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Abstract

Most of the prior works summarize videos by either ex-

ploring different heuristically designed criteria in an unsu-

pervised way or developing fully supervised algorithms by

leveraging human-crafted training data in form of video-

summary pairs or importance annotations. However, unsu-

pervised methods are blind to the video category and often

fail to produce semantically meaningful video summaries.

On the other hand, acquisition of large amount of train-

ing data in supervised approaches is non-trivial and may

lead to a biased model. Different from existing methods, we

introduce a weakly supervised approach that requires only

video-level annotation for summarizing web videos. Cast-

ing the problem as a weakly supervised learning problem,

we propose a flexible deep 3D CNN architecture to learn

the notion of importance using only video-level annotation,

and without any human-crafted training data. Specifically,

our main idea is to leverage multiple videos of a category

to automatically learn a parametric model for categorizing

videos and then adopt the model to find important segments

from a given video as the ones which have maximum influ-

ence to the model output. Furthermore, to unleash the full

potential of our 3D CNN architecture, we also explored a

series of good practices to reduce the influence of limited

training data while summarizing videos. Experiments on

two challenging and diverse datasets well demonstrate that

our approach produces superior quality video summaries

compared to several recently proposed approaches.

1. Introduction

Video summarization, which automates the process of

extracting a brief yet informative synopsis of a long video,

has attracted intense attention in the recent years. Much

progress has been made in developing a variety of ways to

summarize videos, by either limiting the scope to a specific

context (e.g., sports, news) [47, 62, 29] or exploring differ-

ent design criteria (representativeness [10, 7, 6], interesting-

ness [11, 45]) in an unsupervised manner. More recently,

we see a shift of paradigm in video summarization. Su-

pervision in terms of labeled summary [18, 15, 48, 72, 69]

(a)

(b)

Figure 1. (a) Raw video, (b) Video summary. Given a set of videos

with only video-level annotation (e.g., surfing), our method learns

what aspects are important within a category, such as riding a wave

with a surfboard, off the lip, and cutback in surfing.

or importance annotation [69] is being used to train video

summarization models which traditionally has been treated

as an unsupervised learning problem.

Let us consider a video of surfing (see Fig. 1). An unsu-

pervised approach, being blind to the video category, would

fail to single out the short segments corresponding to rid-

ing a wave with a surfboard, off the lip, and cutback, etc,

whereas a supervised method would require huge amount

of human-labeled video-summary pairs which are difficult

to collect especially for long and unconstrained web videos.

Moreover, it is generally feasible to have only a limited

number of users to annotate training videos, which may lead

to a biased summarization model.

On the other hand, collecting videos with video-level an-

notation (e.g., surfing) is much easier, since many videos

with attached tags are readily available on open video

datasets such as YouTube-8M [1] as well as on web. Moti-

vated by this observation, we pose an important question in

this paper: Can weakly supervised learning with only video-

level annotation, be leveraged upon for summarzing web

videos? This is an extremely relevant problem to address

due to the difficulty and non-scalability of obtaining large

amount of human-annotated training data for web videos.

Recently, Convolutional Neural Networks (CNNs) have

witnessed great success in many vision tasks such as image

classification [26], object detection [14], localization [73,

63], and semantic segmentation [30]. Similarly, for videos,

3D CNNs have shown better performance in activity recog-

nition, compared to 2D CNNs since they exploit the tempo-

ral aspects of activities typically shown in videos [60, 21].
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The success of 3D CNNs also shed light on several video

analysis tasks [33, 50, 68, 23, 66]. However, whether and

how an end-to-end 3D CNN architecture could be exploited

for video summarization still remains as a novel and rarely

addressed problem. This motivates us to build upon 3D

CNNs for weakly supervised summarization of web videos.

Moreover, deep 3D CNNs, in practice, require a large

amount of training data to achieve optimal performance.

However, publicly available datasets for video summariza-

tion remain limited, in size and diversity (e.g., CoSum [6],

TVSum [54]). Thus, another important question that we

address in this work is how can we efficiently train the 3D

CNN architecture given limited training data, with the goal

of summarizing unconstrained web videos?

1.1. Overview of Solution Strategy

A summary is a condensed synopsis that conveys the

most important details of the original video. Since impor-

tance is a subjective notion, in this paper, we propose to

identify and model important video segments as the most

common activities among the videos of a category and re-

move uninteresting or idiosyncratic segments that occur rel-

atively infrequently. Our method is motivated by the obser-

vation that similar videos have similar summaries. For in-

stance, suppose we have a collection of videos of “surfing”.

