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Abstract

In multi-class indoor semantic segmentation using RGB-

D data, it has been shown that incorporating depth feature

into RGB feature is helpful to improve segmentation accu-

racy. However, previous studies have not fully exploited the

potentials of multi-modal feature fusion, e.g., simply con-

catenating RGB and depth features or averaging RGB and

depth score maps. To learn the optimal fusion of multi-

modal features, this paper presents a novel network that ex-

tends the core idea of residual learning to RGB-D seman-

tic segmentation. Our network effectively captures multi-

level RGB-D CNN features by including multi-modal fea-

ture fusion blocks and multi-level feature refinement blocks.

Feature fusion blocks learn residual RGB and depth fea-

tures and their combinations to fully exploit the comple-

mentary characteristics of RGB and depth data. Feature

refinement blocks learn the combination of fused features

from multiple levels to enable high-resolution prediction.

Our network can efficiently train discriminative multi-level

features from each modality end-to-end by taking full ad-

vantage of skip-connections. Our comprehensive experi-

ments demonstrate that the proposed architecture achieves

the state-of-the-art accuracy on two challenging RGB-D in-

door datasets, NYUDv2 and SUN RGB-D.

1. Introduction

Semantic segmentation that assigns all pixels into dif-

ferent semantic classes is a fundamental task for visual

scene understanding. In the past, there was broad research

for semantic segmentation based on conditional random

field (CRF) using conventional hand-crafted visual features

[34, 23, 41]. Recently, deep convolutional neural networks

(DCNNs) have achieved great success in image classifi-

cation task [22, 43, 36, 14]. Built on the success of im-

age recognition using DCNNs, many semantic segmenta-

tion methods have also adopted DCNNs by extending them

to fully convolutional pixel-wise classification [30, 4, 42].

Figure 1. Diagram of the proposed RDFNet for RGB-D seman-

tic segmentation. The network fistly fuses multi-modal features

through a block called MMFNet and refines the fused features

through a series of RefineNet blocks.

Subsequent research [45, 29, 1, 3, 28] that incorporates the

CRF framework into DCNN further improved the accuracy.

However, indoor semantic segmentation is still one of the

most challenging problem due to complex and various ob-

ject configurations with severe occlusions.

With the availability of commercial RGB-D sensors such

as Microsoft Kinect [44], it has been consistently proved

that utilizing features extracted from depth information is

useful to reduce the uncertainty for recognizing objects

[32, 10, 20, 35, 6, 5, 11, 7, 25, 39, 13]. Depth features can

describe 3D geometric information which might be missed

in RGB-only features. To extract useful features from both

RGB and depth data, it is crucial to develop an effective

method for fusing two modalities. There have been many
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attempts to utilize the depth information for semantic seg-

mentation in different ways.

Previously most methods [32, 10, 20, 35, 6] designed

hand-crafted depth features and constructed various mod-

els to classify each region or pixel. In contrast, recent ap-

proaches [5, 11, 7, 25, 39, 13] employ DCNNs which suc-

cessfully learn informative RGB features from low level

primitives for high level semantics. As the main issue of

RGB-D semantic segmentation is how to effectively ex-

tract and fuse depth features along with color features, vari-

ous approaches have been proposed to exploit the ability of

DCNN for integrating depth information. The approaches

include concatenating input RGB and D channels, fusing

score maps computed from each modality, extracting com-

mon and specific features for different modalities, and so

on. Although previous approaches achieved meaningful re-

sults, there has been a lack of research that fully utilizes re-

cent successful CNN architectures using skip-connections.

In the case of RGB semantic segmentation, Lin et al. [26]

has recently achieved great success in utilizing multi-level

RGB features with different resolutions by iteratively fus-

ing and refining them. They designed a network called Re-

fineNet by taking advantage of residual learning with skip-

connection [14, 15] that enables effortless backpropagation

of gradients during training. The multi-level features in

RefineNet are connected through the short and long-range

residual connections and thus can be efficiently trained and

merged into a high-resolution feature map.

