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Abstract

Manually annotating object bounding boxes is central

to building computer vision datasets, and it is very time

consuming (annotating ILSVRC [53] took 35s for one high-

quality box [62]). It involves clicking on imaginary corners

of a tight box around the object. This is difficult as these

corners are often outside the actual object and several ad-

justments are required to obtain a tight box. We propose

extreme clicking instead: we ask the annotator to click on

four physical points on the object: the top, bottom, left- and

right-most points. This task is more natural and these points

are easy to find. We crowd-source extreme point annotations

for PASCAL VOC 2007 and 2012 and show that (1) anno-

tation time is only 7s per box, 5× faster than the traditional

way of drawing boxes [62]; (2) the quality of the boxes is

as good as the original ground-truth drawn the traditional

way; (3) detectors trained on our annotations are as accu-

rate as those trained on the original ground-truth. More-

over, our extreme clicking strategy not only yields box coor-

dinates, but also four accurate boundary points. We show

(4) how to incorporate them into GrabCut to obtain more

accurate segmentations than those delivered when initial-

izing it from bounding boxes; (5) semantic segmentations

models trained on these segmentations outperform those

trained on segmentations derived from bounding boxes.

1. Introduction

Drawing the bounding boxes traditionally used for object

detection is very expensive. The PASCAL VOC bounding

boxes were obtained by organizing an “annotation party”

where expert annotators were gathered in one place to cre-

ate high quality annotations [21]. But crowdsourcing is es-

sential for creating larger datasets: Su et al. [62] developed

an efficient protocol to annotate high-quality boxes using

Amazon Mechanical Turk (AMT). They report 39% effi-

ciency gains over consensus-based approaches (which col-

lect multiple annotations to ensure quality) [13, 60]. How-

ever, even this efficient protocol requires 35s to annotate

one box (more details in Sec. 2).

(b) (a) 

Submit 

Figure 1. Annotating an instance of motorbike: (a) The conven-

tional way of drawing a bounding box. (b) Our proposed extreme

clicking scheme.

Why does it take so long to draw a bounding box? Fig 1a

shows the typical process [12, 21, 32, 54, 61, 62]. First

the annotator clicks on a corner of an imaginary rectangle

tightly enclosing the object (say the bottom-right corner).

This is challenging, as these corners are typically not on

the object. Hence the annotator needs to find the relevant

extreme points of the object (the bottom point and the right-

most point) and adjust the x- and y-coordinates of the corner

to match them. After this, the annotator clicks and drags the

mouse to the diagonally opposite corner. This involves the

same process of x- and y-adjustment, but now based on a

visible rectangle. After the rectangle is adjusted, the anno-

tator clicks again. He/she can make further adjustments by

clicking on the sides of the rectangle and dragging them un-

til the box is tight on the object. Finally, the annotator clicks

a “submit” button.

From a cognitive perspective, the above process is sub-

optimal. The three steps (clicking on the first corner, drag-

ging to the second corner, adjusting the sides) effectively

constitute three distinct tasks. Each task requires attention

to different parts of the object and using the mouse differ-

ently. In effect, the annotator is constantly task-switching, a

process that is cognitively demanding and is correlated with

increased response times and errors rates [45, 52]. Further-
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more, the process involves a substantial amount of mental

imagery: the rectangle to be drawn is imaginary, and so are

the corner points. Mental imagery also has a cognitive cost,

e.g. in mental rotation experiments, response time is pro-

portional to rotation angle [35, 57].

In this paper we propose an annotation scheme which

avoids task switching and mental imagery, resulting in

greatly improved efficiency. We call our scheme extreme

clicking: we ask the annotator to click on four extreme

points of the object, i.e. points belonging to the top, bot-

tom, left-most, and right-most parts of the object (Fig 1b).

This has several advantages: (1) Extreme points are not

imaginary, but are well-defined physical points on the ob-

ject, which makes them easy to locate. (2) No rectangle is

involved, neither real nor imaginary. This further reduces

mental imagery, and avoids the need for detailed instruc-

tions defining the notion of a bounding box. (3) Only a

single task is performed by the annotator thus avoiding task

switching. (4) No separate box adjustment step is required.

(5) No “submit” button is necessary; annotation terminates

after four clicks.

Additionally, extreme clicking provides more informa-

tion than just box coordinates: we get four points on the

actual object boundary. We demonstrate how to incorporate

them into GrabCut [51], to deliver more accurate segmenta-

tions than when initializing it from bounding boxes [51]. In

particular, GrabCut relies heavily on the initialization of the

object appearance model (e.g. [39, 51, 68]) and on which

pixels are clamped to be object/backgound. When using just

a bounding box, the object appearance model is initialized

from all pixels within the box (e.g. [23, 39, 51]). Moreover,

it typically helps to clamp a smaller central region to be ob-

ject [23]. Instead, we first expand our four object boundary

points to an estimate of the whole contour of the object. We

use this estimate to initialize the GrabCut object appearance

model. Furthermore, we skeletonize the estimate and clamp

the resulting pixels to be object.