It is quite likely good summaries for those videos would all

contain segments corresponding to riding with surfboard,

floating on water, and off the lip surfing, etc. Thus, we hy-

pothesize that the notion of importance is intricately related

to the video category and this relation can be learned. We

accomplish this via a flexible 3D CNN architecture, namely

Deep Summarization Network (DeSumNet), which can as-

sign an importance score to each segment without requiring

any human-annotated training data. Specifically, we have

the access to only video-level annotation during training and

our goal is to learn a parametric model, which could be ap-

plied to summarize new unconstrained web videos.

As an overview of our approach for summarizing a given

video, (1) we perform a forward pass on the input video

which generates a distribution of scores over the video cat-

egories; (2) calculate the CNN derivatives with respect to

each video segment via back-propagation guided by the cat-

egory with highest score in the forward pass; (3) compute

spatio-temporal importance score, and then generate sum-

maries of a given length based on the computed importance

scores. An overview of our approach is illustrated in Fig. 2.

Furthermore, to unleash the full potential of our 3D CNN

architecture for video summarization, we explored a num-

ber of good practices to reduce the influence of limited

training data, including (1) cross-dataset pre-training; (2)

model adaptation with web data; (3) enhanced data aug-

mentation. Experiments show that the above practices for

training with limited data indeed improve the performance

of our method when extracting summaries from web videos.

1.2. Contributions

We address a novel and practical problem in this paper—

how to extract summaries from web videos without requir-

ing large amount of human-crafted training data, but only

video-level annotation. Towards solving this problem, we

make the following contributions. (1) a weakly supervised

approach based on 3D CNN that advances the frontier of

learning for video summarization; (2) computing spatio-

temporal importance scores based on CNN derivatives with-

out resorting to additional training steps; (3) study on a se-

ries of good practices for learning 3D CNN with limited

training data while extracting video summaries.

2. Related Work

Our work relates to three major research directions:

video summarization, video highlight detection and CNNs

for weakly supervised learning. Here, we focus on some

representative methods closely related to our work.

Video Summarization has been studied from multiple per-

spectives (see reviews [34, 61]). Without supervision, sum-

marization methods rely on low-level visual indices to de-

termine the important parts of a video. Various strategies

have been studied, including clustering [2, 8, 16, 17], sparse

optimizations [10, 40, 38], and energy minimization [45,

11]. Leveraging crawled web images or videos is also an-

other recent trend for video summarization [24, 54, 25, 39].

Departing from unsupervised methods, recent works for-

mulate video summarization as a supervised learning prob-

lem. Representative methods along this direction learn

how to select informative video subsets from human-created

summaries [18, 15, 48, 71], or learn important facets, like

faces, objects [28, 31, 5]. Similar in spirit, deep learn-

ing based methods have been applied for video summariza-

tion with the help of pair-wise deep ranking model [69] or

RNNs [72]. However, these approaches assume the avail-

ability of large amount of human-created video-summary

pairs or importance annotations, which are in practice dif-

ficult to obtain for unconstrained web videos. Our method,

instead, learns the notion of importance from a set of videos

belonging to a category (weak supervision), and hence pro-

vides much greater scalability in extracting summaries from

web videos. Most relevant to our approach is the work

in [44] which learns multiple SVM classifiers, one per each

category for importance scoring. We differ from [44] in that

we propose an end-to-end learning scheme for video sum-

marization by modeling temporal aspects with a 3D CNN

architecture instead of a computationally intensive feature

representation that involves multi-scale SIFT feature extrac-

tion and fisher vector encoding with a Gaussian mixture

model. Another distinctive feature of our approach is in

computing the spatio-temporal importance scores via CNN

derivatives without resorting to additional training steps.

Video Highlight Detection is highly related to summariza-
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Figure 2. Illustration of DeSumNet for weakly supervised video summarization. During training, we simply have videos with video-level

annotation and we train our network with these videos to learn what is important within a video category. During testing, we first perform

a forward pass on the given video and then compute the spatio-temporal importance scores via back-propagation guided by the category

with highest score in the forward pass. Convolutional and pooling kernel sizes are represented by arrows. Best viewed in color.

tion since both of them intend to extract a brief synopsis

containing segments of special interest from a video [69].

Many earlier approaches have primarily been focused on

highlighting sports videos [47, 65, 59]. A latent SVM

model is employed to detect highlights by learning from

pairs of raw and edited videos [58, 57]. Success of deep

learning also imparted improved performance in highlight

detection [67]. However, most of these techniques may not

generalize well to web videos since they are either based

on heuristic rules or require huge amount of human-crafted

training data which are difficult to collect in many cases.