Inspired by the work, we present a novel RGB-D fusion

network (RDFNet) that extends the core idea of residual

learning to RGB-D semantic segmentation. We extend the

RefineNet to effectively extract and fuse RGB and depth

features through residual feature fusion. Our network con-

sists of two feature fusion blocks: multi-modal feature fu-

sion (MMF) block and multi-level feature refinement (Re-

fine) block (Figure 1). The MMF block is crucial to ex-

ploit different modality of RGB and depth features. The

block is constructed by mimicking the RefineNet block but

with different inputs; The inputs are multi-level RGB and

depth features computed from deep residual network [14].

Then, it fuses the different modality features through resid-

ual convolutional units and feature adaptation convolution,

followed by optional residual pooling. The MMF block

adaptively trains residual feature to effectively fuse the

complementary features in different modalities, while learn-

ing the relative importance of each modality feature. The

block is subsequently followed by the Refine block to fur-

ther process the fused features for high-resolution seman-

tic segmentation. In this architecture, discriminative multi-

level RGB and depth features can be effectively trained and

fused, while retaining the key advantage of the skip con-

nection, i.e., all the gradients effectively flow backwards

through residual connections to the ResNet input features.

Our main contributions can be summarized as follows:

1. We propose a network that effectively extracts and

fuses multi-level RGB-D features in very deep network

by extending the core idea of residual learning to RGB-

D semantic segmentation.

2. Our multi-modal feature fusion block enables efficient

end-to-end training of discriminative RGB-D features

on a single GPU by taking full advantage of residual

learning with skip-connection.

3. We show that our network for RGB-D semantic seg-

mentation outperforms existing methods and achieves

the state-of-the-art performance on two public RGB-D

datasets, NYUDv2 and SUN RGB-D.

2. Related Work

Since great advance in image classification task using

DCNN [22, 43, 36, 14], most recent semantic segmenta-

tion methods have employed DCNN. Long et al. [30] pro-

posed a fully convolutional network (FCN) that extended

DCNN image classification to dense pixel-wise classifica-

tion by convolutionalization.

The main limitation of the FCN-based methods is low-

resolution prediction due to multiple pooling operations. To

resolve the limitation, there have been various approaches.

One approach [42, 4] employed astrous convolution, also

known as dilated convolution, which supports exponential

expansion of the receptive field without loss of resolution.

Chen et al. [4] additionally applied dense CRF method

[21] to achieve detailed final prediction. Several follow-

up studies [45, 29, 1, 3, 28] proposed sophisticated meth-

ods to combine CRF framework into DCNNs. Another

approach [31, 2, 19] learned multiple deconvolution layers

from low-resolution features to upsample the coarse feature

map while recovering detailed boundaries.

The other approach [30, 12, 2, 33, 17, 26] exploited

middle layer features to achieve high-resolution prediction.

Long et al. [30] designed a skip architecture and merged

score maps computed from multi-level features to obtain

the final prediction. Hariharan et al. [12] constructed a fea-

ture vector called hypercolumn for every location by stack-

ing features from some or all of the layers in the network.

Several methods [2, 33, 17] applied skip-connections in fea-

ture upsampling procedures using deconvolution. In partic-

ular, Lin et al. [26] very recently achieved large improve-

ment by designing a network called RefineNet that itera-

tively refines higher-level features by employing low-level

features through residual connections. The network effec-

tively conveys the low-level features as well as semantic

high-level features and it can be efficiently trained end-to-

end. Our RGB-D network revises this state-of-the-art archi-

tecture and takes the same advantage.
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(a) (b)

(c) (d)

Figure 2. Different existing architectures for RGB-D semantic segmentation. (a) early fusion, (b) late fusion, (c) the architecture proposed

by [39], (d) the architecture proposed by [13], where ‘C’, ‘T’, and ‘+’ represent the concatenation, transformation, and element-wise

summation, respectively.