We perform extensive experiments on PASCAL VOC

2007 and 2012 using crowd-sourced annotations which

demonstrate: (1) extreme clicking only takes 7s seconds

per box, 5× faster than the traditional way of drawing

boxes [62]; (2) extreme clicking leads to high-quality boxes

on a par with the original ground-truth boxes drawn the tra-

ditional way; (3) detectors trained on boxes generated us-

ing extreme clicking perform as well as those trained on

the original ground-truth; (4) incorporating extreme points

into GrabCut [51] improve object segmentations by 2%-4%

mIoU over initializing it from bounding boxes; (5) seman-

tic segmentations models trained on segmentations derived

from extreme clicking outperform those trained on segmen-

tations generated from bounding boxes by 2.6% mIoU.

2. Related work

Time to draw a bounding box. The time required to

draw a bounding box varies depending on several factors,

including the quality of the boxes and the crowdsourcing

protocol used. In this paper, as an authoritative reference

we use the protocol of [62] which was used to annotate

ILSVRC [53]. It was designed to produce high-quality

bounding boxes with little human annotation time on Ama-

zon Mechanical Turk. They report the following median

times for annotating an object of a given class in an im-

age [62]: 25.5s for drawing one box, 9.0s for verifying its

quality, and 7.8s for checking whether there are other ob-

jects of the same class yet to be annotated. Since we only

consider annotating one object per class per image, we use

25.5s+9.0s = 34.5s as the reference time. This is a conser-

vative estimate: when taking into account that some boxes

are rejected and need to be re-drawn, the median time in-

creases to 55s. If we use average times instead of medians,

the cost raises further to 117s.

Note how both PASCAL VOC and ILSVRC have im-

ages of comparable difficulty and come with ground-truth

box annotations of similar high quality [53], justifying our

choice of 35s reference time. Papers reporting faster tim-

ings [32, 54] aim for lower-quality boxes (e.g. the official

annotator instructions of [32] show an example box which

is not tight around the object). We compare to [54] in Sec. 5.

Reducing annotation time for training object detectors.

Weakly-supervised object localization techniques (WSOL)

can be used to train object detectors from image-level la-

bels only (without bounding boxes) [5, 11, 14, 55, 59]. This

setting is very cheap in terms of annotation time, but it pro-

duces lower quality object detectors, typically performing

at only about half the level of accuracy achieved by training

from bounding boxes [5, 11, 14, 55, 67].

Training object class detectors from videos could bypass

the need for manual bounding boxes, as the motion of the

objects facilitates their automatic localization [49, 40, 41].

However, because of the domain adaptation problem, these

detectors are still quite weak compared to ones trained on

manually annotated still images [34]. Alternative types of

supervision information such as eye-tracking data [44, 46],

text from news articles or web pages [17, 28], or even movie

scripts [7] have also been explored. Papadopoulos et al. [47]

propose a scheme for training object class detectors which

only requires annotators to verify bounding boxes generated

automatically by the learning algorithm. We compare our

extreme clicking scheme to state-of-the-art WSOL [5], and

to [47] in Sec. 5.

(Interactive) object segmentation. Object segmenta-

tions are significantly more expensive to obtain than bound-

ing boxes. The creators of the SBD dataset [29] merged

five annotations per instance, resulting in a total time of

315s per instance. For COCO [43], 79s per instance were
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Figure 2. The workflow of our crowd-sourcing protocol for collecting extreme click annotations on images. The annotators read a

set of instructions and then go through an interactive training stage that consists of a qualification test at the end of which they receive a

detailed feedback on how well they performed. Annotators who successfully pass the test can proceed to the annotation stage. In case of

failure, they are allowed to repeat the test as many times as they want until they succeed.

required for drawing object polygons, excluding verify-

ing correctness and possibly redrawing. To reduce anno-

tation time many interactive segmentation techniques have

been proposed, which require the user to input either a

bounding box around the object [42, 51, 71], or scribbles

[3, 16, 24, 26, 27, 42, 50, 64, 65, 72], or clicks [31, 69].

Most of this work is based on the seminal GrabCut algo-

rithm [51], which iteratively alternates between estimat-

ing appearance models (typically Gaussian Mixture Mod-

els [6]) and refining the segmentation using graph cuts [9].

The user input is typically used to initialize the appearance

model and to clamp some pixels to background. In this pa-

per, we incorporate extreme clicks into GrabCut [51], im-

proving the appearance model initialization and automati-

cally selecting good seed pixels to clamp to object.

3. Collecting extreme clicks

In this section, we describe our crowd-sourcing frame-

work for collecting extreme click annotations (Fig. 2). An-

notators read a simple set of instructions (sec. 3.1) and then

go through an interactive training stage (sec. 3.2). Those

who successfully pass the training stage can proceed to the

annotation stage (sec. 3.3).

3.1. Instructions

The annotators are given an image and the name of a

target object class. They are instructed to click on four ex-

treme points (top, bottom, left-most, right-most) on the visi-

ble part of any object of this class. They can click the points

in any order. In order to let annotators know approximately

how long the task will take, we suggest a total time of 10s

for all four clicks. This is an upper bound on the expected

annotation time that we estimated from a small pilot study.

