70.11

Table 3: Recognition error rates (%) on the CIFAR10 and

CIFAR100 datasets. ut: unoccluded train. uv: unoccluded

val. ot: occluded train. ov: occluded val. δ: occlusion ratio.

expected, with smaller filter support. Adding a regulariza-

tion term on the first fully connected (FC) layer further im-

proves classification results, in most cases. For comparison

we also experimented with L1 and IRWL1 regularizations.

For CIFAR10, training with occluded examples yielded

better accuracy than our regularization based approach, al-

though, for moderate occlusion (δ = 0.1), the difference

is small (for Rcm regularization). For CIFAR100, the reg-

ularization based approach achieved slightly better results.

We associated the difference between these two cases with

the smaller number of examples (500 vs 5K) per class in the

second case, which is probably not enough for training.

For best performance on occluded objects, λ is set to a

relatively high value; see Appendix. When tested on un-

occluded objects, with this λ value, performance is slightly

reduced. (error rate increases by 0.4%). When setting λ
optimally for recognizing unoccluded objects, the results

are better than those obtained with L2 regularization (error

rate goes down by 1.7%). Therefore, RCM should be pre-

ferred also for general classification. This surprising result

is consistent with [27], where similar improvements were

obtained by training with occlusions.

5.2.2 The ImageNet Dataset

The picture changes when experimenting with the

ILSVRC2012 classification task [3]. We used AlexNet and

VGG16 topologies [12, 19], with batch normalization [10].

We experimented with training several CNNs. The first was

trained on unoccluded object examples and tested on both

unoccluded and occluded validation sets (δ = 0.1). Next

we trained a network with partially occluded object exam-

ples, also with a δ = 0.1 occlusion ratio, and tested it on the

corresponding occluded validation set. Finally, we trained

a network with different regularization terms. For AlexNet,

RCM regularization was used on the first and second con-

ILSVRC12 top-5\top-1 AlexNet top-5\top-1 VGG16

ut+uv 19.3\41.1 9.5\28.3

ut+ov 26.2\50.6 23.7\37.5

ot+ov 25.2\48.5 16.9\35.9

Support regularized net 25.0\48.1 13.3\33.6

Table 4: Recognition error rates (%) on the ILSVRC12

dataset for AlexNet and VGG16. ut: unoccluded train. uv:

unoccluded val. ot: occluded train. ov: occluded val. The

last three rows correspond to testing of occluded objects.

Figure 5: VGG16 convergence of support-regularized net-

work vs. the common network trained on occluded exam-

ples. The regularized network converged 4 times faster.

volution layers as well as on the first fully connected layer

and RMRWL1 was used on the third, fourth and fifth convo-

lution layers. For VGG16 we used RCM on the first layer

of each cascade. Reducing the support of the first element

in the cascade results in support reduction of the entire cas-

cade. The results are given in Table 4. The regularized VGG

network achieved a significant advantage over training on

occluded examples, and its validation accuracy was close

to that obtained without occlusion at all. We associate this

advantage with the smaller size of the objects in ImageNet,

which implies that the simulated occluder might eliminate

the object completely, or not even intersect with it; see Fig-

ure 3. This makes training with occluded examples less ef-

fective, prolonging training significantly; see Figure5.

6. Conclusions

We considered visual classification under occlusion us-

ing CNNs. We show that training with partially occluded

objects reduces the spatial support of the CNN filters and

increase their effective depth. Following these observations,

we propose a new learning algorithm that relies on special

regularization and trains with regular unoccluded examples,

while producing a classifier that is robust to occlusions. In

the realistic case of large train sets with weakly annotated

images, it trains faster and is more accurate than training

with occluded objects. This result is surprising since limit-

ing spatial support does not address all aspects of occlusion.

557



Acknowledgments

This research was supported by the Israel Science Foun-
dation (grant No.1792\15).

References

[1] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing spar-

sity by reweighted l1 minimization. Journal of Fourier Anal-

ysis and Applications, 2008. 6, 8

[2] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray.

Visual categorization with bags of keypoints. In Workshop

on Statistical Learning in Computer Vision (ECCV), 2004. 2

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.