For indoor semantic segmentation, a variety of methods

utilizing depth information have been studied. Previously,

most methods [32, 10, 20, 35, 6] computed hand-crafted

features specifically designed for capturing depth features

as well as color features. Then, they constructed a model

to classify each region such as superpixel based on the fea-

tures.

In contrast, recent methods [5, 11, 7, 25, 39, 13] usu-

ally employ DCNN that automatically trains features cap-

turing different levels of representations. Couprie et al. [5]

extended multi-scale RGB CNN architecture [8] to RGB-

D situation by simply concatenating input color and depth

channels, i.e., early fusion (Figure 2 (a)). Long et al. [30]

additionally reported the result of fusing two predictions

made by each RGB and depth modality, i.e., late fusion

(Figure 2 (b)), as well as the result of early fusion. Gupta

et al. [11] generalized the R-CNN system introduced by

Girshick et al. [9] to leverage depth information. For that

purpose, they encoded the depth image with three channels

called HHA at each pixel: horizontal disparity, height above

ground, and angle with gravity. Li et al. [25] captured and

fused contextual information from RGB and depth features

through bi-directional vertical and horizontal LSTM layers

[38]. They used rather simple architecture especially for

depth feature and partly utilized only RGB intermediate fea-

tures through simple feature concatenation.

There have been encoder-decoder architectures [39, 13]

similarly to RGB deconvolution-based methods. Wang et

al. [39] proposed a structure for deconvolution of multi-

ple modalities (Figure 2 (c)). It contains additional feature

transformation network that correlates the two modalities

by discovering common and modality specific features. It

does not exploit any informative intermediate features of

both modalities and it adopts simple score fusion of two

modalities at the end of the network for final prediction.

The training procedures consist of two stages rather than

end-to-end. Hazirbas et al. [13] proposed a method that ex-

ploits intermediate depth features (Figure 2 (d)). However,

as they simply sum intermediate RGB and depth features

only in encoder part, it does not fully exploit effective mid-

level RGB-D features, reporting accuracy worse than the

state-of-the-art RGB-only CNN architecture [27].

In this paper, we propose a network that effectively ex-

ploits multi-level RGB and depth features simultaneously.

Our network is trained to obtain optimal fusion of two com-

plementary modality features through residual learning with

skip-connection and iteratively refines the fused features.

The multi-path residual feature fusion with skip-connection

allows the backward gradient to easily propagate to both

RGB and depth layers. In this way, the network trains end-

to-end the discriminative RGB-D features which should be

fused from low to high level.

3. Multi-level Residual Feature Fusion

Utilizing multi-level features is important for high reso-

lution dense prediction. Existing RGB-D semantic segmen-

tation approaches do not effectively extract or fuse those

features in the two modalities. We propose a network that

exploits multi-level RGB-D features and effectively fuses

the features in different modalities through residual learn-

ing with skip-connections.
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Figure 3. Building blocks of the network proposed by [26]. Left: network architecture for semantic segmentation. Right: detailed diagram

of RefineNet block.

Figure 4. Details of the sub-modules in RefineNet.

In this section, we first review the recently proposed Re-

fineNet architecture [26] that achieved great success in RGB

semantic segmentation by employing residual connections.

Then, we describe our network that extends the RefineNet

to effectively train the way to extract and fuse multi-level

RGB and depth features for indoor semantic segmentation.

3.1. Review of RefineNet

Recently ResNet [14, 15] has shown outstanding perfor-

mance on image recognition. The simplest way to employ

the ResNet to semantic segmentation is replacing the single

label prediction layer with a dense prediction layer. How-

ever, it outputs prediction with 32 times smaller in each spa-

tial dimension than the original image. To address the lim-

itation, RefineNet iteratively refines higher-level features

by incorporating low-level features through sub-building

blocks, called RefineNet (Figure 3).

