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Abstract

Convolutional sparse coding is an increasingly popu-

lar model in the signal and image processing communities,

tackling some of the limitations of traditional patch-based

sparse representations. Although several works have ad-

dressed the dictionary learning problem under this model,

these relied on an ADMM formulation in the Fourier do-

main, losing the sense of locality and the relation to the

traditional patch-based sparse pursuit. A recent work sug-

gested a novel theoretical analysis of this global model, pro-

viding guarantees that rely on a localized sparsity measure.

Herein, we extend this local-global relation by showing how

one can efficiently solve the convolutional sparse pursuit

problem and train the filters involved, while operating lo-

cally on image patches. Our approach provides an intuitive

algorithm that can leverage standard techniques from the

sparse representations field. The proposed method is fast to

train, simple to implement, and flexible enough that it can

be easily deployed in a variety of applications. We demon-

strate the proposed training scheme for image inpainting

and image separation, achieving state-of-the-art results.

1. Introduction

The celebrated sparse representation model has led to

impressive results in various applications over the last

decade [10, 1, 29, 30, 8]. In this context one assumes that a

signal X ∈ R
N is a linear combination of a few columns,

also called atoms, taken from a matrix D ∈ R
N×M termed

a dictionary; i.e. X = DΓ where Γ ∈ R
M is a sparse

vector. Given X, finding its sparsest representation, called

sparse pursuit, amounts to solving the following problem

min
Γ

‖Γ‖0 s.t. ‖X−DΓ‖2 ≤ ǫ, (1)

where ǫ stands for the model mismatch or an additive noise

strength. The solution for the above can be approximated

using greedy algorithms such as Orthogonal Matching Pur-

suit (OMP) [6] or convex formulations such as BP [7]. The

task of learning the model, i.e. identifying the dictionary D

that best represents a set of training signals, is called dictio-

nary learning and several methods have been proposed for

tackling it, including K-SVD [1], MOD [13], online dictio-

nary learning [21], trainlets [26], and more.

When dealing with high-dimensional images, traditional

image processing algorithms train a local model for fully

overlapping patches extracted from X, process these inde-

pendently using the trained local prior and then average the

results to obtain a global estimate. This approach, which

we refer to in what follows as patch averaging, gained

much popularity and success due to its simplicity and high-

performance [10, 30, 8, 20]. A different approach is the

Convolutional Sparse Coding (CSC), which works with a

global model by imposing a specific structure on the dictio-

nary involved [15, 4, 19, 27, 17, 16, 18]. In particular, this

assumes that D is a banded convolutional dictionary, imply-

ing that the signal is a superposition of a few local atoms,

or filters, shifted to different positions. Unlike patch aver-

aging that restores independently the same information in

the image several times, CSC treats the information jointly

and only once. Several works have presented algorithms

for training convolutional dictionaries [4, 17, 27], circum-

venting some of the computational burdens of this problem

by relying on ADMM solvers that operate in the Fourier

domain. In doing so, these methods lost the connection to

the patch-based processing paradigm, as widely practiced

in many signal and image processing applications.

In this work, we propose a novel approach for training

the CSC model, called slice-based dictionary learning. Un-

like current methods, we leverage a localized strategy en-

abling the solution of the global problem in terms of only

local computations in the original domain. The main ad-

vantages of our method over existing ones are:

1. It operates locally on patches, while solving faithfully
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Figure 1: Top: Patches extracted from natural images. Bottom: Their corresponding slices. Observe how the slices are far

simpler, and contained by their corresponding patches.

the global CSC problem;

2. It is easy to implement and intuitive to understand;

3. It reveals how one should modify current (and any)

dictionary learning algorithms to solve the CSC prob-

lem in a variety of applications;

4. It can leverage standard techniques from the sparse

representations field, such as OMP, LARS, K-SVD,

MOD, online dictionary learning and trainlets;

5. When compared to state-of-the-art methods, it can be

applied to standard-sized images, converges faster and

provides a better model; and

6. It can naturally allow for a different number of non-

zeros in each spatial location, according to the local

signal complexity.

The rest of this paper is organized as follows: Section 2

reviews the CSC model. The proposed method is presented

in Section 3 and contrasted with conventional approaches

in Section 4. Section 5 shows how our method can be em-

ployed to tackle the tasks of image inpainting and separa-

tion, and later in Section 6 we demonstrate empirically our

algorithms. We conclude this work in Section 7.