Note that our instructions are extremely simple, much

simpler than those necessary to explain how to draw a

bounding box in the traditional way (e.g. [54, 62]). They are

also simpler than instructions required for verifying whether

a displayed bounding box is correct [47, 54, 62]. That re-

quires the annotator to imagine a perfect box on the object,

and to mentally compare it to the displayed one.

3.2. Annotator training

After reading the instructions, the annotators go through

the training stage. They have to complete a qualification

test, at the end of which they receive detailed feedback on

how well they performed. Annotators who successfully

pass this test can proceed to the annotation stage. In case

of failure, annotators can repeat the test until they succeed.

Qualification test. A qualification test is a good mecha-

nism for enhancing the quality of crowd-sourcing data and

for filtering out bad annotators and spammers [1, 19, 33,

37]. Some annotators do not pay attention to the instruc-

tions or do not even read them. Qualification tests have been

successfully used to collect image labels, object bounding

boxes, and segmentations for some of the most popular

datasets (e.g., COCO [43] and Imagenet [53, 62]).

The qualification test is designed to mimic our main task

of clicking on the extreme points of objects. We show the

annotator a sequence of 5 different images with the same

object class and ask them to carry out the extreme clicking

task.

Feedback. The qualification test uses a small pool of im-

ages with ground-truth segmentation masks for the objects,

which we employ to automatically validate the annotator’s

clicks and to provide feedback (Fig. 2, middle part). We

take a small set of qualification images from a different

dataset than the one that we annotate.

In the following, we explain the validation procedure for

the top click (the other three cases are analogous). We ask

the annotator to click on a top point on the object, but this

point is not necessarily uniquely defined. Depending on the

object shape, there may be multiple points that are equiva-

lent, up to some tolerance margin (e.g. the top of the dog’s

head in fig. 3, top row). Clearly, clicking on any of these

points is correct. The area in which we accept the anno-

tator’s click is derived from the segmentation mask. First,

we find the pixels with the highest y-coordinate in it (there

might be multiple such pixels). Then, we select all pixels in
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Figure 3. Qualification test. (Left) Qualification test examples of

the dog and cat class. (Middle) The figure-ground segmentation

masks we use to evaluate annotators’ extreme clicks during the

training stage. The pixels of the four extreme areas of the mask are

marked with colors. (Right) The accepted areas for each extreme

click and the click positions as we display them to the annotators

as feedback.

the mask with y-coordinates within 10 pixels of any of these

top pixels (red area in Fig. 3, middle column). Finally, we

also include in the accepted area all image pixels within 10
pixels of any of the selected pixels in the segmentation mask

(Fig. 3, right column). Thus the accepted area includes all

top pixels in the mask, plus a tolerance region around them,

both inside and outside the mask.

After the annotators finish the qualification test, they re-

ceive a feedback page with all the examples they annotated.

For each image, we display the annotator’s four clicks, and

the accepted areas for each click (Fig. 3 right column).

Success or failure. The annotators pass the qualification

test if all their clicks on all 5 qualification images are inside

the accepted areas. Those that pass the test are recorded as

qualified annotators and can proceed to the main annotation

stage. A qualified annotator never has to retake the qual-

ification test. In case of failure, annotators are allowed to

repeat the test as many times as they want. The combina-

tion of automatically providing rich feedback and allowing

annotators to repeat the test makes the training stage interac-

tive and highly effective. Annotators that have reached the

desired level of quality can be expected to keep it through-

out the annotation [30].

3.3. Annotating images

In the annotation stage, annotators are asked to annotate

small batches of 10 consecutive images. To increase anno-

tation efficiency, the target class for all the images within

a batch is the same. This means annotators do not have to

re-read the class name for every image and can use their

prior knowledge of the class to find it rapidly in the im-

age [63]. More generally, it avoids task-switching which is

well-known to increase response time and decrease accu-

racy [52, 45].

Quality control. Quality control is a common process

when crowd-sourcing image annotations [4, 36, 43, 53, 56,

60, 62, 66, 70]. We control the quality of the annotation by

hiding one evaluation image for which we have a ground-

truth segmentation inside a 10-image batch, and monitor the

annotator’s accuracy on it (golden question). Annotators

that fail to click inside the accepted areas on this evaluation

image are not able to submit the task. We do not do any

post-processing rejection of the submitting data.

4. Object segmentation from extreme clicks

Extreme clicking results not only in high-quality bound-

ing box annotations, but also in four accurate object bound-

ary points. In this section we explain how we use these

boundary points to improve the creation of segmentation

masks from bounding boxes.

We cast the problem of segmenting an object instance

in image I as a pixel labeling problem. Each pixel p ∈ I

should be labeled as either object (lp = 1) or background

(lp = 0). A labeling L of all pixels represents the segmented

object. Similar to [51], we employ a binary pairwise energy

function E defined over the pixels and their labels.

E(L) =
∑

p

U(lp) +
∑

p,q

V (lp, lq) (1)

U is a unary potential that evaluates how likely a pixel p is

to take label lp according to the object and background ap-

pearance models, while the pairwise potential V encourages

smoothness by penalizing neighboring pixels taking differ-

ent labels.