The RefineNet takes as inputs each multi-level ResNet

feature through skip connection and the previously re-

fined feature. Then, those features are refined and fused

through a series of sub-components: residual convolutional

unit, multi-resolution fusion, and chained residual pool-

ing (Figure 4); The residual convolution unit (RCU) is

an adaptive convolution set that fine-tunes the pretrained

ResNet weights for semantic segmentation. The multi-

resolution fusion block fuses the multi-path input into a

higher-resolution feature map. One convolution in the block

is for input adaptation, which matches the number of feature

channels and re-scales the feature values appropriately for

summation. The purpose of chained residual pooling (CRP)

is to encode contextual information from a large region. The

block consists of a chain of multiple pooling blocks, each

consisting of one max-pooling layer and one convolution

layer. The pooling operation has an effect that spreads the

large activation values which can be accessed from nearby

locations as contextual features. The additional convolution

layer learns the importance of the pooled feature, which is

fused to the original feature through residual connection.

There is an additional RCU at the end of the RefineNet to

employ non-linearity operations on the fused feature maps.

The core design philosophy of the RefineNet is mo-

tivated by the advantage of identity mapping with skip-

connection [15]. The residual connections enable efficient

backward propagation of gradients through RefineNet and

facilitates end-to-end training of the multi-path network.

3.2. Our RDFNet with Multi­Modal Feature Fusion

The main issue of RGB-D semantic segmentation is how

to effectively extract depth features along with color fea-

tures and to utilize those features for the desired task of se-

mantic segmentation. The RefineNet described in Section

3.1 proposed a generic means for fusing different levels of
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Figure 5. Diagram of our multi-modal feature fusion (MMF) network.

features, which is more effective than simple feature con-

catenation. In this paper, we employ a similar architecture

for multi-modal CNN feature fusion while retaining the ad-

vantage of skip connection.

Our RDFNet extends the RefineNet to handle multi-

modal feature fusion and includes RefineNet blocks for

fused feature refinement. The overall diagram of our net-

work is illustrated in Figure 1. Differently from existing

networks that utilize depth information (Figure 2), our net-

work is designed to fully exploit multi-level depth features

through MMF blocks with an additional deep depth feature

path based on ResNet [14].

The detailed components of our MMFNet is shown in

Figure 5. Our feature fusion block consists of the same

components as in RefineNet but with different inputs, from

which desired operations are slightly different. Given RGB

and depth ResNet features, our MMFNet first reduces the

dimension of each feature through one convolution to fa-

cilitate efficient training while mitigating explosion of pa-

rameters. Then, each feature goes through two RCUs and

one convolution as in RefineNet. There is a certain dif-

ference between the purpose of RCUs in MMFNet and

those in RefineNet. The RCUs in our MMFNet are desired

to perform some nonlinear transformations specifically for

modality fusion. Two features in different modalities are

complementarily combined to improve each other through

the operations, where as those in RefineNet are mainly to

refine coarse higher level feature by employing lower level

feature with higher-resolution. Subsequent additional con-

volution in MMFNet is crucial to adaptively fuse features

in different modalities as well as re-scaling the feature val-

ues appropriately for summation. As color features gener-

ally have better discrimination power than depth features for

semantic segmentation, the summation fusion in the block

mainly works to learn supplementary or residual depth fea-

tures which might improve RGB features to discriminate

confusing patterns. The importance of each modality fea-

ture can be controlled by the learnable parameters in the

convolution after RCUs.

Finally, we perform an additional residual pooling op-

eration to incorporate certain contextual information in the

fused feature. We found one residual pooling in MMFNet of

each level is enough. The stronger contextual information

can be further incorporated in the following multi-level fu-

sion through RefineNet blocks. Note that we skip the addi-

tional RCU at the end of original RefineNet in our MMFNet

because the output of our MMFNet directly goes through

the RCUs in the fore part of the RefineNet.

Our network is constructed to retain the philosophy of

the RefineNet by employing residual learning with skip-

connections through all the layers, which facilitates both of

effective multi-level RGB and depth feature extraction and

efficient end-to-end training.