2. Convolutional sparse coding

The CSC model assumes that a global signal X can be

decomposed as X =
∑m

i=1 di ∗ Γi, where di ∈ R
n are

local filters that are convolved with their corresponding fea-

tures maps (or sparse representations) Γi ∈ R
N . Alterna-

tively, following Figure 2, the above can be written in matrix

=

�i ∈ ℝ ଶ௡−ଵ ௠

�i� ∈ ℝ௡

�i ∈ ℝ௠

� ∈ ℝ�×�௠� ∈ ℝ� � ∈ ℝ�௠

⋮�� ∈ ℝ௡×௠
� ∈ ℝ௡× ଶ௡−ଵ ௠

Figure 2: The CSC model and its constituent elements.

form as X = DΓ; where D ∈ R
N×Nm is a banded con-

volutional dictionary built from shifted versions of a local

matrix DL, containing the atoms {di}
m
i=1 as its columns,

and Γ ∈ R
Nm is a global sparse representation obtained by

interlacing the {Γi}
m
i=1. In this setting, a patch RiX taken

from the global signal equals Ωγi, where Ω ∈ R
n×(2n−1)m

is a stripe dictionary and γi ∈ R
(2n−1)m is a stripe vector.

Here we defined Ri ∈ R
n×N to be the operator that extracts

the i-th n-dimensional patch from X.

The work in [23] suggested a theoretical analysis of

this global model, driven by a localized sparsity measure.

Therein, it was shown that if all the stripes γi are sparse,

the solution to the convolutional sparse pursuit problem is

unique and can be recovered by greedy algorithms, such as

the OMP [6], or convex formulations such as the Basis Pur-

suit (BP) [7]. This analysis was then extended in [24] to a

noisy regime showing that, under similar sparsity assump-

tions, the global problem formulation and the pursuit algo-

rithms are also stable. Herein, we leverage this local-global

relation from an algorithmic perspective, showing how one

can efficiently solve the convolutional sparse pursuit prob-

lem and train the dictionary (i.e., the filters) involved, while

only operating locally.

Note that the global sparse vector Γ can be broken into a

set of non-overlapping m-dimensional sparse vectors αN
i=1,

which we call needles. The essence of the presented algo-

rithm is in the observation that one can express the global

signal as X =
∑N

i=1 R
T
i DLαi, where RT

i ∈ R
N×n is

the operator that puts DLαi in the i-th position and pads

the rest of the entries with zeros. Denoting by si the i-th

slice DLαi, we can write the above as X =
∑N

i=1 R
T
i si.

It is important to stress that the slices do not correspond

to patches extracted from the signal, RiX, but rather to

much simpler entities. They represent only a fraction of

the i-th patch, since RiX = Ri

∑N

j=1 R
T
j sj , i.e. a patch

is constructed from several overlapping slices. Unlike cur-

rent works in signal and image processing, which train a

local dictionary on the patches {RiX}Ni=1, in what follows

we define the learning problem with respect to the slices,

{si}
N
i=1, instead. In other words, we aim to train DL in-

stead of Ω. As a motivation, we present in Figure 1 a set of

patches RiX extracted from natural images and their cor-

responding slices si, obtained from the proposed algorithm,

which will be presented in Section 3. Indeed, one can ob-

serve that the slices are simpler than the patches, as they

contain less information.

5297



3. Proposed method: slice-based dictionary

learning

The convolutional dictionary learning problem refers to

the following optimization1 objective,

min
D,Γ

1

2
‖X−DΓ‖22 + λ‖Γ‖1, (2)

for a convolutional dictionary D as in Figure 2 and a La-

grangian parameter λ that controls the sparsity level. Em-

ploying the decomposition of X in terms of its slices, and

the separability of the ℓ1 norm, the above can be written as

the following constrained minimization problem,

min
DL,{αi}

N

i=1
,

{si}
N

i=1

1

2
‖X−

N
∑

i=1

RT
i si‖

2
2 + λ

N
∑

i=1

‖αi‖1

s.t. si = DLαi.

(3)

One could tackle this problem using half-quadratic splitting

[14] by introducing a penalty term over the violation of the

constraint and gradually increasing its importance. Alterna-

tively, we can employ the ADMM algorithm [3] and solve

the augmented Lagrangian formulation (in its scaled form),

min
DL,{αi}

N

i=1
,

{si}
N

i=1
,{ui}

N

i=1

1

2
‖X−

N
∑

i=1

RT
i si‖

2
2

+

N
∑

i=1

(

λ‖αi‖1 +
ρ

2
‖si −DLαi + ui‖

2
2

)

,

(4)

where {ui}
N
i=1 are the dual variables that enable the con-

strains to be met.