In Proceedings of the conference on Computer Vision and

Pattern Recognition (CVPR), 2009. 1, 8

[4] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-

manan. Object detection with discriminatively trained part-

based models. Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), 2010. 2

[5] K. Fukushima. Recognition of partly occluded patterns: a

neural network model. Biological Cybernetics, 2001. 2

[6] T. Gao, B. Packer, and D. Koller. A segmentation-aware

object detection model with occlusion handling. In Pro-

ceedings of the conference on Computer Vision and Pattern

Recognition (CVPR), 2011. 2

[7] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.

Book in preparation for MIT Press, 2016. 3

[8] I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng. Mea-

suring invariances in deep networks. In Advances in Neural

Information Processing Systems (NIPS), 2009. 2, 6

[9] I. J. Goodfellow, D. Warde-farley, M. Mirza, A. Courville,

and Y. Bengio. Maxout networks. In Proceedings of the In-

ternational Conference on Machine Learning (ICML), 2013.

1

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 1, 7, 8

[11] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. 2009. 7

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),

2012. 1, 7, 8

[13] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In Proceedings of the conference on Com-

puter Vision and Pattern Recognition (CVPR), 2006. 2

[14] B. B. Le Cun, J. S. Denker, D. Henderson, R. E. Howard,

W. Hubbard, and L. D. Jackel. Handwritten digit recognition

with a back-propagation network. In Advances in Neural

Information Processing Systems (NIPS), 1990. 1, 7

[15] E. N. Mortensen and W. A. Barrett. Intelligent scissors for

image composition. In The 22nd annual conference on Com-

puter Graphics and Interactive Techniques, 1995. 7

[16] M. Opitz, G. Waltner, G. Poier, H. Possegger, and

H. Bischof. Grid loss: Detecting occluded faces. In Eu-

ropean Conference on Computer Vision (ECCV), 2016. 2

[17] B. Pepik, R. Benenson, T. Ritschel, and B. Schiele. What is

holding back convnets for detection? In German Conference

on Pattern Recognition, 2015. 1, 2

[18] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. International Journal of Computer

Vision (IJCV), 2015. 2, 7

[19] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. International

Convention on Learning Representations (ICLR), 2015. 1,

7, 8

[20] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov. Dropout: a simple way to prevent neu-

ral networks from overfitting. Journal of Machine Learning

Research, 15, 2014. 1

[21] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Proceedings of the

conference on Computer Vision and Pattern Recognition

(CVPR), 2015. 1

[22] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny

images: A large data set for nonparametric object and scene

recognition. Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 2008. 7

[23] J. R. Uijlings, K. E. van de Sande, T. Gevers, and A. W.

Smeulders. Selective search for object recognition. Interna-

tional Journal of Computer Vision (IJCV), 2013. 2

[24] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. In Proceeding of the ACM Int. Conf. on

Multimedia, 2015. 7

[25] A. Vedaldi and A. Zisserman. Structured output regression

for detection with partial truncation. In Advances in neural

information processing systems(NIPS), 2009. 2

[26] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus. Regu-

larization of neural networks using dropconnect. In Proceed-

ings of the International Conference on Machine Learning

(ICML), 2013. 1

[27] X. Wang, A. Shrivastava, and A. Gupta. A-fast-rcnn: Hard

positive generation via adversary for object detection. Pro-

ceedings of the conference on Computer Vision and Pattern

Recognition (CVPR), 2017. 8

[28] M. Yuan and Y. Lin. Model selection and estimation in re-

gression with grouped variables. Journal of the Royal Statis-

tical Society: Series B (Statistical Methodology), 2006. 6

558



A. Supplementary Material

A.1. Second central moment regularization deriva­
tive

In the following we provide the full derivation of the sec-

ond central moment regularization term, RCM , that was in-

troduced in (12). We consider the absolute value of the filter

weights, normalized by the L1 norm of the entire filter (note

that it differs from V̂ (1)):

Ṽ
l

kd:: =
|Wl

kd::|

||Wl
k:::||1

. (18)

Let Rl
CM = (Rl

CM )x + (Rl
CM )y , where (Rl

CM )x and

(Rl
CM )y correspond to the horizontal second central mo-

ment C20 and the vertical second central moment C02, re-

spectively. Below we calculate the derivative of (Rl
CM )x.

The derivative of (Rl
CM )y is symmetric.