3.3. Architecture details

Following the success of Gupta et al. [11], We encode

the depthmap to a 3D image called HHA [10], which can be

directly used as an input of the pre-trained network path for

depth feature along with fine-tuning. The HHA representa-

tion encodes the properties of geocentric poses that empha-

size complementary discontinuities in the image, which is

hard to be trained through convolutional network. We com-

pute depth features through ResNet with the same number

of layers as RGB.

As depicted in Figure 1, we utilize 4-level RGB and

depth features with different resolutions similarly to the

RefineNet. We take res5, res4, res3, and res2 features in

ResNet [14] as inputs to our MMFNet. For each MMFNet,

we include a dropout layer for regularization with ratio

of 0.5 before 1×1 convolution. The MMFNet consists

of ReLU nonlinearity, 3×3 convolution, and 5×5 pooling

layer with stride of 1 and the number of filters (channels) in
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the block is set to 512 for MMFNet-4 and 256 for the oth-

ers. RefineNet blocks take the fused features and the pre-

viously refined feature as inputs except RefineNet-4 which

only takes a fused feature from res5. The RefineNet-4 does

not perform multi-resolution fusion. The number of fil-

ters in each RefineNet is set to the same as those of each

MMFNet output. Final feature map obtained by RefineNet-

1 goes through two additional RCUs, then another 1×1 con-

volution for the prediction with a dropout layer with ratio of

0.5. We add a softmax loss layer for loss computation. Our

network with MMF blocks can be efficiently trained on a

single GPU while fully utilizing the potentials of extremely

deep RGB-D network.

4. Experiments

In this section, we evaluate our network through compre-

hensive experiments. We use two publicly available RGB-

D datasets: NYUDv2 [35] and SUN RGB-D [37]. For the

evaluation, we report three types of metrics (pixel accuracy,

mean accuracy, and mean intersection over union (IoU))

widely-used to measure the performance of semantic seg-

mentation [30]. As mentioned before, we use HHA encod-

ing computed from a depthmap as our depth modality input.

4.1. Training details

We implemented our network using the publicly avail-

able Caffe toolbox [18] with an Nvidia GTX Titan X GPU.

We employed general data augmentation schemes: random

scaling, random cropping, and random flipping. We applied

test-time multi-scale evaluation for all experiments by aver-

aging the resulting predictions. We set the momentum and

weight decay to 0.9 and 0.0005, respectively. We used the

initial learning rate of 10−4 and divided it by 10 when the

loss converges to a certain range and stops decreasing. We

multiplied the learning rate by 0.1 for the base ResNet lay-

ers. All the parameters not in the base ResNet are initialized

by a normal distribution with zero mean and 10
−2 variance,

while the biases were initialized with zero.

4.2. NYUDv2

NYUDv2 [35] is one of the most popular RGB-D

dataset, which contains 1449 densely labeled pairs of RGB

and depth images captured by using Microsoft Kinect. The

dataset also provides inpainted depthmaps computed by the

colorization method of Levin et al. [24], and we used the

inpainted depthmaps for experiments. Following the stan-

dard train/test split, we use 795 training images and 654 test

images. We evaluate our network for 40 classes using the

labels provided by [10].

We first compare our RDFNet with the existing indoor

semantic segmentation methods using CNN features. The

results are shown in Table 1. It shows that our network

outperforms all existing RGB-D methods as well as RGB

data pixel acc. mean acc. IoU

Gupta et al. [11] RGB-D - 35.1 -

Eigen et al. [7] RGB-D 65.6 45.1 34.1

FCN [30] RGB-D 65.4 46.1 34.0

Wang et al. [39] RGB-D - 47.3 -

Context [27] RGB 70.0 53.6 40.6

Refine-101 [26] RGB 72.8 57.8 44.9

Refine-152 [26] RGB 73.6 58.9 46.5

RDF-152 (ours) RGB-D 76.0 62.8 50.1

Table 1. Semantic segmentation accuracy on NYUDv2. Our

RDFNet outperforms all existing methods.