CNN-Based Weakly Supervised Learning have achieved

promising performance in several vision tasks [4, 9, 35, 36,

70, 43, 42, 41, 49]. Most of these approaches employ feed-

forward computation and/or back-propagation on a CNN

to achieve segmentation with only image-level annotation.

Gradient-based deep CNN visualizations have shown to be

effective in localizing objects in images without relying on

bounding box or pixel-level annotations [51, 49, 56, 37].

Although effective for images, there is relatively little work

on applying CNNs for weakly-supervised learning on video

data. While emphasizing the weak supervision principle,

we extend [51] to the video domain and present the first end-

to-end framework for weakly supervised extraction of sum-

maries from web videos. A very recent work [46] generates

spatio-temporal saliency maps using an encoder-decoder

network with human annotated captions which are harder

to obtain compared to video class labels.

3. Methodology

In this section, we first present our weakly supervised ap-

proach for computing importance scores (Section 3.1), fol-

lowed by our study on good practices in learning a 3D CNN

architecture (DeSumNet) given limited training data while

summarizing unconstrained web videos (Section 3.2).

3.1. Gradientbased Importance Computation

Objective. As discussed in Section 1, fully super-

vised methods for video summarization, either require large

amount of human-created summaries [18, 15, 48, 71] or

segment-wise annotations [69], to train a model for select-

ing important segments from a video. Though effective for

the task of extracting summary from videos, acquisition of

such training data is non-trivial, since labeling video seg-

ments with importance scores is much more labor-intensive

and often requires annotators with domain knowledge. Sim-

ilarly, creating large number of video-summary pairs is also

highly infeasible and not scalable in many cases. This is

mainly due to the fact that an annotator may need to go

through the entire video to extract a summary. To tackle this

issue, we propose a video-level framework (DeSumNet) to

compute importance scores without requiring large amount

of human-crafted training data. Specifically, our core idea is

to leverage multiple videos belonging to a specific category

to automatically learn a parametric model for categorizing

videos and then adopt the model to find important segments

from a given video as the ones which have the maximum in-

fluence to the model output (i.e., the category of the video).

Approach Details. Let X be a video divided into n
equal segments, X = {x1,x2, · · · ,xn}, xi ∈ R

p×q×k,

where p and q denote the height and width of each frame and

k represents the number of frames in a segment. Inspired by

the recent advances in image gradient activation [51, 73],

we compute the importance score of each segment x in a

weakly supervised way for summarizing videos. The main

idea of our approach is to model the importance as an input

sensitivity, i.e., which segments of a video are most respon-

sible in characterizing the video to belong to a specific cat-

egory. In other words, if a small change in a segment has

a large effect on the network output then it is logical to as-

sume that this segment is more important than others. Our

proposed architecture manifests this notion of importance

by the change of network output with respect to the video

segments. This, in turn, is quantified by the relative strength

of the gradient of the output class score with respect to the

input segments. As an example, for a surfing video, the

strength of the gradient will be large when it is computed

with respect to a segment corresponding to riding a wave

with a surfboard, compared to segments that are less signif-

icant and occur relatively infrequently in such videos, e.g.,
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two people talking to each other near the car (see Fig. 1).

We compute the gradient with respect to the input segments

efficiently using backpropagation through the layers. Note

that we train our network, DesumNet, with only video-

level labels to learn what is important within a category.

Formally, given a video X = {x1,x2, · · · ,xn} with

predicted class label c, and a well trained network, φ : x →
φ1 ◦φ2 ◦ · · · ◦φl where l is the number of layers, the spatio-

temporal importance map, S(φ,xi,h) for a segment xi can

be obtained by the derivative of the network output with re-

spect to the video segment as follows:

S(φ,xi,h) =
∂

∂x
〈h, φ(x)〉

∣

∣

∣

x=xi

(1)

where h is an one-hot vector that selects c-th class in the

output. The importance map S(φ,xi,h) encodes how sen-

sitive the output prediction is with respect to changes at the

input video segment. Using chain rule, we can compute the

importance map as follows:

vec[S(φ,xi,h)] = h
⊺ ×

∂ vec[φl]

∂ vec[xl]⊺
× · · · ×

∂ vec[φ1]

∂ vec[xi]⊺

(2)

where the vec operator allows us to use matrix notations

for the derivatives. Note that the computation of importance

map is extremely fast, since it only requires a single back-

propagation pass without any additional training steps.

