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Abstract

Recent advancements in generative adversarial net-

works (GANs), using deep convolutional models, have sup-

ported the development of image generation techniques able

to reach satisfactory levels of realism. Further improve-

ments have been proposed to condition GANs to generate

images matching a specific object category or a short text

description. In this work, we build on the latter class of

approaches and investigate the possibility of driving and

conditioning the image generation process by means of

brain signals recorded, through an electroencephalograph

(EEG), while users look at images from a set of 40 Ima-

geNet object categories with the objective of generating the

seen images. To accomplish this task, we first demonstrate

that brain activity EEG signals encode visually-related in-

formation that allows us to accurately discriminate between

visual object categories and, accordingly, we extract a more

compact class-dependent representation of EEG data us-

ing recurrent neural networks. Afterwards, we use the

learned EEG manifold to condition image generation em-

ploying GANs, which, during inference, will read EEG sig-

nals and convert them into images. We tested our gener-

ative approach using EEG signals recorded from six sub-

jects while looking at images of the aforementioned 40

visual classes. The results show that for classes repre-

sented by well-defined visual patterns (e.g., pandas, air-

plane, etc.), the generated images are realistic and highly

resemble those evoking the EEG signals used for condition-

ing GANs, resulting in an actual reading-the-mind process.

1. Introduction

Reading the mind is such an ambitious and dreamed-

upon capability that is widely — and reasonably — re-

garded as closer to science fiction than real science. How-

ever, little steps are constantly being made by the scien-

tific community to push the limits of our understanding of

the brain’s workings and of our probing technology. For

example, research on brain-computer interfaces for direct-

actuated control of machines for disabled people is a very

active and relatively successful field, which can make an

actual impact on users’ lives [14, 26, 8].

But what if, instead of being able to detect a limited set

of simple executive commands from the brain, we could

generate something more inspiring, more meaningful, more

complex — like images?

While cognitive neuroscience studies [11, 19, 21] have

attempted — with yet uncertain results — to identify which

parts of the human visual cortex and brain are responsible

for visual cognitive processes, it has been acknowledged

that brain activity recordings contain information about vi-

sual object categories [4, 31, 27, 2, 1]. This consideration

makes one wonder whether patterns of such brain activity

may be identified in order to extract useful information on

the content of an observed scene.

This kind of information could, then, be used in con-

junction with conditional generative models to reconstruct

a meaningful and realistic image from the informative con-

tent decoded from brain activity. Luckily, such generative

frameworks already exist, and one of them in particular —

generative adversarial networks (GANs) [6] — is currently

very popular thanks to its simplicity in concept and effec-

tiveness in practice (although some aspects related to re-

liable training approach are still unclear). Hence, assum-

ing that a GAN approach intrinsically contains the com-

plexity required to model the image generation process, the

main problem to solve is how to extract visually-content–

representative information.

Recently, EEG has been increasingly used to capture
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brain activity signals and process them for visually-related

uses, e.g., visual object classification [28, 10]. Although

promising results have been shown, the techniques em-

ployed to process this kind of multi-dimensional, noisy,

temporal data are still very simple, and mostly ignore lo-

cal temporal dynamics, processing the full EEG signal as a

whole.

In this work, we combine a GAN approach with a model

based on recurrent neural networks (RNNs) to process EEG

signals captured while users look at images on a screen.

The recurrent model temporally analyzes input signals and

learns to encode them into a compact and visually-content–

descriptive representation; in turn, this representation is

used to condition the image generation process by a GAN

model, with the objective of producing output images de-

picting objects semantically- related to those shown to users

while the original EEG signals have been recorded. The ob-

jective is to learn a representation of brain signals which

conveys enough meaning for a generative model to capture

the visual category associated to it, and to be able to repro-

duce a relevant sample.

2. Related Work

In a typical experimental scenario attempting to study

the brain responses and dynamics associated to visual pro-

cesses, a human subject looks at a series of images, while

a recording device interfaced to or scanning the brain is

employed to register the appropriate feedback signals for

further analysis. Currently, there exists a variety of non-

invasive methods that allow us to acquire such brain re-

sponses (fMRI, EEG, MEG) with different grades of sen-

sitivity, but still, there is a profound lack in understanding

what exactly the acquired data means and, even more im-

portantly, how to interpret it.