pixel acc. mean acc. IoU

RDF-50 74.8 60.4 47.7

RDF-101 75.6 62.2 49.1

RDF-152 76.0 62.8 50.1

Table 2. Semantic segmentation accuracy on NYUDv2 of our net-

work with variants of the pre-trained residual network.

methods, demonstrating that our network effectively uti-

lizes depth information. It improves the accuracy of RGB-

only RefineNet by 2.4%, 3.9%, and 3.6% for pixel accuracy,

mean accuracy, and mean IoU, respectively.

As the multi-level features of our network are not lim-

ited to a specific pre-trained network, we report the accura-

cies of our network using residual networks with different

number of layers, i.e., Res-50, Res-101, and Res-152. The

results are shown in Table 2. It shows that the deeper the

network becomes, the better results we generally get, while

the amount of improvement decreases. It is noteworthy that

the accuracy of our network with Res-50 using RGB-D data

(RDF-50) is higher than those of RefineNet with Res-152

using RGB data (Refine-152 [26]).

Class-wise accuracies of our results compared with those

of RefineNet are shown in Table 3. Our results show signifi-

cant improvement in most categories by effectively employ-

ing depth features, especially in categories with clear geo-

metric distinction such as table, counter, and dresser. The

lower accuracy reported for the board class is due to the fact

that there are few images containing boards in the dataset. It

is also hard to improve the discrimination between a board

and a picture with little geometric differences even using

additional depth features.

We validate our network in Table 4 by comparing with

other variants. Here we use Res-101 for the experiments.

We first report the accuracies of depth-only networks to

show that the RefineNet also works properly for extract-

ing depth features from HHA encoding, which validates

our choice of depth feature part. We trained a RefineNet

model based on ResNet features finetuned using only HHA

input. The accuracy of RefineNet only using HHA (Refine-

HHAonly) is even higher than FCN using both RGB and

HHA. This result demonstrates that ResNet with finetuning
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wall floor cabinet bed chair sofa table door window bkshelf

Refine-101 [26] 77.5 82.9 58.7 65.7 59.1 57.8 40.1 36.7 45.8 42.8

RDF-101 78.8 87.3 63.0 71.6 65.1 62.8 49.7 39.5 48.5 46.5

RDF-152 79.7 87.0 60.9 73.4 64.6 65.4 50.7 39.9 49.6 44.9

picture counter blind desk shelf curtain dresser pillow mirror mat

Refine-101 [26] 60.1 56.8 61.4 22.6 12.3 53.5 38.3 39.6 38.7 29.7

RDF-101 60.8 65.5 61.5 30.8 12.4 54.0 54.0 46.6 55.5 41.6

RDF-152 61.2 67.1 63.9 28.6 14.2 59.7 49.0 49.9 54.3 39.4

cloths ceiling books refridg tv paper towel shower box board

Refine-101 [26] 24.4 66.0 33.0 52.4 52.6 31.3 36.8 23.6 11.1 63.7

RDF-101 26.3 69.7 36.0 55.7 63.2 34.6 39.1 38.5 13.1 46.0

RDF-152 26.9 69.1 35.0 58.9 63.8 34.1 41.6 38.5 11.6 54.0

person stand toilet sink lamp bathtub bag othstr othfurn othprop

Refine-101 [26] 78.6 38.6 68.4 53.2 45.9 32.9 14.6 32.9 18.7 36.4

RDF-101 81.8 42.5 68.9 56.1 45.8 49.0 13.4 31.0 19.5 38.6

RDF-152 80.0 45.3 65.7 62.1 47.1 57.3 19.1 30.7 20.6 39.0

Table 3. Class-wise semantic segmentation accuracy (IoU) on NYUDv2.

pixel acc. mean acc. IoU

FCN32-HHAonly 58.3 35.7 25.2

Refine-HHAonly 66.5 46.5 36.3

Refine-Concat 74.5 59.2 47.0

RDF-101 75.6 62.2 49.1

-Without RP 75.4 61.1 48.7

-Without conv 74.7 59.6 47.7

-Without skip 73.8 58.7 45.8

RDF-101-depth 75.3 60.9 48.2

Table 4. Comparison for different variants of network.

can extract appropriate features from depth data.