Given a video that belongs to category c with n seg-

ments, each containing k frames of size p × q, the spatio-

temporal importance score of each segment are computed

as follows: (1) we first compute S(φ,xi,h) by back-

propagation and rearrange it to a 3D map, Mi ∈ R
p×q×k

of same size as the input segment; (2) we then obtain

the frame-level importance scores within the segment, as

Ii,j = 1

p×q

∑

x,y Mi(x, y, j), ∀[j]ki=1
, where Ii,j repre-

sents the importance score of j-th frame in i-th segment;

(3) finally, the spatio-temporal importance score of a video

segment is computed, as Ii = G(Ii,1, · · · , Ii,k), where G is

an aggregation function applied along the temporal dimen-

sion k. We evaluated two forms of the aggregation function

G, including maximum and averaging in our experiments

and empirically choose averaging to report our final results.

3.2. Training DeSumNet for Summarization

Objective. In the previous section we have presented

a weakly supervised video summarization approach for

computing the spatio-temporal importance scores without

requiring any human-crafted training data. However, to

achieve optimal performance, a few practical concerns have

to be taken care of, e.g., the limited number of training ex-

amples in standard benchmarking summarization datasets

(e.g., CoSum [6], TVSum [54]). To handle such an impor-

tant issue, we study a series of good practices in training

DeSumNet for summarization, which are in general appli-

cable while training 3D CNNs with limited data.

Approach Details. Our approach for training

DeSumNet with limited examples involves the following

steps: (1) cross-dataset pre-training; (2) progressive model

adaptation with web data; (3) enhanced data augmentation.

Network Architecture. Our proposed DeSumNet

architecture is based on 3D CNNs since 3D convolu-

tion/pooling which operates in spatial and temporal dimen-

sions simultaneously, can capture both appearance and mo-

tion for activities. Recent works have also shown that

temporal aspects of activities play an important role in

generating good video summaries [67, 69, 39]. We fol-

low [60] and use a homogeneous setting with kernel size

3 × 3 × 3 in all convolutional layers. We use max pool-

ing for all 3D pooling layers with kernel size 2 × 2 in spa-

tial with stride 2, while vary in temporal. Using the nota-

tions conv(number of filters) for 3D convolutional layer,

pool(temporal kernel size, temporal stride) for the 3D

pooling layer, and fc(number of filters) for the fully con-

nected layer, the pattern of our DeSumNet architecture

is as follows: conv1(64) – pool1(1,1) – conv2(128) –
pool2(2,2) – conv3(256) – pool3(2,2) – conv4(256) –
pool4(2,2) – conv5(256) – pool5(2,2) – fc6(2048) –
fc7(2048) – fc8(C), where C is the number of categories.

Cross-Dataset Pre-training. Quantity of training data

is crucial for training a deep neural network. However, our

case is particularly difficult since standard video summa-

rization datasets are limited in size (e.g., only 50 videos in

TVSum [54]). Thus, we first use the large action recogni-

tion dataset, UCF101 [55] (101 action classes with ∼13k

videos) to pre-train our DeSumNet architecture for param-

eter initialization. The goal of this cross-dataset pre-training

is to learn generic video-level features and also to reduce the

effect of over-fitting in experiments. With this initialization,

we fine-tune the network by utilizing training data from

summarization datasets (e.g., CoSum [6], TVSum [54]) to

further adjust the parameters, specific to our target task.

Model Adaptation with Web Data. Cross-dataset

pre-training provides a good initialization for training our

DeSumNet architecture. However, to learn what is impor-

tant within a category, we often need a large set of diverse

examples. Given the maturity of commercial video search

engines (e.g., YouTube), one obvious and cheap solution is

to utilize top ranked videos that are highly correlated with

the video category. However, there are two key difficulties

which prevent us from using such videos directly in train-

ing. First, they are typically noisy containing lots of unre-

lated frames. Second, they are usually untrimmed and very

lengthy, where some relevant activities are often hidden in

between irrelevant ones. Inspired by the success of webly-

supervised learning in computer vision [54, 12, 13, 24], we

propose a simple, yet effective progressive model adapta-

tion scheme for enhancing our DeSumNet architecture by

harvesting noisy and untrimmed web videos. Our approach

involves the following steps: (1) given the category name as
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a keyword, we download a set of top-ranked videos at the

best quality available from YouTube. In practice, we crawl

about 30 videos on average for each category; (2) we then

adopt the initial fine-tuned network to truncate the videos to

relevant segments: we keep the segments whose probability

of being in the category is more than a threshold; (3) having

retained a set of relevant and trimmed videos, we finally up-

date the network parameters to obtain an improved model

for computing spatio-temporal importance scores. Adapt-

ing our model with the refined web videos not only reduces

the effect of limited training data but also increases the di-

versity of training data, which are essential for learning the

notion of importance in video summarization. Experiments

show that this approach indeed improves the performance

of our method in generating good video summaries.