In a pioneering work [18], the authors try to generate

impressions of what the subjects see based on fMRI images

by imposing a prior built on a large image dataset extracted

from YouTube. Essentially, this work tries to maximize the

a posteriori probability that a certain visual stimulus evok-

ing a specific cerebral response corresponds to an image

drawn from a large pool of images [16] by exploiting the

high sensitivity that fMRI signals offer. However, such ad-

vantage is countered by the objective difficulty of setting

up and operating an fMRI scanner and by the considerably

higher utilization costs.

To alleviate these drawbacks much research effort is

concentrated on electrophysiological responses, rather than

brain imaging and, especially, EEG, which features a lower

spatial resolution with respect to almost all other methods,

but has a very high temporal one. An EEG data acquisi-

tion session costs also less and is simpler to execute, but

the quality of the gathered data often suffers from unwanted

environmental noise and artifacts, making the challenge of

reconstructing the initial stimuli much harder. It is known

that EEG signals encode basic responses to visual stim-

uli [3, 15], and recently the authors of this paper, in [29],

were able to ”decode” such information and use it for au-

tomated visual classification. This paper builds on this re-

cent discovery and aims at reconstructing the initial stimu-

lus from learned latent space. However, reconstructing the

visual stimuli is not trivial.

Indeed, the human visual cortex covers around 30% of

the total cortical area [7], which makes it far larger than the

other sensory cortices, meaning that visual information rep-

resentation in the brain is clearly the most complex among

all sensory processes. For example, some previous works

have managed to recreate the stimuli from other senses than

sight. In [20], the authors describe an approach to recreate

(partially) speech stimuli based on human auditory cortex

data, acquired by cortical surface electrode arrays. Brain

signals acquired by this method have the advantage of being

affected by noise in a lesser extent than EEG signals, and

also require a simpler generative model. However, replicat-

ing such procedure is prohibitive because it requires open-

skull surgery to be performed on the subject.

Reconstructing human vision, however, is different as it

requires to understand if and how brain signals recorded

through existing devices convey visual content. There ex-

ist a few works that attempt to address that, e.g., methods

for identifying visual classes of the visual stimuli. In [10],

a classifier is trained to recognize object classes based on

topographic maps generated by EEG signals. However, the

obtained accuracy is low (29% over 12 classes), mainly be-

cause the employed linear classifier cannot represent ade-

quately the spatio-temporal dynamics contained in the EEG

signals. A similar work is presented in [30], but this time

raw EEG data is first processed by Independent Compo-

nent Analysis and then fed to a Support Vector Machine

classifier, which has the task to distinguish between only

2 classes. While these works are undoubtedly interesting,

they present a number of limitations (relatively simple clas-

sification models, low number of object classes) that do not

permit the investigation at a deeper level of the temporal and

spatial dynamics of the EEG signals.

On the other hand, deep learning methods are able to

handle large, diverse and noisy datasets with exceptional

results. Moreover, recently, there was an explosion in the

number of works that employ deep learning methods for

image generation, and more specifically, generative adver-

sarial networks [6]. In general, a GAN is a deep convo-

lutional neural network comprised of two parts: the gen-

erator, which has the task of creating images starting from

pure noise, and the discriminator, which assesses whether

an input image is real or fake. While, initially, GANs

could generate images based on a single type of images

(i.e., a simple GAN can only be trained and used only for
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a single object class), conditional GANs [13] introduced

the ability to generate images based on specific attributes.

Such attributes can be in the form of one-hot binary vectors

(i.e., a single bit in the vector indicates the class to gener-

ate), words [32, 23] or arbitrary real number vectors repre-

senting geometric transformations and coordinates in a 3D

space [5]. However, the majority of works describing gener-

ative models employ clearly defined images as well as con-

ditioning vectors (e.g. hand-written digits, faces) and ade-

quately large datasets (e.g., MNIST1, CIFAR-102, CelebA3)

for the training process. The performance, instead, deteri-

orates substantially when small and noisy datasets are used

for training as the case we are tackling in this work. In-

deed, EEG signals are particularly noisy and it is not trivial

to collect large data.