3.1. Local sparse coding and dictionary update

The minimization of Equation (4) with respect to all the

needles {αi}
N
i=1 is separable, and can be addressed inde-

pendently for every αi by leveraging standard tools such

as LARS. This also allows for having a different number

of non-zeros per slice, depending on the local complexity.

Similarly, the minimization with respect to DL can be done

using any patch-based dictionary learning algorithm such as

the K-SVD, MOD, online dictionary learning or trainlets.

Note that in the dictionary update stage, while minimizing

for DL, one could refrain from iterating until convergence,

and instead perform only a few iterations before proceeding

with the remaining variables. In addition, when employing

the K-SVD dictionary update, the {αi} are also updated

subject to the support found in the sparse pursuit stage.

1Hereafter, we assume that the atoms in the dictionary are normalized

to a unit ℓ2 norm.

3.2. Slice update via local Laplacian

The minimization of Equation (4) with respect to all the

slices {si}
N
i=1 amounts to solving the quadratic problem

min
{si}N

i=1

1

2
‖X−

N
∑

i=1

RT
i si‖

2
2 +

ρ

2

N
∑

i=1

‖si −DLαi + ui‖
2
2.

(5)

Taking the derivative with respect to the variables

s1, s2, . . . sN and nulling them, we obtain the following sys-

tem of linear equations

R1(

N
∑

i=1

RT
i si −X) + ρ(s1 −DLα1 + u1) = 0

...

RN (

N
∑

i=1

RT
i si −X) + ρ(sN −DLαN + uN ) = 0.

(6)

Defining

R̄ =







R1

...

RN






S̄ =







s1
...

sN






Z̄ =







DLα1 − u1

...

DLαN − uN






, (7)

the above can be written as

0 = R̄
(

R̄T S̄−X
)

+ ρ
(

S̄− Z̄
)

=⇒ S̄ =
(

R̄R̄T + ρI
)−1 (

R̄X+ ρZ̄
)

.
(8)

Using the Woodbury matrix identity and the fact that

R̄T R̄ =
∑N

i=1 R
T
i Ri = nI, where I is the identity ma-

trix, the above is equal to

S̄ =

(

1

ρ
I−

1

ρ2
R̄

(

I+
1

ρ
R̄T R̄

)−1

R̄T

)

(

R̄X+ ρZ̄
)

=
(

I− R̄ (ρI+ nI)
−1

R̄T
)

(

1

ρ
R̄X+ Z̄

)

.

(9)

Plugging the definitions of R̄, S̄ and Z̄, we obtain

si =

(

1

ρ
RiX+DLαi − ui

)

−Ri





1

ρ+ n

N
∑

j=1

RT
j

(

1

ρ
RjX+DLαj − uj

)



 .

(10)

Although seemingly complicated at first glance, the above

is simple to interpret and implement in practice. This ex-

pression indicates that one should (i) compute the estimated

slices pi =
1
ρ
RiX+DLαi − ui, then (ii) aggregate them

to obtain the global estimate X̂ =
∑N

j=1 R
T
j pj , and finally
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Algorithm 1: Slice-based dictionary learning

Input : Signal X, initial dictionary DL

Output: Trained dictionary DL, needles {αi}
N
i=1 and

slices {si}
N
i=1

Initialization:

si =
1

n
RiX, ui = 0 (11)

for iteration = 1 : T do

Local sparse pursuit (needle):

αi = argmin
α̂i

ρ

2
‖si −DLα̂i + ui‖

2
2 + λ‖α̂i‖1

(12)Slice reconstruction:

pi =
1

ρ
RiX+DLαi − ui (13)

Slice aggregation:

X̂ =

N
∑

j=1

RT
j pj (14)

Slice update via local Laplacian:

si = pi −
1

ρ+ n
RiX̂ (15)

Dual variable update:

ui = ui + si −DLαi (16)

Dictionary update:

DL, {αi}
N
i=1 = argmin

DL,{α̂i}N

i=1

N
∑

i=1

‖si −DLα̂i + ui‖
2
2

s.t. supp(α̂i) = supp(αi)
(17)end

(iii) subtract from pi the corresponding patch from the ag-

gregated signal, i.e. RiX̂. As a remark, since this update

essentially subtracts from pi an averaged version of it, it

can be seen as a patch-based local Laplacian operation.