Enhanced Data Augmentation. To further reduce the

impact of limited data, we explore different data augmen-

tation techniques to generate diverse training samples. In

addition to the random cropping used in original 3D CNN

architecture for action classification [60], we employ three

new data augmentation techniques as follows: (1) horizon-

tal flipping–we generate random crops of size 112×112×16
from the input clips and then randomly flip all frames within

a crop horizontally with 50% probability; (2) multi-scale

jittering–we follow [52, 64] and use multi-scale jittering by

using random crops with a size of x× y × 16, where x and

y are randomly selected from {128, 112, 96, 84}; (3) cor-

ner cropping–we randomly pick 112× 112× 16 crops from

the center or four corners from the entire input segment.

Augmentation with corner crops from the entire image has

recently shown to be effective in object detection [20].

4. Experiments

Datasets. We conduct rigorous experiments on two dif-

ferent publicly available benchmark datasets to verify the

effectiveness of our framework, namely CoSum [6] and TV-

Sum [54] datasets. Both of the datasets are extremely di-

verse: while CoSum dataset consists of 51 videos covering

10 categories from the SumMe benchmark [17], the TV-

Sum dataset contains 50 videos downloaded from YouTube

in 10 categories defined in the TRECVid Multimedia Event

Detection (MED) task [53]. Detailed description of these

datasets are available in the supplementary material.

Experimental Settings.

• We implement our network using the Caffe [22] toolbox

and conduct all our training on a NVIDIA Tesla K80 GPU.

• The input to the network is a segment of dimension 128×
171 × 16 (i.e., p = 128, q = 171, k = 16) and output is a

category label which belongs to one of C video categories.

• For the parameter initialization, we train our network from

scratch using stochastic gradient descent with a minibatch

size of 50, momentum of 0.9, and weight decay of 0.005.

The learning rate is initialized to 0.003 and is reduced to its
1

10
after every 4 epochs (15 epochs in total).

• With this initialization, we fine-tune all the layers with

an initial learning rate of 0.0003, except the last fc8 layer

which is changed to produce a 10-dimensional output on

both datasets. We train the last layer from scratch with ini-

tial parameter values sampled from a zero-mean Gaussian

distribution with σ = 0.01 and an initial learning rate of

0.003. We decrease the learning rate of all the layers to its
1

10
after every 4 epochs (7 epochs in all). We use dropout

with probabilities (= 0.5) in the first two fully connected

layers and found it essential for training.

• During model adaptation, we take the refined web videos

to further enhance the network. We run the model adap-

tation for 10 epochs on CoSum dataset and 6 epochs on

TVSum dataset. For data augmentation, we use horizontal

flipping, random cropping, multi-scale jittering and corner

cropping, as described in Section 3.2.

• Following the literature [71, 72], we randomly choose

80% of the videos for training and use the remaining 20%

for testing on both datasets. To produce predictions for an

entire video, we follow [60] and average segment-level pre-

dictions of 10 segments which are randomly selected from

the video. The average video classification accuracy over

five such random sets, are 88% and 72% on CoSum and

TVSum datasets, respectively.

4.1. Generating Video Skims

Goal. The objective of this experiment is to validate the

effectiveness of our approach in extracting video skims of

user-defined length, which can convey the most important

details of the original video. Specifically, a video skim is

composed of several shots that represent most important

portions of the input video within a short duration.

Solution. A common practice towards generating video

skims is to first perform a video shot boundary detec-

tion [19] as it maintains visual coherence of the output sum-

mary. We follow [6, 39] and divide videos into multiple

non-uniform shots. After this, we perform a mean pool-

ing over the segment-wise importance scores within a video

shot. The pooled result serves as the final importance score

of a shot to be used in generating skims. To generate a video

skim, we first sort the shots by decreasing importance score

(resolving ties by favoring shorter video shots), and then

construct the optimal video skim from the top-ranked shots

that fit in the user defined length constraint.

Evaluation. Following [6, 24, 39], we assess the quality

of an automatically generated video skim by comparing it to

human judgment. In particular, given a proposed summary

(i.e., video skim) and a set of human-created summaries,

we compute the pairwise average precision (AP) and then

report the mean value motivated by the fact that there exists

not a single ground truth summary, but multiple such sum-

maries are possible. We finally average over the number of

videos to obtain the overall performance on a dataset.