3. Method

Our method consists of a “EEG-in/image-out” process-

ing pipeline, where EEG signals are recorded while show-

ing images to human subjects and output images are ob-

tained by a generator which learns to associate the pro-

cessed EEG signals to the visual object class observed while

those signals were recorded.

The feasability of this approach relies on a few assump-

tions. First of all, it is necessary that EEG signals intrin-

sically encode visually-related information, whether these

are low-level responses to visual stimuli or high-level cog-

nitive processes associated to more complex activities such

as recognition and understanding.

Secondarily, it has to be possible to extract a meaning-

ful representation, suitable for solving visual classification

problems, from the high-dimensional and highly-noisy raw

EEG signals. For example, a 0.5-second-long 128-channel

EEG track at 1 kHz consists of 64,000 data samples, with

unclear underlying dynamics, correlations and noise com-

ponents. Extracting a low-dimensional descriptor encoding

visually-relevant information is therefore a critical task for

the whole process.

Finally, in order for our image generator to produce im-

ages of the correct class given a low-dimensional represen-

tation of the EEG signal, the visual information encoded by

such representation has to be class-discriminative. Even if

EEG signals encode visual information, this does not im-

ply that the level of “detail” of such information allows to

distinguish between object categories.

Our design approach takes these hypotheses for granted

in the way it processes the input data; the feasibility of

the whole process is then verified by the results we obtain.

Fig. 1 shows the architecture employed in this work, divided

into its basic data-acquisition and processing modules:

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/ kriz/cifar.html
3http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

• EEG recording protocol: each subject in the ex-

periment undergoes an EEG recording session, where

he/she simply has to look at images from different

classes on a computer monitor.

• EEG manifold learning: raw EEG signals are pro-

cessed by an RNN-based encoder, which is trained to

output a vector of what we call EEG features, contain-

ing visually-relevant and class-discriminative informa-

tion extracted from the input signals.

• EEG-conditioned image generation: a generator net-

work is trained in a conditional GAN framework to

produce images from EEG features, so that the visual

class of the output image matches that of the condi-

tioning vector.

3.1. EEG data acquisition

Six subjects partecipated in the experiment and were

shown images of objects while EEG data was recorded. All

subjects were evaluated by a professional physician in or-

der to exclude possible health conditions or medication that

could alter normal cerebral activity.

The subjects were shown 50 images from 40 different

object classes4 for a total of 2,000 images per subject. Each

image class was presented in bursts of 25 seconds (0.5 sec-

ond per image) followed by a 10 seconds pause where a

black image was shown. The black image was used to

“flush” any high-level class information present from the

previous one. The total running time of each experiment

was 1,400 seconds (23 minutes and 20 seconds). Details of

the experimental protocol are shown in Table 1.

We used the actiCAP5 cap with 128 active low-

impedance, low-noise electrodes. Four 32-channel Brain-

vision6 high-precision, low-latency signal amplifiers were

used (exact model: BrainAmp DC) and a qualified tech-

nician was present during the experiments’ execution, en-

suring that skin impedance remained under 10 kOhm at all

times by using conductive abrasive gel. The acquired EEG

signals were filtered in run-time (i.e. during the acquisi-

tion phase) by the integrated hardware notch filter (49-51

Hz) and a second order Butterworth (band-pass) filter with

frequency boundaries 14-70 Hz. This frequency range con-

tains the necessary bands (Alpha, Beta and Gamma) that

are most meaningful during the visual recognition task [17].

The sampling frequency was set to 1000 Hz and the quanti-

zation resolution to 16 bit.

4A subset of the ImageNet dataset [24] was used consisting of the 40

classes that are shown in Tab. 3.
5http://www.brainproducts.com/
6http://www.brainvision.com/
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Figure 1. Overview of the architecture design of the proposed EEG-driven image generation approach.

The histogram of the acquired signals over the different

values presented with a high density near the zero value and

a much lower density at the extremities. In order to reduce

input space sparsity, non-uniform quantization was applied

for data compression.