Initial object surface estimate from extreme clicks. For

GrabCut to work well, it is important to have a good initial

estimate of the object surface to initialize the appearance

model. Additionally, it helps to clamp certain pixels to ob-

ject [39]. We show how the four collected object boundary

points can be exploited to do both.

In particular, for each pair of consecutive extreme clicks

(e.g. leftmost-to-top, or top-to-rightmost) we find the path

connecting them which is most likely to belong to the ob-

ject boundary. For this purpose we first apply a strong edge

detector [15] to obtain a boundary probability ep ∈ [0, 1]
for every pixel p of the image (second row of Fig. 4). We

then define the best boundary path between two consec-

utive extreme clicks as the shortest path whose minimum

edge-response is the highest (third row of Fig. 4, magenta).

We found this objective function to work better than others,

such as minimizing
∑

p
(1−ep) for pixels p on the path. The

resulting object boundary paths yield an initial estimate of

the object outlines.

We use the surface within the boundary estimates (shown

in green in the third row of Fig. 4) to initialize the object ap-

pearance model used for U in Eq. (1). Furthermore, from
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Figure 4. Visualization of input cues and output of GrabCut. First row shows input with annotator’s extreme clicks. Second row shows

output of edge detector [15]. Third row shows our inputs for GrabCut: the pixels used to create background appearance model (red), the

pixels used to create the object appearance model (bright green), the initial boundary estimate (magenta), and the skeleton pixels which we

clamp to have the object label (dark green). Fourth row shows the output of GrabCut when using our new inputs, while the last row shows

the output when using only a bounding box.

this surface we obtain a skeleton using standard morphol-

ogy (shown in dark green in third row of Fig. 4). This skele-

ton is very likely to be object, so we clamp its pixel-labels

to be object (ls = 1 for all pixels s on the skeleton).

Appearance model. As in classic GrabCut [51], the ap-

pearance model consists of two GMMs, one for the object

(used when lp = 1) and one for the background (used when

lp = 0). Each GMM has five components, where each is a

full-covariance Gaussian over the RGB color space.

Traditional interactive segmentation techniques [42, 51,

71] start from a manually drawn bounding box and esti-

mate the initial appearance models from all pixels inside

the box (object model) and all pixels outside it (background

model). However, this may be suboptimal: since we are

trying to segment the object within the box, intuitively only

the immediate background is relevant, not the whole image.

Indeed, we improved results by using a small ring around

the bounding box for initializing the background model (see

third row Fig. 4 in red). Furthermore, not all pixels within

the box belong to the object. But given only a bounding box

as input, the best is to still use the whole box to initialize

the object model. Therefore, in our baseline GrabCut im-

plementation, the background model is initialized from the

immediate background and the object model is initialized

from all pixels within the box.

However, because we have extreme clicks we can do bet-

ter. We use them to obtain an initial object surface estimate

(described above) from which we initialize the object ap-

pearance model. Fig. 5 illustrates how this improves the

unary potentials U resulting from the appearance models.

Clamping pixels. GrabCut sometimes decides to label all

pixels either as object or background. To prevent this, one

can clamp some pixels to a certain label. For the back-

ground, all pixels outside the bounding box are typically

clamped to background. For the object, one possible ap-

proach is to clamp a small area in the center of the box [23].

However, there is no guarantee that the center of the box is

on the object, as many objects are not convex. Moreover,

the size of the area to be clamped is not easy to set.

In this paper, we estimate the pixels to be clamped by

skeletonizing the object surface estimate derived from our

extreme clicks (described above). In Sec. 6 we show how

our proposed object appearance model initialization and

clamping scheme affect the final segmentation quality.

Pairwise potential V . The summation over (p, q) in (1)

is defined on an eight-connected pixel grid. Usually, this

penalty depends on the RGB difference between pixels, be-

ing smaller in regions of high contrast [8, 6, 27, 42, 51, 64].

In this paper, we instead use the sum of the edge responses

of the two pixels given by the edge detector [15]. In Sec. 6
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Figure 5. Posterior probability of pixels belonging to object. For

both rows the background appearance model is created by using an

area outside the initial box (see Fig. 4). In the first row the object

model is created using the area inside the initial box. In the second

row the object model is created from the object surface estimated

using extreme clicks (Fig. 4, third row in light-green). Predictions

from the appearance model using extreme clicks are visibly better.

we evaluate both pairwise potentials and show how they af-

fect the final segmentation.

Optimization. After the initial estimation of appearance

models, we follow [51] and alternate between finding the

optimal segmentation L given the appearance models, and

updating the appearance models given the segmentation.

The first step is solved globally optimally by minimizing (1)

using graph-cuts [9], as our pairwise potentials are submod-

ular. The second step simply fits GMMs to labeled pixels.

5. Extreme Clicking Results

We implement our annotation scheme on Amazon Me-

chanical Turk (AMT) and collect extreme click annotations

for both the trainval set of PASCAL VOC 2007 [20] (5011

images) and the training set of PASCAL VOC 2012 [22]

(5717 images), which contain 20 object categories. For ev-

ery image we annotate a single instance per class (if present

in the image), which enables direct comparison to other

methods described below. We compare methods both in

terms of efficiency and quality.