For evaluation, both datasets provide multiple user-
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Table 1. Experimental results on CoSum dataset.
Humans Unsupervised Methods Supervised Methods Proposed

Mean Average Precision Worst Mean Best SMRS Quasi MBF CVS KVS seqDPP SubMod DeSumNet

Top-5 0.668 0.814 0.887 0.491 0.507 0.588 0.676 0.684 0.692 0.735 0.721
Relative to average human 82.1% 100% 109.1% 60.4% 62.6% 72.3% 83.2% 84.1% 85.2% 90.3% 88.5%

Top-15 0.682 0.821 0.916 0.506 0.527 0.579 0.677 0.686 0.709 0.745 0.736
Relative to average human 83.0% 100% 111.5% 61.7% 64.3% 70.6% 82.5% 83.6% 86.5% 90.8% 89.7%

Table 2. Experimental results on TVSum dataset.
Humans Unsupervised Methods Supervised Methods Proposed

Mean Average Precision Worst Mean Best SMRS Quasi MBF CVS KVS seqDPP SubMod DeSumNet

Top-5 0.382 0.516 0.608 0.322 0.334 0.353 0.388 0.398 0.447 0.461 0.424
Relative to average human 74.2% 100% 117.8% 62.5% 64.8% 68.5% 75.3% 77.3% 86.7% 89.6% 82.2%

Top-15 0.372 0.507 0.589 0.320 0.325 0.342 0.371 0.387 0.435 0.443 0.415
Relative to average human 73.5% 100% 116.3% 63.2% 64.1% 67.4% 73.2% 76.5% 85.8% 87.4% 81.8%

annotated summaries for each video. For CoSum dataset,

we follow [6, 39] and compare each video skim with five

human-created summaries. For TVSum dataset, we first av-

erage the frame-level importance scores, created via crowd-

sourcing [54] to compute shot-level scores and then select

top 50% shots for each video as human-created summary,

as in [6, 39]. Finally, we compare each system-generated

video skim with twenty shot-based human-created sum-

maries to obtain the performance metric in TVSum dataset.

Compared Methods. We compare our approach with

several methods that fall into three main categories:

(1) Unsupervised approaches including SMRS [10]

(CVPR’12), Quasi [10] (CVPR’14), MBF [6] (CVPR’15),

and CVS [39] (CVPR’17); First two baselines (SMRS,

Quasi) use sparse coding for selecting important shots,

whereas MBF leverage visual co-occurrence across videos

of a category to generate a summary. The recent method

CVS, is based on collaborative sparse representative selec-

tion to extract a video skim by exploiting visual context

from additional videos within a category.

(2) Supervised methods including KVS [44] (ECCV’14),

seqDPP [15] (NIPS’14), and SubMod [18] (CVPR’15);

KVS learns multiple SVM classifiers for importance scor-

ing, whereas seqDPP, and SubMod use video-summary

pairs to train a model for extracting video summaries.

(3) Human performance comparison including Worst

Human, Mean Human, and Best Human. The worst hu-

man score is computed using the summary which is least

similar to the rest of the human-created groundtruth sum-

maries whereas the best score represents the most similar

summary containing most shots selected by many humans.

The purpose of comparing with human performance is to

provide a pseudo-upper bound for the summarization task,

and thus we also report normalized average precision scores

by rescaling the mean AP of human selections to 100%.

Following [39], we use C3D feature [60] (4096 dimen-

sional) to represent the shots and tune the parameters in

each method to have the best performance. We follow

the procedure described in [15, 71] to generate training

groundtruths (i.e. oracle summaries) from multiple human-

created summaries in both datasets.

Comparsion with Unsupervised Methods. Table 1

shows the mean AP on both top 5 and 15 shots included in

the summaries for CoSum dataset, whereas Table 2 shows

the results on TVSum dataset. From both tables, the fol-

lowing observations can be made: (1) The proposed weakly

supervised approach consistently outperforms all compared

unsupervised methods on both datasets by a significant mar-

gin. (2) Among the alternatives, the recent CVS method is

the most competitive. However, the gap is still significant

due to the two introduced components working in concert:

exploiting temporal aspects of activities via an end-to-end

3D CNN architecture and learning the notion of importance

from similar category-related videos. The top-5 mAP per-

formance improvements over CVS are 5.3% and 6.9% on

CoSum and TVSum datasets respectively. (3) Our approach

performed particularly well on CoSum dataset since it con-

tain videos that have their visual concepts described well

by the other category-related videos, e.g., all the videos of

the surfing category contain visually similar shots depicting

different aspects of surfing such as riding with surfboard,

off the lip and cutback surfing, etc. (4) Summarization on

TVSum dataset, however, is more challenging because of

unconstrained categories, e.g, grooming an animal. Our ap-

proach still outperforms all the unsupervised alternatives to

achieve a top-5 mAP of 82.2%, showing that the notion of

importance can still be learned from similar videos without

any heuristically designed criteria in summarizing videos.