3.3. Boundary conditions

In the description of the CSC model (see Figure 2), we

assumed for simplicity circulant boundary conditions. In

practice, however, natural signals such as images are in gen-

eral not circulant and special treatment is needed for the

boundaries. One way of handling this issue is by assum-

ing that X = MDΓ, where M ∈ R
N×N+2(n−1) is matrix

that crops the first and last n − 1 rows of the dictionary D

(see Figure 2). The change needed in Algorithm 1 to in-

corporate M is minor. Indeed, one has to simply replace

the patch extraction operator Ri, with RiM
T , where the

operator MT ∈ R
N+2(n−1)×N pads a global signal with

n − 1 zeros on the boundary and Ri extracts a patch from

the result. In addition, one has to replace the patch place-

ment operator RT
i with MRT

i , which simply puts the input

in the location of the i-th patch and then crops the result.

3.4. From patches to slices

The ADMM variant of the proposed algorithm, named

slice-based dictionary learning, is summarized in Algo-

rithm 1. While we have assumed the data corresponds to

one signal X, this can be easily extended to consider sev-

eral signals.

At this point, a discussion regarding the relation between

this algorithm and standard (patch-based) dictionary learn-

ing techniques is in place. Indeed, from a quick glance

the two approaches seem very similar: Both perform lo-

cal sparse pursuit on local patches extracted from the sig-

nal, then update the dictionary to represent these patches

better, and finally apply patch-averaging to obtain a global

estimate of the reconstructed signal. Moreover, both iterate

this process in a block-coordinate descent manner in order

to minimize the overall objective. So, what is the difference

between this algorithm and previous approaches?

The answer lies in the migration from patches to slices.

While originally dictionary learning algorithms aimed to

represent patches RiX taken from the signal, our scheme

suggests to train the dictionary to construct slices, which

do not necessarily reconstruct the patch fully. Instead, only

the summation of these slices results in the reconstructed

patches. To illustrate this relation, we show in Figure 3

the decomposition of several patches in terms of their con-

stituent slices. One can observe that although the slices are

simple in nature, they manage to construct the rather com-

plex patches. The difference between this illustration and

that of Figure 1 is that the latter shows patches RiX and

only the slices that are fully contained in them.

Note that the slices are not mere auxiliary variables, but

rather emerge naturally from the convolutional formula-

tion. After initializing these with patches from the signal,

Figure 3: The first column contains patches extracted from

the training data, and second to eleventh columns are the

corresponding slices constructing these patches. Only the

ten slices with the highest energy are presented.
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si =
1
n
RiX, each iteration progressively “carves” portions

from the patch via the local Laplacian, resulting in simpler

constructions. Eventually, these variables are guaranteed to

converge to DLαi – the slices we have defined.

Having established the similarities and differences be-

tween the traditional patch-based approach and the slice

alternative, one might wonder what is the advantage of

working with slices over patches. In the conventional ap-

proach, the patches are processed independently, ignoring

their overlap. In the slice-based case, however, the local

Laplacian forces the slices to communicate and reach a con-

sensus on the reconstructed signal. Put differently, the CSC

offers a global model, while earlier patch-based methods

used local models without any holistic fusion of them.

4. Comparison to other methods

In this section we explain further the advantages of our

method, and compare it to standard algorithms for training

the CSC model such as [17, 28]. Arguably the main differ-

ence resides in our localized treatment, as opposed to the

global Fourier domain processing. Our approach enables

the following benefits:

1. The sparse pursuit step can be done separately for each

slice and is therefore trivial to parallelize.

2. The algorithm can work in a complete online regime

where in each iteration it samples a random subset of

slices, solves a pursuit for these and then updates the

dictionary accordingly. Adopting a similar strategy in

the competing algorithms [17, 28] might be problem-

atic, since these are deployed in the Fourier domain on

global signals and it is therefore unclear how to operate

on a subset of local patches.

3. Our algorithm can be easily modified to allow a differ-

ent number of non-zeros in each location of the global

signal. Such local complexity adaptation cannot be of-

fered by the Fourier-oriented algorithms.

We now turn to comparing the proposed algorithm to

alternative methods in terms of computational complexity.