Compared methods. Our main comparisons are to the

existing ground-truth bounding boxes of PASCAL VOC. As

discussed in Sec. 2, we use 34.5s as the reference time nec-

essary to produce one such high quality bounding box by

drawing it the traditional way [62].

At the other extreme, it is possible to obtain lower quality

bounding boxes automatically at zero extra costs by using

weakly supervised methods, which only input image-level

labels. We compare to the recent method of [5].

We also compare to two methods which strike a trade-off

between accuracy and efficiency [54, 47]. In [54], manual

box drawing is part of a complex computer-assisted annota-

tion system. Papadopoulos et al. [47] propose an annotation

scheme that only requires annotators to verify boxes auto-

matically generated by a learning algorithm. Importantly,

both [47, 54] report both annotation time and quality, en-

abling proper comparisons.

Evaluation measures. For evaluating efficiency we re-

port time measurements, both in terms of annotating the

whole dataset and per instance.

We evaluate the quality of bounding boxes with respect

to the PASCAL VOC ground-truth. We do this with respect

to the ground-truth bounding boxes (GT Boxes), but also

with respect to bounding boxes which we fit to the ground-

truth segmentations (GT SegBoxes). We quantify quality

by intersection-over-union (IoU) [21], where we measure

the percentage of bounding boxes we annotated per object

class with IoU greater than 0.5 and 0.7, and then take the

mean over all classes (IoU>0.5, IoU>0.7). In addition, we

calculate the average IoU for all instances of a class and

take the mean over all classes (mIoU).

As an additional measure of accuracy we measure detec-

tor performance using Fast-RCNN [25], trained either on

our extreme click boxes or on the PASCAL GT Boxes.

5.1. Results on quality and efficiency

PASCAL ground-truth boxes vs. extreme clicks. Ta-

ble 1 reports the results. Having two sets of ground-

truth boxes enables us to measure the agreement among

the expert annotators that created PASCAL. Comparing GT

Boxes and GT SegBoxes reveals this agreement to be at

88% mIoU on VOC 2007. Moreover, 93% of all GT Boxes

have IoU > 0.7 with their corresponding GT SegBox. This

shows that the ground-truth annotations are highly consis-

tent, and these metrics represent the quality of the ground-

truth itself. Similar findings apply to VOC 2012.

Interestingly, the boxes derived from our extreme clicks

achieve equally high metrics, when compared to the PAS-

CAL ground-truth annotations. Therefore our extreme click

annotations yield boxes with a quality within the agreement

among expert-annotators using the traditional way of draw-

ing. To get a better feeling for such quality, if we perturb

each of the four coordinates of the GT Boxes by 4 pixels,

the resulting boxes also have 88% mIoU with the unper-

turbed annotations.

To further demonstrate the quality of extreme clicking,

we train Fast-RCNN [25] using either PASCAL GT Boxes

or extreme click boxes. We train on PASCAL VOC 2007s

trainval set and test on its test set, then we train on VOC

2012s train and test on its val set. We experiment using

AlexNet [38] and VGG16 [58]. Performance when train-

ing from GT Boxes or from our boxes is identical on both

datasets and using both base networks.

Annotation efficieny. In terms of annotation efficiency,

extreme clicks are 5× cheaper: 7.0s instead of 34.5s. This

demonstrates that extreme clicking costs only a fraction of

the annotation time of the widely used box-drawing proto-

col [12, 21, 54, 61, 62], without any compromise on quality.

Human verification [47] vs. extreme clicks. Table 2

compares extreme clicks to human verification [47] on VOC
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Annotation quality w.r.t. GT SegBoxes Detector performance (mAP) Annotation time

Dataset Annotation approach mIoU IoU>0.7 IoU>0.5 AlexNet VGG16 dataset (h) instance (s)

PASCAL Extreme clicks 88 92 98 56 66 14.3 7.0

VOC 2007 PASCAL GT Boxes 88 93 98 56 66 70.0 34.5

PASCAL Extreme clicks 87 91 95 52 62 16.8 7.2

VOC 2012 PASCAL GT Boxes 87 90 96 52 62 79.8 34.5

Table 1. Comparison of extreme clicking and PASCAL VOC ground-truth.

Annotation quality w.r.t. GT Boxes Detector performance (mAP) Annotation time

Dataset Annotation approach mIoU IoU>0.7 IoU>0.5 AlexNet VGG16 dataset (h) instance (s)

Extreme clicks 88 94 97 56 66 14.3 7.0

PASCAL VOC Human verification [47] – – 81 50 58 9.2 4.5

2007 WSOL: Bilen and Vedaldi [5] – – 54 35 35 0 0

ILSVRC (subset) box drawing in [54] – 71 – – – – 12.3

Table 2. Comparison of extreme clicking and alternative fast annotation approaches.

2007. While verification is 1.6× faster, our bounding boxes

are much more accurate (97% correct at IoU>0.5, com-

pared to 81% for [47]). Additionally, detector performance

at test time is 6%-8% mAP higher for extreme clicking.

Weak supervision vs. extreme clicks. Weakly super-

vised methods are extremely cheap in human supervision

time. However, the recent work [5] reports 35% mAP us-

ing VGG16, which is only about half the result brought by

extreme clicking (66% mAP, Table 2).