Comparsion with Supervised Methods. While com-

paring with supervised alternatives, we have the follow-

ing key findings from Table 1, 2: (1) DeSumNet outper-

forms KVS on both datasets by a big margin (maximum im-

provement of 6.1% in top-15 mAP on CoSum), showing

the advantage of our gradient-based spatio-temporal impor-

tance computation and more powerful representation learn-

ing with 3D CNNs. (2) On Cosum dataset, DeSumNet out-

performs seqDPP by a margin of 3.3% in top-5 mAP, and

3.2% in top-15 mAP, respectively. SubMod, however, over-

comes DeSumNet but the difference is moderate (∼1%).

This results suggest that although being a weakly super-

vised approach, our method is still competitive with the

fully supervised methods in extracting important shots from
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Table 3. Exploration study on training strategies. Numbers show

top-5 mAP scores, relative to the average human score (in %).
Methods CoSum TVSum

Scratch 71.4 66.7
Scratch+NoisyWebData 76.3 69.5
Pre-train 83.5 75.2
Pre-train+NoisyWebData 84.4 77.3
Pre-train+ModelAdaptationwithRefinedWebData 87.7 80.8
Pre-train+ModelAdaptation+EnhancedDataAugmentation 88.5 82.2

videos. (3) On TVSum dataset, the performance gap be-

tween our method and fully supervised methods (seqDPP,

SubMod) begins to appear. This is expected as with a chal-

lenging dataset involving uncontrolled and very diverse web

videos, a weakly supervised approach can not compete with

a fully supervised one, especially when the later one is us-

ing large amount of human-annotated video-summary pairs.

However, we would like to point out once more that in prac-

tice collecting human-labeled summaries are very difficult

and unrealistic in actual scenarios.

Comparsion with Human Performance. As can be

seen from Table 1, 2, our method outperforms the Worst

Human score in both dataset (Top-5 mAP: 88.5% vs 82.1%

on CoSum and 89.7% vs 83.0% on TVSum dataset). This

indicates that our method produces informative summaries

comparable to the groundtruth human-created summaries.

Exploration Study. To better understand the contribu-

tions of various training strategies described in Section 3.2,

we analyzed the performance in following six different set-

tings: (1) training from scratch; (2) training from scratch

but adding the downloaded videos from YouTube; (3) with

cross-data pre-training; (4) combination of pre-training and

directly mixing the downloaded videos; (5) combination of

pre-training and model adaptation with refined web videos;

and (6) combination of pre-training, model adaptation and

enhanced data augmentation. We have the following key

observations from Table 3: (1) Performance of training

from scratch is much worse than that of pre-training, which

conforms the common perception about 3D CNNs: while

they are powerful, they often desire a larger amount of an-

notated data in order to perform well. (2) Model adap-

tation with refined web data achieves better performance

compared to only pre-training which shows that the pro-

posed adaptation scheme is effective in learning discrimina-

tive information within a category. We further utilize differ-

ent data augmentation techniques to regularize the training,

which improves the top-5 mAP to 88.5% on CoSum and

82.2% on TVSum dataset respectively. (3) Directly adding

the noisy and untrimmed web videos without any refine-

ment performs worst in both datasets. This is not surprising,

since irrelevant content about a category will lead the train-

ing to the wrong direction, and in turn, the fine-tuned model

has a hard time to find what is important within a category,

thus even hurting the final summarization performance.

Diversity. Following [18], we performed an experiment

where we clustered video segments beforehand and used an

uncorrelated subset of segments in generating summaries to

explicitly enforce diversity in the extraxted summary. This

however led to no significant improvement (∼0.8% top-5 on

CoSum), suggesting that our method produces both interest-

ing and diverse summaries. We also observe that both of the

summarization datasets mostly contain user videos which

rarely contain multiple interesting but redundant events.