Denote by I the number of signals on which the dictionary

is trained, and by k the maximal number of non-zeros in a

needle2
αi. At each iteration of our algorithm we employ

LARS that has a complexity of O(k3+mk2+nm) per slice

[20], resulting in O(IN(k3 +mk2 + nm) + nm2) compu-

tations for all N slices in all the I images. The last term,

nm2, corresponds to the precomputation of the Gram of the

dictionary DL (which is in general negligible). Then, given

the obtained needles, we reconstruct the slices, requiring

O(INnk), aggregate the results to form the global estimate,

2Although we solve the Lagrangian formulation of LARS, we also limit

the maximal number of non-zeros per needle to be at most k.

Method Time Complexity

[17]

I < m
mI

2
N + (q − 1)mIN

︸ ︷︷ ︸

linear systems

+ qImN log (N)
︸ ︷︷ ︸

FFT

+ qImN
︸ ︷︷ ︸

thresholding

[17]

I ≥ m
m

3
N + (q − 1)m

2
N

︸ ︷︷ ︸

linear systems

+ qImN log (N)
︸ ︷︷ ︸

FFT

+ qImN
︸ ︷︷ ︸

thresholding

Ours INnm + IN(k
3
+ mk

2
)

︸ ︷︷ ︸

LARS / OMP

+nm
2

︸ ︷︷ ︸

Gram

+ INk(n + m) + nm
2

︸ ︷︷ ︸

K-SVD

Table 1: Complexity analysis. For the convenience of the

reader, the dominant term is highlighted in red color.

incurring O(INn), and update the slices, which requires an

additional O(INn). These steps are negligible compared to

the sparse pursuits and are thus omitted in the final expres-

sion. Finally, we update the dictionary using the K-SVD,

which is O(nm2 + INkn + INkm) [25]. We summarize

the above in Table 1. In addition, we present in the same

table the complexity of each iteration of the (Fourier-based)

algorithm in [17]. In this case, q corresponds to the num-

ber of inner iterations in their ADMM solver of the sparse

pursuit and dictionary update.

The most computationally demanding step in our algo-

rithm is the local sparse pursuit, which is O(NI(k3+mk2+
nm)). Assuming that the needles are very sparse, which

indeed happens in all of our experiments, this reduces to

O(NImn). On the other hand, the complexity in the algo-

rithm of [17] is dominated by the computation of the FFT,

which is O(NImq log(N)). We conclude that our algo-

rithm scales linearly with the global dimension, while theirs

grows as N log(N). Note that this also holds for other re-

lated methods, such as that of [28], which also depend on

the global FFT. Moreover, one should remember the fact

that in our scheme one might run the pursuits on a small

percentage of the total number of slices, meaning that in

practice our algorithm can scale as O(µNInm), where µ is

a constant smaller than one.

5. Image processing via CSC

In this section, we demonstrate our proposed algorithm

on several image processing tasks. Note that the discus-

sion thus far focused on one dimensional signals, however

it can be easily generalized to images by replacing the con-

volutional structure in the CSC model with block-circulant

circulant-block (BCCB) matrices.

5.1. Image inpainting

Assume an original image X is multiplied by a diagonal

binary matrix A ∈ R
N×N , which masks the entries Xi in

which A(i, i) = 0. In the task of image inpainting, given

the corrupted image Y = AX, the goal is to restore the

original unknown X. One can tackle this problem by solv-

ing the following CSC problem

min
Γ

1

2
‖Y −ADΓ‖22 + λ‖Γ‖1, (18)
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where we assume the dictionary D was pretrained. Using

similar steps to those leading to Equation (4), the above can

be written as

min
{αi}

N

i=1
,{si}

N

i=1
,

{ui}
N

i=1

1

2
‖Y −A

N
∑

i=1

RT
i si‖

2
2

+

N
∑

i=1

(

λ‖αi‖1 +
ρ

2
‖si −DLαi + ui‖

2
2

)

.

(19)

This objective can be minimized via the algorithm described

in the previous section. Moreover, the minimization with

respect to the local sparse codes {αi}
N
i=1 remains the same.

The only difference regards the update of the slices {si}
N
i=1,

in which case one obtains the following expression

si =

(

1

ρ
RiY +DLαi − ui

)

−Ri





1

ρ+ n
A

N
∑

j=1

RT
j

(

1

ρ
RjY +DLαj − uj

)



 .