Box drawing [54] vs. extreme clicks. Finally, we com-

pare to [54] in Table 2. This is an approximate comparison

as measurements of their box-drawing component are done

on an unspecified subset of ILSVRC 2014. However, as

ILSVRC and PASCAL VOC are comparable in both quality

of annotations and difficulty of the dataset [53], this com-

parison is representative. In [54] they report 12.3s for draw-

ing a bounding box, where 71% of the drawn boxes have

an IoU>0.7 with the ground-truth box. This suggests that

bounding boxes can be drawn faster than reported in [62]

but this comes with a significant drop in quality. In con-

trast, extreme clicking costs 7s per box and 91%-94% of

those boxes have IoU>0.7. Hence our protocol to annotate

bounding boxes is both faster and more accurate.

5.2. Additional analysis
Per-click response-time. We examine the mean response

time per click during extreme clicking. Interestingly, the

first click on an object takes about 2.5s, while subsequent

clicks take about 1.5s. This is because the annotator needs

to find the object in the image before they can make the

first click. Interestingly, 1s visual search is consistent with

earlier findings [18, 46].

Influence of qualification test and quality control. We

conducted three crowd-sourcing experiments on 200 train-

val images of PASCAL VOC 2007 to test the influence of

using a qualification test and quality control. We report the

quality of the bounding boxes derived from extreme clicks

in Tab. 3. Using a qualification test vastly improves annota-

tion quality (from 75.4% to 85.7% mIoU). The quality con-

trol brings a smaller further improvement to 87.1% mIoU.

Actual Cost. We paid the annotators $0.15 to annotate a

batch of 10 images which, based on our timings, is about

Qualification test Quality control mIoU IoU>0.7

75.4 68.0

X 85.7 91.0

X X 87.1 92.5

Table 3. Influence of the qualification test and quality control on

the accuracy of extreme click annotations (on 200 images from

PASCAL VOC 2007).

$7.7 per hour. The total cost for annotating the whole train-

val set of PASCAL VOC 2007 and the training set of PAS-

CAL VOC 2012 was $147 and $167, respectively.

6. Results on Object Segmentation

This section demonstrates that one can improve segmen-

tation from a bounding box by using also the boundary

points which we obtain from extreme clicking.

6.1. Results on PASCAL VOC

Datasets and Evaluation. We perform experiments on

VOC 2007 and VOC 2012. The trainval set of the segmenta-

tion task of VOC 2007 consists of 422 images with ground-

truth segmentation masks of 20 classes. For VOC 2012, we

evaluate on the training set, using as reference ground-truth

the augmented masks set by [29] (5623 images).

To evaluate the output object segmentations, for every

class we compute the intersection over union (IoU) between

the predicted and ground-truth segmentation mask, and re-

port the mean IoU over all object classes (mIoU). Some pix-

els in VOC 2007 are labeled as ‘unknown’ and are excluded

from evalutation. For these experiments we use structured

edge forests [15] to predict object boundaries, which is

trained on BSD500 [2].

GrabCut from PASCAL VOC GT Boxes. We start with

establishing our baseline by using GrabCut on the original

GT Boxes of VOC (for which no boundary points are avail-

able). Since applying [51] directly leads to rather poor per-

formance on VOC 2007 (37.3% mIoU), we first optimize

GrabCut on this dataset using methods discussed in Sec. 4.

Our optimized model has the following properties: the ob-

ject appearance model is initialized from all pixels within

the box. The background appearance model is initialized

from a small ring around the box which has twice the area
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of the bounding box. A small rectangular core centered

within the box whose area is a quarter of the area of the

box is clamped to be object. All pixels outside the box are

clamped to be background. As pairwise potential, instead of

using standard RGB differences, we use the summed edge

responses of [15] of the corresponding pixels. All modifica-

tions together substantially improve results to 74.4% mIoU

on VOC 2007. We then run GrabCut again on VOC 2012

using the exact same settings optimized for VOC 2007, ob-

taining 71.0% mIoU.

GrabCut from extreme clicking. Thanks to our extreme

clicking annotations, we also have object boundary points.

Starting from the optimized GrabCut settings established

in the previous paragraph, we make use of these boundary

points to (1) initialize a better object appearance model, and

(2) choose better pixels to clamp to object. As described

in Sec. 4, we use the extreme clicks to estimate an initial

contour of the object by following predicted object bound-

aries [15]. We use the surface bounded by this contour es-

timate to initialize the appearance model. We also skele-

tonize this surface and clamp the resulting pixels to be ob-

ject. The resulting model yields 78.1% mIoU on VOC 2007

and 72.7% on VOC 2012. This is an improvement of 3.7%

(VOC 2007) and 1.7% (VOC 2012) over the strong baseline

we built. Fig. 4 shows qualitative results comparing Grab-

Cut segmentations starting from GT Boxes (last row) and

those based on our extreme clicking annotations (second-

last row).

6.2. Results on the GrabCut dataset

We also conducted an experiment on the Grabcut

dataset [51], consisting of only 50 images. The standard

evaluation measure is the error rate in terms of the percent-

age of mislabelled pixels. For this experiment, we simulate

the extreme click annotation by using the extreme points of

the ground-truth segmentation masks of the images.