Qualitative Results. Fig. 3 shows the exemplar sum-

maries produced by our approach, DeSumNet and the re-

cent CVS method in summarizing a video of the base jump-

ing category from the CoSum dataset. The scores below

our result indicate the predicted spatio-temporal importance

scores of each segment in the summary. As can be seen

from Fig. 3, our approach can efficiently learn what aspects

are important within a base jumping category and thus iden-

tify the most important shots from the video, i.e., the 2nd

shot depicting jumping from a cliff and the 4th one indicat-

ing jumping with hand-together. On the other hand, CVS,

completely misses such shots and rather selects shots that

are irrelevant to the category of base jumping—we believe

this is because CVS focuses on selecting shots that can well

reconstruct the original video with low reconstruction error

and hence does not capture the notion of importance prop-

erly while summarizing videos.

Fig. 4 shows a failure case of our method. This video

records very diverse contents and the scenes change fre-

quently among the indoor house and the outdoor field. In

particular, this video appears to be completely different

from the other videos belonging to the category of Groom-

ing an Animal in the TVSum dataset. For these reasons,

we found the returned summaries of our method and CVS

to be largely similar. From the summarization results, we

see that DeSumNet still selects diverse contents, but fails

to capture the fine details on grooming the dog, e.g., cut-

ting nails. While our current approach has been designed

to be weakly supervised, we believe it could be made more

robust to handle such videos by explicitly using semantic

analysis [32] and could also benefit from domain adapta-

tion techniques [27] for more challenging datasets.

4.2. Generating Video Timelapse

Goal. The goal of this experiment is to analyze the per-

formance of our approach in generating time-lapse videos to

enable a more efficient and engaging viewing experience.

Video time-lapse is a condensed summary which is nor-

mally created by adjusting the playing speed of segments

based on the importance score. Specifically, segments with

high importance score are played at a smaller rate and seg-

ments with lower importance are played at a higher rate [3].

Solution. A simple option is to select frames from a

segment based on the importance score while generating a

time-lapse video. We first select the sampling rate si as,

ri = 1−Ii/
∑n

i Ii, where Ii represent the spatio-temporal

importance score of the i-th segment and then uniformly re-
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Figure 3. Exemplar video summaries generated by CVS and DeSumNet, along with our predicted spatio-temporal importance score ∈
[0,1]. As can be seen, CVS often selects some shots that are irrelevant and not truly related to the base jumping category. Our method,

DeSumNet, on the other hand, automatically selects the maximally informative shots by leaning what aspects are important in base

jumping from a set of similar videos. We show the top-5 results represented by three central frames from each shot. Best viewed in color.
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Figure 4. Exemplar summaries generated while summarizing a video of the category Grooming an Animal from the TVSum dataset. This

video records very diverse contents and the scenes change frequently among the indoor house and the outdoor field. For these reasons, we

found the returned summaries of our method and CVS to be largely similar. See text for more details. Best viewed in color.

Table 4. Average human ratings in evaluating video time-lapse.
Datasets CVS KVS DeSumNet

CoSum 3.23 3.15 4.03
TVSum 2.34 2.56 3.18

move ri×k number of frames from i-th segment to produce

a video time-lapse. Note that since a time-lapse consists of

all video segments, there is no need of explicitly dividing

videos into non-uniform shots, as in skimming.

Evaluation. Since there exists no publicly available

ground-truth to evaluate the quality of video time-lapse, we

performed subjective evaluation using ten users. Given a

video, the study experts were first required to watch the

original video and then shown the time-lapse videos con-

structed using different methods. They were asked to rate

the overall quality of each system-generated video time-

lapse by assigning a rating from 1 (worst) to 5 (best).

Compared Methods. We compare our approach with

two methods, CVS [39] and KVS [44] that use sparse coding

and SVM classifiers, respectively for importance scoring.

We follow the same procedure in all methods to extract a

time-lapse summary from a given video.

Results. Table 4 shows average human ratings for both

datasets. Similar to the results of video skimming, our ap-

proach outperforms both of the methods in creating an in-

formative time-lapse video. This again corroborates the fact

that using category-level supervision for extracting impor-

tant segments from web videos captures what humans con-

sider important within a video.

Additional results and discussions along with qualitative

summaries are included in the supplementary material.

5. Conclusion

We presented a weakly supervised approach to summa-

rize videos with only video-level annotation. Motivated by

the fact that importance is related to the network input sen-

sitivity, we introduced an effective method for computing

spatio-temporal importance scores without resorting to ad-

ditional training steps. In addition, we explored a series

of good practices for efficiently training our network archi-

tecture with limited training data while summarizing web

videos. Extensive experiments on two standard datasets

well demonstrate the efficacy of our method over several

competing methods.
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