Deep-learning networks need constant length input se-

quences both for training and validation, however, data

coming from analog devices may present variable data size

due to different factors. Indeed, by acquiring data at a 1000

Hz sampling rate for 500 ms, 500 samples of data should be

acquired per image. Given that the systems involved are not

real-time (Operating system process scheduler, DAQ hard-

ware etc...), variable length EEG sequences were dealt with

by discarding those with less than 480 samples. Data se-

quences whose length was between 480 and 500 samples

where padded with zeros until reaching 500 samples. Se-

quences longer than 500 samples were tail trimmed.

From each recorded EEG sequence, the first 40 samples

were discarded in order to minimize any possible interfer-

ence from the previously shown image (i.e., to give the nec-

essary time for the stimulus to clear its way through the op-

tical tract [9]). The following 440 samples (440 ms) were

Number of classes 40

Number of images per class 50

Total number of images 2,000

Visualization order Sequential

Time for each image 0.5 s

Pause time between classes 10 s

Number of sessions 4

Session running time 350 s

Total running time 1,400 s

Table 1. The parameters of the experimental protocol.

used for the experiments.

By using the protocol in Table 1, we acquired 12, 000
(2, 000 images for 6 subjects) 128-channel EEG sequences.

534 samples did not satisfy the minimum data length criteria

described above, resulting in 11, 466 valid samples.

3.2. Learning EEG visual descriptors

Although previous works have attempted to work di-

rectly with the multi-channel temporal EEG sequences
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Figure 2. EEG feature encoder architecture.

[10, 30], by simply concatenating time sequences into a

single feature vector (albeit with a smaller number of chan-

nels than 128), this kind of methods ignores local temporal

dynamics. To account for time dependencies, we employ

LSTM recurrent neural networks inspired by previous re-

sults in [29].

Our EEG feature encoder is illustrated in Fig. 2, and con-

sists of a standard LSTM layers followed by a nonlinear

layer. At each time step, input s(·, t) (i.e., the set of val-

ues from all channels at time t) is fed into the LSTM layer;

when all time steps have been processed, the final output

state of the LSTM goes into a fully-connected layer with

ReLU non-linearity. The resulting output is what we re-

fer to as “EEG features”, and should ideally be a compact

representation of visual class–discriminative brain activity

information. We append a softmax classification layer and

perform gradient descent optimization (supervised by the

class of the image shown when the input signal had been

recorded) to train the encoder and the classifier end-to-end.

3.3. Brain Signal–Conditioned GANs for Image
Generation

We train our generator network in a conditional GAN

framework [13]. In the original formulation, a generative

model G(z|y) maps random input, from a pz(z) noise dis-

tribution and from a condition y to the target data distribu-

tion pdata(x). A discriminative model D(x|y) then predicts

the probability that a data point belongs to the target distri-

bution, given the condition. The generator and the discrim-

inator are trained simultaneously, so that the discriminator

tries to maximize the probability of assigning the correct

label to “real” data (from pdata(x)) and “fake” data (from

pG(z|y)), while the generator tries to maximize the proba-

bility that the discriminator mistakes generated samples for

“real” ones. In other words, the two models play the fol-

lowing minimax game defined by value function V (D,G):

min
G

max
D

V (D,G) =Ex∈pdata
(x) [logD (x|y)] +

Ez∈pz(z) [log (1−D (G (z|y) |y))]

In practice, from a training point of view, this means that,

given a correct sample sc = (xc, yc), consisting of real data

with correct condition and a fake sample sw = (xw, yw),
consisting of fake data (with arbitrary condition), the nega-

tive log-likelihood discriminator loss is computed as:

LD = − logD (xc|yc)− log (1−D (xw|yw)) , (1)

, while the generator loss, for an analogous sw sample, is:

LG = − logD (xw|yw) . (2)

In our case, the condition vector associated to each im-

age is the average EEG feature vector (as computed by the

encoder described in the previous section) over all images of

each class and all subjects. Our expectation is that, if the en-

coder has been correctly trained to produce distinguishable

features for different classes, the generator and the discrim-

inator will be able to capture this separability and behave

accordingly.