When we perform GrabCut from bounding boxes, we

obtain an error rate of 8%. When using additionally the

boundary points from simulated extreme clicking, we ob-

tain 5.5% error, an improvement of 2.5%. This again

demonstrates that boundary points contain useful informa-

tion over bounding boxes alone for this task.

For completeness, we note that the state-of-the-art

method on this dataset has 3.6% error [71]. This method

uses a framework of superpixels and Multiple Instance

Learning to turn a bounding box into a segmentation mask.

In this paper we build on a much simpler segmentation

framework (GrabCut). We believe that incorporating our

extreme clicks into [71] would bring further improvements.

6.3. Training a semantic segmentation model

We now explore training a modern deep learning system

for semantic segmentation from the segmentations derived

Full Segments from Segments from

supervision GT Boxes extreme clicks

mIoU 59.9 55.8 58.4

Table 4. Segmentation performance on the val set of PASCAL

VOC 2012 dataset using different types of annotations.

from extreme clicking. We train DeepLab [10, 48] based

on VGG-16 [58] on the VOC 2012 train set (5,623 images)

and then we test on its val set (1,449 images). We measure

performance using the standard mIoU measure (Tab. 4). We

compare our approach to full supervision by training on the

same images but using the ground-truth, manually drawn

object segmentations (one instance per class per image, for

fair comparison). We also compare to training on segmen-

tations generated from GT Boxes.

Full supervision yields 59.9% mIoU, which is our upper

bound. As a reference, training on manual segmentations

for all instances in the dataset yields 63.8% mIoU. This is

3.8% lower than in [48] since they train from train+val using

the extra annotations by [29] (10.3k images).

Segments from GT Boxes result in 55.8% mIoU.

Segments from extreme clicks lead to 58.4% mIoU. This

means our extreme clicking segmentations lead to a +2.6%

mIoU improvement over those generated from bounding

boxes. Moreover, our result is only -1.5% mIoU below the

fully supervised case (given the same total number of train-

ing samples).

7. Conclusions

We presented an alternative to the common way of draw-

ing bounding boxes, which involves clicking on imaginary

corners of an imaginary box. Our alternative is extreme

clicking: we ask annotators to click on the top, bottom, left-

and right-most points of an object, which are well-defined

physical points. We demonstrate that our method deliv-

ers bounding boxes that are as good as traditional drawing,

while taking just 7s per annotation. To achieve this same

level of quality, traditional drawing needs 34.5s [62]. Hence

our method cuts annotation costs by a factor 5× without any

compromise on quality.

In addition, extreme clicking leads to more than just

a box: we also obtain accurate object boundary points.

To demonstrate their usefulness we incorporate them into

GrabCut, and show that they leads to better object seg-

mentations than when initializing it from the bounding box

alone. Finally, we have shown that semantic segmenta-

tion models trained on these segmentations perform close

to those trained with manually drawn segmentations (when

given the same total number of samples).

Acknowledgement. This work was supported by the

ERC Starting Grant “VisCul”.

4937



References

[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art

analysis. In CVPR, 2014. 3
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[29] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik.

Semantic contours from inverse detectors. In ICCV, 2011. 2,

7, 8

[30] K. Hata, R. Krishna, L. Fei-Fei, and M. Bernstain. A glimpse

far into the future: Understanding long-term crowd worker

accuracy. In CSCW, 2017. 4

[31] S. Jain and K. Grauman. Click carving: Segmenting ob-

jects in video with point clicks. In Proceedings of the Fourth

AAAI Conference on Human Computation and Crowdsourc-

ing, 2016. 3

[32] S. D. Jain and K. Grauman. Predicting sufficient annotation

strength for interactive foreground segmentation. In ICCV,

2013. 1, 2

[33] S. Johnson and M. Everingham. Learning effective human

pose estimation from inaccurate annotation. In CVPR, 2011.

3

[34] V. Kalogeiton, V. Ferrari, and C. Schmid. Analysing domain

shift factors between videos and images for object detection.

IEEE Trans. on PAMI, 2016. 2

[35] S. M. Kosslyn, W. L. Thompson, I. J. Kim, and N. M. Alpert.

Topographic representations of mental images in primary vi-

sual cortex. Nature, 378(6556):496–498, 1995. 2

[36] A. Kovashka and K. Grauman. Discovering attribute shades

of meaning with the crowd. IJCV, 2015. 4

[37] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object rep-

resentations for fine-grained categorization. In ICCV Work-

shop on 3D Representation and Recognition, 2013. 3

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 6

4938

https://www.crowdflower.com/
https://www.youtube.com/watch?v=lUIU2_HW4Ic
https://www.youtube.com/watch?v=lUIU2_HW4Ic


[39] D. Kuettel and V. Ferrari. Figure-ground segmentation by

transferring window masks. In CVPR, 2012. 2, 4

[40] K. Kumar Singh, F. Xiao, and Y. Jae Lee. Track and transfer:

Watching videos to simulate strong human supervision for

weakly-supervised object detection. In CVPR, 2016. 2

[41] A. Kuznetsova, S. J. Hwang, B. Rosenhahn, and L. Sigal.