The derivative of (Rl
CM )x with respect to a specific filter

weight is obtained using the chain rule:

∂(Rl
CM )x

∂Wl
kdij

=
∂(Rl

CM )x

∂Ṽ
l

kdij

·
∂Ṽ

l

kdij

∂Wl
kdij

. (19)

The explicit term for (Rl
CM )x is:

(Rl
CM )x =

=
∑

k,d

1

||Wl
k:::||1

[∑

m,n

|Wl
kdmn|·m

2 −
(
∑

m,n|W
l
kdmn|·m)2

∑
m,n|W

l
kdmn|

]

=
∑

k,d

[∑

m,n

|Wl
kdmn|·m

2

||Wl
k:::||1

−

(∑
m,n|W

l

kdmn|·m

||Wl

k:::
||1

)2

∑
m,n|W

l

kdmn|

||Wl

k:::
||1

]

=
∑

k,d

[∑

m,n

Ṽ
l

kdmn ·m
2 −

(∑
m,n Ṽ

l

kdmn ·m
)2

∑
m,n Ṽ

l

kdmn

]
.

(20)

This term can now be written using the moments M̃20,

M̃10 and M̃00 (which are the moments in the Ṽ
l

kdmn val-

ues). Calculating the first element of the derivative, with

respect to Ṽ
l

kdij yields:

∂(Rl
CM )x

∂Ṽ
l

kdij

=
∂

∂Ṽ
l

kdij

u=K,v=D∑

u=1,v=1

[
(M̃20)

l
uv −

(M̃2
10)

l
uv

(M̃00)luv

]

=
[
i2 −

2 · (M̃10)
l
kd · (M̃00)

l
kd · i− (M̃2

10)
l
kd

(M̃2
00)

l
kd

]

=
[ i2 · (M̃2

00)
l
kd − 2 · (M̃10)

l
kd · (M̃00)

l
kd · i+ (M̃2

10)
l
kd

(M̃2
00)

l
kd

]

=

[
(M̃00)

l
kd · i− (M̃10)

l
kd

]2

(M̃2
00)

l
kd

=
[
i− (µ̃x)

l
kd

]2
.

(21)

Note that (µ̃x)
l
kd = (µx)

l
kd. Deriving the second term of

(19) yields:

∂Ṽ
l

kdij

∂Wl
kdij

=
∂

∂Wl
kdij

|Wl
kdij |

||Wl
k:::||1

=

=
[sign(Wl

kdij)

||wk:::||1
−

Wl
kdij

||wk:::||21

]
.

(22)

To sum up, the complete term for the derivative, with

respect to a single filter weight Wl
kdij takes the form of:

∂Rl
CM

∂Wl

kdij

=
[
sign(Wl

kdij)

||wk:::||1
−

Wl

kdij

||wk:::||21

]
· [(i− (µx)

l
kd)

2 + (j − (µy)
l
kd)

2];

(23)

A.2. Simplifying the expression for the effective spa­
tial support of a filter

In the following we provide further details regarding the

simplification made in Section 3 eq.(4)-(5) in order to ob-

tain the simplified term in eq.(6), which is used to calculate

the second central moment of a filter. This simplification

allowed us to calculate (C20)
l
kd and (C02)

l
kd using the ab-

solute valued weights, instead of the normalized weights as

in (̂C20)
l

kd and (̂C02)
l

kd. Substituting eq.(4) into (5) yield

the following:

D∑

d=1

(̂C20)
l

kd

‖Wkd::‖1
‖Wk:::‖1

=
D∑

d=1

[∑

i,j

|Wl
kdij |

||Wl
kd::||1

· j2

−
(
∑

i,j

|Wl

kdij |

||Wl

kd::||1
· j)

2

∑
m,n

|Wl

kdmn|

||Wl

kd::||1

]
·
‖Wkd::‖1
‖Wk:::‖1

=

∑D
d=1(C20)

l
kd

‖Wk:::‖1
.