Both D and G are convolutional networks are illustrated

in the bottom part of Fig. 1 and their architecture is inspired

by DCGANs [22].

In the generator, the condition y is appended to the ran-

dom noise vector z, and a cascade of transposed convolu-

tions upsample the concatenated input to an output color

image. The discriminator takes as input a same-size image

(either a real one or a generated one). After going through

a few convolution layers which reduce the size of the fea-

ture maps, the condition y associated to the input image, is

spatially replicated and appended to the set of feature maps

from the second-to-last convolutional layer, on which the

final probability estimation is made.

During learning, we modify the discriminator loss func-

tion previously presented in Eq. 1 by following the approach

described in [23]: instead of training the discriminator with

real images employing correct conditions and fake images

with arbitrary conditions (which forces the discriminator to

learn how to distinguish between real images with correct

conditions and real images with wrong conditions without

any explicit supervision), we also provide a wrong sample

consisting of a real image and a wrong condition, randomly

chosen as the representative EEG feature vector from a dif-

ferent class. Hence, given a correct sample sc = (xc, yc)
and wrong samples sw1

= (xc, yw) and sw2
= (xw, yw),

the discriminator loss becomes:

LD =− logD (xc|yc)

− log (1−D (xc|yw))

− log (1−D (xw|yw)) .

(3)
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Model Max VA TA at max VA

LSTMs + nonlinear 86.1% 83.9%

Table 2. Maximum validation accuracy (“Max VA”) and corre-

sponding test accuracy (“TA at max VA”) for the LSTM-based

EEG feature encoder shown in Sect. 3.2.

4. Performance Analysis

Performance analysis consists of two main parts: first,

we evaluate how our EEG feature encoding architecture has

learnt to extract meaningful representations from visual-

stimuli–evoked raw EEG signals; secondly, we analyze the

performance of our EEG-driven image generator. The latter

is not a trivial task: apart from a purely qualitative judg-

ment (i.e., “do the images look good?”), no quantitative

evaluation practice exists for evaluating GAN models. In

this work, we employ the Inception score [25], which esti-

mates the realism and diversity of a batch of generated im-

ages by analyzing the softmax distribution of the Inception

network, and a criterion based on its classification accuracy

on the considered batch of generated images: this last test is

meant to estimate whether the generated images are of good

enough quality for Inception to still classify them correctly

(which is not taken into account in the Inception score).

4.1. Learning EEG features: classification accuracy

The evaluation of our LSTM-based approach has been

reported in [29], where we split our EEG signal dataset into

training, validation and test sets, with respective fractions

80% (1,600 images), 10% (200), 10% (200). Splitting by

images, rather than by EEG signals (which, for each image,

are as many as the number of participant subjects), makes

sure that the signals generated by all subjects for a single

image are not spread over different splits.

Training was performed by using the Adam gradient de-

scent method (learning rate initialized to 0.001), with mini-

batches of size 16. All layer sizes in the model (the stacked

LSTMs and the following non-linear layer) were set to 128.

Model and training hyperparameters were tuned on the val-

idation set.

Table 2 reports the best classification accuracy achieved

by our EEG signal classifier.

4.2. GAN model and training details

The generator takes as input a concatenated vector of

100-dimensional random noise and 128-dimensional EEG

features. Such input then goes through 5 transposed convo-

lutional layers: the first layer spatially upsamples the vector

by four times, while each of the other layers double the size

at every step, so that the output image size is 64×64. The

number of features maps starts at 512 at the first layer, and

is halved for each layer before the last one, which outputs a

3-channel (color) image.

The discriminator is made up of four convolutional lay-

ers and two fully-connected layers. It takes as an input

64×64 images, and analogously halves the feature map size

at every convolutional step. After the final convolutional

layer, where the feature map size is 4×4 (to which the con-

dition vector is spatially appended), two fully-connected

layers reduce the number of features to 1024 and 1, the

latter being the sigmoidal probability estimate on the in-

put image/condition pair. The number of feature maps in

the convolutional layers starts at 64 at the first layer, and

is doubled at every layer before the fully-connected ones.