Expanding object detector’s horizon: Incremental learning

framework for object detection in videos. In CVPR, 2015. 2

[42] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image seg-

mentation with a bounding box prior. In ICCV, 2009. 3,

5

[43] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014. 2, 3, 4

[44] S. Mathe and C. Sminchisescu. Action from still image

dataset and inverse optimal control to learn task specific vi-

sual scanpaths. In NIPS, 2013. 2

[45] S. Monsell. Task switching. Trends in Cognitive Sciences,

7(3):134–140, 2003. 1, 4

[46] D. P. Papadopoulos, A. D. F. Clarke, F. Keller, and V. Ferrari.

Training object class detectors from eye tracking data. In

ECCV, 2014. 2, 7

[47] D. P. Papadopoulos, J. R. R. Uijlings, F. Keller, and V. Fer-

rari. We don’t need no bounding-boxes: Training object class

detectors using only human verification. In CVPR, 2016. 2,

3, 6, 7

[48] G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille.

Weakly- and semi-supervised learning of a deep convolu-

tional network for semantic image segmentation. In ICCV,

2015. 8

[49] A. Prest, C. Leistner, J. Civera, C. Schmid, and V. Fer-

rari. Learning object class detectors from weakly annotated

video. In CVPR, 2012. 2

[50] B. L. Price, B. Morse, and S. Cohen. Geodesic graph cut for

interactive image segmentation. In CVPR, 2010. 3

[51] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-

active foreground extraction using iterated graph cuts. In

SIGGRAPH, 2004. 2, 3, 4, 5, 6, 7, 8

[52] J. S. Rubinstein, D. E. Meyer, and J. E. Evans. Executive

control of cognitive processes in task switching. Journal of

Experimental Psychololgy: Human Perception and Perfor-

mance, 27(4):763–797, 2001. 1, 4

[53] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. Berg, and L. Fei-Fei. ImageNet large scale visual recog-

nition challenge. IJCV, 2015. 1, 2, 3, 4, 7

[54] O. Russakovsky, L.-J. Li, and L. Fei-Fei. Best of both

worlds: human-machine collaboration for object annotation.

In CVPR, 2015. 1, 2, 3, 6, 7

[55] O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Object-

centric spatial pooling for image classification. In ECCV,

2012. 2

[56] B. C. Russell, K. P. Murphy, and W. T. Freeman. LabelMe:

a database and web-based tool for image annotation. IJCV,

2008. 4

[57] R. N. Shepard and J. Metzler. Mental rotation of three-

dimensional objects. Science, 171(3972):701–703, 1971. 2

[58] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

6, 8

[59] P. Siva and T. Xiang. Weakly supervised object detector

learning with model drift detection. In ICCV, 2011. 2

[60] A. Sorokin and D. Forsyth. Utility data annotation with ama-

zon mechanical turk. In Workshop at CVPR, 2008. 1, 4

[61] Spare5/Mighty AI: https://app.spare5.com/

fives. Bounding box drawing instruction video. https:

//www.youtube.com/watch?v=3SZyFJiMGOw,

2017. 1, 6

[62] H. Su, J. Deng, and L. Fei-Fei. Crowdsourcing annotations

for visual object detection. In AAAI Human Computation

Workshop, 2012. 1, 2, 3, 4, 6, 7, 8

[63] A. Torralba, A. Oliva, M. Castelhano, and J. M. Henderson.

Contextual guidance of attention in natural scenes: The role

of global features on object search. Psychological Review,

113(4):766–786, 2006. 4

[64] O. Veksler. Star shape prior for graph-cut image segmenta-

tion. In ECCV, 2008. 3, 5

[65] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based

image segmentation with connectivity priors. In CVPR,

2008. 3

[66] C. Vondrick, D. Patterson, and D. Ramanan. Efficiently scal-

ing up crowdsourced video annotation. IJCV, 2013. 4

[67] C. Wang, W. Ren, J. Zhang, K. Huang, and S. Maybank.

Large-scale weakly supervised object localization via latent

category learning. IEEE Transactions on Image Processing,

24(4):1371–1385, 2015. 2

[68] J. Wang and M. Cohen. An iterative optimization approach

for unified image segmentation and matting. In ICCV, 2005.

2

[69] T. Wang, B. Han, and J. Collomosse. Touchcut: Fast im-

age and video segmentation using single-touch interaction.

CVIU, 2014. 3

[70] P. Welinder, S. Branson, P. Perona, and S. J. Belongie. The

multidimensional wisdom of crowds. In NIPS, 2010. 4

[71] J. Wu, Y. Zhao, J.-Y. Zhu, S. Luo, and Z. Tu. Milcut: A

sweeping line multiple instance learning paradigm for inter-

active image segmentation. In CVPR, 2014. 3, 5, 8

[72] W. Yang, J. Cai, J. Zheng, and J. Luo. User-friendly interac-

tive image segmentation through unified combinatorial user

inputs. IEEE Transactions on Image Processing, 2010. 3

4939

https://app.spare5.com/fives
https://app.spare5.com/fives
https://www.youtube.com/watch?v=3SZyFJiMGOw
https://www.youtube.com/watch?v=3SZyFJiMGOw