(20)

The steps leading to the above equation are almost identi-

cal to those in subsection 3.2, and they only differ in the

incorporation of the mask A.

5.2. Texture and cartoon separation

In this task the goal is to decompose an image X into

its texture component XT that contains highly oscillating

or pseudo-random patterns, and a cartoon part XC that is

a piece-wise smooth image. Many image separation al-

gorithms tackle this problem by imposing a prior on both

components. For cartoon, one usually employs the isotropic

(or anisotropic) Total Variation norm, denoted by ‖XC‖TV .

The modeling of texture, on the other hand, is more difficult

and several approaches have been considered over the years

[12, 2, 22, 32].

In this work, we propose to model the texture compo-

nent using the CSC model. As such, the task of separation

amounts to solving the following problem

min
DT ,ΓT ,

XC

1

2
‖X−DTΓT −XC‖

2
2 + λ ‖ΓT ‖1 + ξ‖XC‖TV ,

(21)

where DT is a convolutional (texture) dictionary, and ΓT is

its corresponding sparse vector. Using similar derivations

to those presented in Section 3.2, the above is equivalent to

min
DL,αi

T
,si

T
,

XC ,ZC

1

2

∥

∥

∥

∥

∥

X−

N
∑

i=1

RT
i s

i
T −XC

∥

∥

∥

∥

∥

2

2

+λ

N
∑

i=1

∥

∥α
i
T

∥

∥

1
+ ξ‖ZC‖TV

s.t. siT = DLα
i
T , XC = ZC ,

(22)

where we split the variable XC into XC = ZC in order

to facilitate the minimization over the TV norm. Its corre-

sponding ADMM formulation3 is given by

min
DL,αi

T
,si

T
,ui

T
,

XC ,ZC ,VC

1

2

∥

∥

∥

∥

∥

X−

N
∑

i=1

RT
i s

i
T −XC

∥

∥

∥

∥

∥

2

2

+

N
∑

i=1

(ρ

2

∥

∥siT −DLα
i
T + ui

T

∥

∥

2

2
+ λ

∥

∥α
i
T

∥

∥

1

)

+
η

2
‖XC − ZC +VC‖

2
2 + ξ‖ZC‖TV ,

(23)

where {siT }
N
i=1, {αi

T }
N
i=1 and {ui

T }
N
i=1 are the texture

slices, needles and dual variables, respectively, and VC is

the dual variable of the global cartoon XC . The above opti-

mization problem can be minimized by slightly modifying

Algorithm 1. The update for {αi}
N
i=1 is a sparse pursuit and

the update for the ZC variable is a TV denoising problem.

Then, one can update the {siT }
N
i=1 and XC jointly by

siT =
1

ρ
pi
T −

1
ρ

1 + n2

ρ
+ 1

η

Ri





1

ρ

N
∑

j=1

RT
j p

j
T +

1

η
QC





XC =
1

η
QC −

1
η

1 + n2

ρ
+ 1

η





1

ρ

N
∑

j=1

RT
j p

j
T +

1

η
QC



 ,

(24)

where pi
T = RiX + ρ

(

DLα
i
T − ui

T

)

and QC = X +
η (ZC −VC). The final step of the algorithm is updat-

ing the texture dictionary DL via any dictionary learning

method.

6. Experiments

We turn to demonstrate our proposed slice-based dic-

tionary learning. Throughout the experiments we use the

LARS algorithm [9] to solve the LASSO problem and the

K-SVD [1] for the dictionary learning. The reader should

keep in mind, nevertheless, that one could use any other

pursuit or dictionary learning algorithm for the respective

updates. In all experiments, the number of filters trained are

100 and they are of size 11× 11.

6.1. Slice­based dictionary learning

Following the test setting presented in [17], we run our

proposed algorithm to solve Equation (2) with λ = 1 on

the Fruit dataset [31], which contains ten images. As in

[17], the images were mean subtracted and contrast nor-

malized. We present in Figure 4 the dictionary obtained

3Disregarding the training of the dictionary, this is a standard two-

function ADMM problem. The first set of variables are {si
T
}N
i=1

and XC ,

and the second are {αi

T
}N
i=1

and ZC .
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after several iterations using our proposed slice-based dic-

tionary learning, and compare it to the result in [17] and

also to the method AVA-AMS in [28]. Note that all three

methods handle the boundary conditions, which were dis-

cussed in Section 3.3. We compare in Figure 5 the objective

of the three algorithms as function of time, showing that our

algorithm is more stable and also converges faster. In addi-

tion, to demonstrate one of the advantages of our scheme,

we train the dictionary on a small subset (30%) of all slices

and present the obtained result in the same figure.