Both the generator and the discriminator include batch nor-

malization modules and ReLU nonlinearities.

Training GANs is notoriously difficult, due to the diffi-

cult design choices required to make the generator and the

discriminator balanced. In our case, the low number of im-

ages for which we had recorded EEG tracks made it impos-

sibile to train directly on those images, as either the genera-

tor or the discriminator would overfit.

However, the images used for the EEG data acquisition

protocol were subsets of 50 elements taken from 40 Ima-

geNet classes, with each one containing about 1,200 im-

ages. In order to make use of all images in the selected

classes, we trained our GAN network in two stages, mak-

ing use of both EEG-available images and EEG-unavailable

ones. In the first stage, we trained the generator and the dis-

criminator as a regular (non-conditional) GAN using only

images for which no EEG data was available. All condition

vectors y were set to the zero vector, and the loss term re-

lated to real images and wrong conditions (i.e. the second

term of Eq. 3) was ignored. After 100 epochs, we re-trained

the models for 50 more epochs on the images with EEG

data available, providing the correct condition vectors and

applying the full discriminator loss function.

During training, data augmentation was performed by

resizing images at 96×96 pixels, and extracting random

64×64 (horizontally flipped with 50% chance).

4.3. Image generation: qualitative and quantitative
analysis

Fig. 3 and 4 show samples for some of the 40 classes in

our dataset. While the generator is generally able to capture

the basic distinguishing patterns, which confirms that the

generator and the discriminator were able to make use of the

conditioning EEG features in order to distinguish between

different input/output classes, it can be noticed that for some

classes (Fig. 3) the level of realism is markedly higher than

others (Fig. 4). This can be explained by analyzing the com-

plexity of the dataset. Unlike typical benchmarking datasets

such as the CelebA face dataset or LSUN Bedroom, the se-

lected 40 ImageNet classes exhibit high intra-class variance

in object appearance and low size (about 1,200): to make a
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comparison, CIFAR-10 has a lower number of classes (10),

a larger number of images per class (6,000) and a relatively

low intra-class variance for many classes (e.g., “airplane”,

“horse”, “car”).

We computed the Inception score both globally (across

all classes) and on a per-class base. In the first case, we gen-

erated a sample of 50,000 images (1,250 per class); in the

second case, we generated a sample of 50,000 images for

each class, and computed per-class Inception scores. The

results are shown in Table 3. To the best of our knowl-

edge, Inception score results have not been published on

ImageNet (or subsets thereof, as in our case); on CIFAR-

10, the current best published result is 8.07 [25]. The results

we obtain on our dataset approximate the capability of the

network to better understand the structure of certain classes

with respect to others. While the achieved Inception scores

are not at the same level as those computed on CIFAR-10,

it should be noted that several factor impact these results:

1. Higher resolution: 64×64 in our case, 32×32 in

CIFAR-10;

2. More classes: 40 in our case, 10 in CIFAR-10;

3. Fewer images per class: 1,200-1,300 in our case, 6,000

in CIFAR-10;

4. Higher intra-class variability;

5. Noisy conditioning vectors. Indeed, conditional GANs

are often trained with image class labels, while in our

case GANs are conditioned using a learned EEG man-

ifold that allows for separation among image classes

but in some case may fail (EEG classification results

are about 84%Table 2).

Since the Inception score does not measure the correct-

ness of the generated images in terms of correspondence

with the condition vectors, we performed an evaluation

aimed at verifying that the generated images for a given

condition (expressed as the average EEG features for each

class) were actually similar to images of the correct class.