(24)

Hence, using the unnormalized second moments is

equivalent up to 1
‖Wk:::‖1

, which is shown in eq.(6).
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A.3. Additional results supporting the observation
that training with occluded examples lowers
the spatial supports of the filters and increases
their effective depths

In the following, we provide further, more detailed re-

sults regarding the experiments presented in section 3 and

section 5. First we provide the complete results of second

central moment and spatial entropy for two VGG16 net-

works, where the first trained with unoccluded examples,

and the second is based on the first, but is trained on oc-

cluded examples near the end of the training process; see

Sections 3 and 5, for details. The following table completes

the results in Table 1, Section 3.2:

Fraction of filters in net A with Fraction of filters in net A with

larger spatial entropy than larger 2nd central moments than

corresponding filters in net B corresponding filters in net B

conv 1 0.551 0.577

conv 2 0.616 0.591

conv 3 0.721 0.611

conv 4 0.667 0.633

conv 5 0.583 0.591

conv 6 0.599 0.701

conv 7 0.672 0.649

conv 8 0.691 0.652

conv 9 0.686 0.599

conv 10 0.684 0.761

conv 11 0.613 0.658

conv 12 0.652 0.612

conv 13 0.634 0.634

Table 5: The fraction of filters in network A, (VGG16

trained only with unoccluded examples) that has a larger

effective support than the corresponding filters in network

B (trained also with occluded examples). The spatial sup-

port of the filters tends to be lower if the training images are

partially occluded.

Next we provide the complete results of the same exper-

iment for networks based on AlexNet topology:

conv layer 1 2 3 4 5

Fraction of filters in net A

with larger spatial entropy than 0.641 0.582 0.675 0.597 0.596

corresponding filters in net B.

Fraction of filters in net A with

larger 2nd central moments than 0.572 0.585 0.675 0.722 0.634

corresponding filters in net B.

Table 6: The fraction of filters in network A, (AlexNet

trained only with unoccluded examples) that has a larger

effective support than the corresponding filters in network

B (trained also with occluded examples). The spatial sup-

port of the filters tends to be lower if the training images are

partially occluded.

In the following table we present the effective depth for

the same experiment for networks based on AlexNet topol-

ogy; see Section 3.3, Table 2:

conv layer 1 2 3 4 5

Fraction of filters in net A with

larger depth entropy than 0.448 0.293 0.361 0.254 0.275

corresponding filters in net B.

Table 7: The fraction of filters in network A, (AlexNet

trained only with unoccluded examples) that has a larger

depth entropy than the corresponding filters in network B

(trained also with occluded examples). When training on

partially occluded examples, more kernels play a meaning-

ful role in the feature extraction process; see appendix A for

additional results.

As mentioned in Section 3.2, in the experiments pre-

sented above, the differences in spatial support are quite

small. This is a result of the experimental settings, meant to

maintain correspondence between the filters of the two net-

work. We also carried out a different experiment, where we

trained two AlexNet networks. The first was trained only on

unoccluded examples, while the second was trained only on

occluded examples. In this setting, there is no filter corre-

spondence between the two networks. The following table

presents the means and the standard deviations of the 2nd

central moments in these networks. The results show that

the spatial support is indeed lower when training with oc-

cluded examples. The difference is larger and statistically

significant in the later layers.

conv layer 1 2 3 4 5

(µ,σ) for non occ 5.99,3.12 3.31,0.19 1.13,0.03 1.181,0.032 1.20,0.03

(µ,σ) for occ 5.65,2.71 3.21,0.33 1.01,0.01 1.147,0.001 1.13,0.002

Table 8: A comparison of the mean and standard devia-

tions of the second central moment between two AlexNet

networks. The first trained on unoccluded examples while

the second trained only on partially occluded training ex-

amples. The comparison is presented with respect to the

different convolution layers. The spatial support is smaller

if the training process is conducted on occluded examples.
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A.4. The group sparsity masks used in the experi­
ments.

In the following figure, we present an example of the

group sparsity masks used with the LeNet network which

trained with the CIFAR data sets experiments described in

Section 5:

Figure 6: Group sparsity masks, similar to those used in our

experiments. White represents unaffected weights, while

blue represents the group of weights meant to decay to-

gether.

A.5. A note on setting the regularization strength.

Using substantial experimentation (on LeNet5), we came

to the conclusion that latter layers in the CNN benefit from

larger regularization strength values (λ). The results cited

in Table 3 were obtained with λ = 0.0005 for the first two

layers and for larger λ = 0.005 for the last layers.
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