(a) Proposed - Iteration 3. (b) Proposed - Iteration 300.

(c) [17]. (d) [28].

Figure 4: The dictionary obtained after 3 and 300 iterations

using the slice-based dictionary learning method. Notice

how the atoms become crisper as the iterations progress.

For comparison, we present also the result of [17] and [28].

Figure 5: Our method versus the those in [17] and [28].

6.2. Image inpainting

We turn to test our proposed algorithm on the task of im-

age inpainting, as described in Section 5.1. We follow the

experimental setting presented in [17] and compare to their

state-of-the-art method using their publicly available code.

The dictionaries employed in both approaches are trained

on the Fruit dataset, as described in the previous subsec-

tion (see Figure 4). For a fair comparison, in the inference

stage, we tuned the parameter λ for both approaches. Table

2 presents the results in terms of peak signal-to-noise ratio

(PSNR) on a set of publicly available standard test images,

showing our method leads to quantitatively better results4.

Figure 6 compares the two visually, showing our method

also leads to better qualitative results.

A common strategy in image restoration is to train the

dictionary on the corrupted image itself, as shown in [11],

as opposed to employing a dictionary trained on a separate

collection of images. The algorithm presented in Section

5.1 can be easily adapted to this framework by updating the

local dictionary on the slices obtained at every iteration. To

exemplify the benefits of this, we include the results5 ob-

tained by using this approach in Table 2 and Figure 6.

6.3. Texture and cartoon separation

We conclude by applying our proposed slice-based dic-

tionary learning algorithm to the task of texture and cartoon

separation. The TV denoiser used in the following exper-

iments is the publicly available software of [5]. We run

our method on the synthetic image Sakura and a portion

extracted from Barbara, both taken from [22], and on the

image Cat, originally from [32]. For each of these, we com-

pare with the corresponding methods. We present the re-

sults of all three experiments in Figure 7, together with the

4The PSNR is computed as 20 log(
√
N/‖X−X̂‖2), where X and X̂

are the original and restored images. Since the images are normalized, the

range of PSNR values is non-standard.
5A comparison with the method of [17] was not possible in this case, as

their implementation cannot handle training a dictionary on standard-sized

images.

Figure 6: Visual comparison on a cropped region extracted

from the image Barbara. Left: [17] (PSNR = 5.22dB). Mid-

dle: Ours (PSNR = 6.24dB). Right: Ours with dictionary

trained on the corrupted image (PSNR = 12.65dB).
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Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage

Heide et al. 11.00 10.29 10.18 11.77 9.41 9.74 11.99 15.55 10.37 11.60 15.11

Proposed 11.67 10.33 10.56 11.92 9.18 9.95 12.25 16.04 10.66 11.84 15.40

Image specific 15.20 11.60 11.77 12.35 11.45 10.68 12.41 16.07 10.90 11.71 15.67

Table 2: Comparison between the slice-based dictionary learning and the algorithm in [17] on the task of image inpainting.

(a) Original image. (b) Enhanced output.

Figure 8: Enhancement of the image Flower via cartoon-

texture separation.

trained dictionaries. Lastly, as an application for our tex-

ture separation algorithm, we enhance the image Flower by

multiplying its texture component by a scalar factor (greater

than one) and combining the result with the original image.

We treat the colored image by transforming it to the Lab

color space, manipulating the L channel, and finally trans-

forming the result back to the original domain. The original

image and the obtained result are depicted in Figure 8. One

can observe that our approach does not suffer from halos,

gradient reversals or other common enhancement artifacts.

7. Conclusion

In this work we proposed the slice-based dictionary

learning algorithm. Our method employs standard patch-

based tools from the realm of sparsity to solve the global

CSC problem. We have shown the relation between our

method and the patch-averaging paradigm, clarifying the

main differences between the two: (i) the migration from

patches to the simpler entities called slices, and (ii) the ap-

plication of a local Laplacian that results in a global consen-

sus. Finally, we illustrated the advantages of the proposed

algorithm in a series of applications and compared it to re-

lated state-of-the-art methods.
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Figure 7: Texture and cartoon separation for the images Sakura, Barbara and Cat.
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