To do so, we re-used the previously generated sample

of 50,000 images (1,250 images per class) to compute the

class probability distribution through the Inception network,

whose classification layer was pruned by keeping only the

40 classes in our dataset. The correct classification rate was

0.43, which, albeit relatively low (though it should be noted

that random guess on 40 classes in 2.5%) shows that the

generated images are realistic enough to make automatic

classification meaningful. Table 3 shows per-class correct

classification rate. As expected, similar to the qualitative vi-

sual analysis, the lowest classification accuracy are related

to the classes whose internal visual appearance variance is

Class IS IC

German shepherd (n02106662) 4.91 0.23

Egyptian cat (n02124075) 4.45 0.29

Lycaenid butterfly (n02281787) 5.03 0.37

Sorrel (n02389026) 5.86 0.62

Capuchin (n02492035) 4.99 0.41

Elephant (n02504458) 5.35 0.57

Panda (n02510455) 6.35 0.72

Anemone fish (n02607072) 6.11 0.81

Airliner (n02690373) 6.20 0.86

Broom (n02906734) 4.76 0.35

Canoe (n02951358) 4.59 0.24

Cellphone (n02992529) 5.17 0.31

Mug (n03063599) 4.62 0.23

Convertible (n03100240) 4.54 0.34

Desktop PC (n03180011) 5.81 0.61

Digital watch (n03197337) 4.54 0.51

Electric guitar (n03272010) 4.91 0.32

Electric locomotive (n03272562) 4.88 0.24

Espresso maker (n03297495) 5.33 0.32

Folding chair (n03376595) 4.88 0.27

Golf ball (n03445777) 5.06 0.28

Piano (n03452741) 4.47 0.22

Iron (n03584829) 4.32 0.23

Jack-o’-lantern (n03590841) 6.64 0.91

Mailbag (n03709823) 5.51 0.49

Missile (n03773504) 5.87 0.54

Mitten (n03775071) 5.10 0.36

Mountain bike (n03792782) 4.86 0.33

Mountain tent (n03792972) 4.70 0.30

Pyjama (n03877472) 4.21 0.20

Parachute (n03888257) 4.59 0.38

Pool table (n03982430) 4.68 0.35

Radio telescope (n04044716) 5.08 0.37

Reflex camera (n04069434) 4.64 0.29

Revolver (n04086273) 4.55 0.26

Running shoe (n04120489) 4.31 0.22

Banana (n07753592) 6.28 0.83

Pizza (n07873807) 5.87 0.79

Daisy (n11939491) 5.81 0.74

Bolete (n13054560) 5.37 0.60

All 5.07 0.43

Table 3. Inception scores (IS) and Inception classification accura-

cies (IC) for each class of the dataset (specified by their ImageNet

synset identifier and by a short description), and overall.

higher, which — concurrently with the small number of im-

ages — made it difficult to the generator to learn to repro-

duce the correct patterns.
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(a) Airliner (b) Jack-o’-Lantern (c) Panda

Figure 3. Good results

(a) Banana (b) Capuchin (c) Bolete

Figure 4. Bad results

5. Conclusions

Although reading the mind may still be something which

humanity will not be able to achieve for a while, in this

work we showed that brain activity signals can be success-

fully analyzed to drive the generation of images depicting

similar objects as those being observed by a subject when

those signals were recorded. Our approach, combining an

LSTM recurrent neural network for extracting visual-class–

discriminative descriptors from raw EEG signals, and a con-

ditional GAN for generating images from those very de-

scriptors, is able to produce realistic and diverse images

which match the expected object classes, thus demonstrat-

ing the goodness of the method and the validity of the initial

assumptions.

Of course, improvements can be made: the method suf-

fers in presence of classes with high internal variability in

appearance, which, combined with the relatively small size

of the employed dataset (if compared to other typical bench-

marks for GANs), causes the image generator not being able

to create targeted and clearly recognizable images.

In the future, we aim at pushing the limits of this ap-

proach by attemping not just at generating an image depict-

ing the same visual category as the one from which an EEG

signal was generated, but at reconstructing the original im-

age. Of course, this is a much more complicated task. In-

deed, the sensitivity and resolution of the EEG technology

may not be sufficient, and we will need to resort to higher-

resolution modalities such as fMRI [18]. In turn, this will

require an adaptation of the models employed: for exam-

ple, given the volumetric nature of fMRI data, our brain en-

coding module may become a 3D recurrent-convolutional

hybrid. Additionally, to compensate for the low temporal

resolution of the fMRI scanners, we are going to investigate

methods to combine fMRI data with EEG data [12].
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