We also compare our MMFNet with a baseline fusion

method. For the comparison, we replace our MMFNet with

feature concatenation fusion with additional dropout layer

and one convolution layer for dimension reduction. Here

we only compare with the multi-level concatenation fusion

(Refine-Concat) because we found that it generally shows

better accuracy than other fusion architectures (early fusion,

late fusion, and other variations). Note that the results show

that our MMFNet effectively utilizes multi-modal features,

achieving higher accuracies for all metrics, specifically by

1.1%, 3.0%, and 2.1%, respectively. It confirms that the im-

provement specifically comes from MMF rather than simple

addition of depth information.

We additionally conduct ablative experiments for our

MMFNet by successively eliminating each component (Ta-

ble 4). Without residual pooling (Without RP) the accu-

racy decreases slightly, which means the additional residual

pooling is rather optional. We found further pooling did

not improve the accuracy. However, the experiments show

that the other components are crucial for effective feature

fusion. Without the convolution (Without conv) that adap-

data pixel acc. mean acc. IoU

Ren et al. [32] RGB-D - 36.3 -

B-SegNet [19] RGB 71.2 45.9 30.7

LSTM [25] RGB-D - 48.1 -

FuseNet [13] RGB-D 76.3 48.3 37.3

Context [28] RGB 78.4 53.4 42.3

Refine-152 [26] RGB 80.6 58.5 45.9

RDF-152 (ours) RGB-D 81.5 60.1 47.7

Table 5. Semantic segmentation accuracy on SUN RGB-D. Our

RDFNet achieves the state-of-the-art accuracy.

tively controls the weight to fuse each modality feature, we

obtained much less accuracy while it is only slightly higher

than those of concat fusion. We additionally report the accu-

racy without skip connection in RCUs (Without skip). Here

the features directly go through the nonlinearity transforma-

tions and sum fusion. By comparing the accuracies, we can

see the importance of skip connection for effective end-to-

end training of multi-level features.

We finally report the result of our network trained di-

rectly on depth data instead of HHA to show that our

network can be applied to different types of RGBD in-

puts. We preprocessed the depth to roughly scale the val-

ues into the range of 0 ∼ 255. Specifically, we simply used

k/depth, similarly to the disparity channel in HHA, where

k is a constant. The result (RDF-101-depth) shows consis-

tent improvement over RefineNet while slightly worse than

our RDFNet with HHA (RDF-101). It indicates that our

RDFNet can efficiently learn to extract meaningful features

directly from the depth data as well.

4.3. SUN RGB­D

SUN RGB-D dataset [37] has been built for a large-scale

RGB-D benchmark. The dataset consists of 10335 pairs of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 6. Qualitative results of our RDFNet compared with RefineNet [26]. From left to right for each example: image, ground truth, the

results obtained by RefineNet, and ours. Note that the depth features help to discriminate regions that might be confusing only with color

features, e.g., pillow with patterns similar to bed (a), the door with a homogeneous pattern (b, e), ceiling with clear geometric distinction

(c), counter with vertical surface normal (d, f), cabinet with low illumination (g), mirror reflecting other color patterns (a, b), floor mat on

the floor (h), and top surface of a table (c,i). The last example shows a failure case of ours (j). Best viewed in color.

RGB and depth images captured from four different depth

sensors, which contains images from NYUDv2 depth [35],

Berkeley B3DO [16], and SUN3D [40], as well as newly

captured images. We use the standard split of 5285 training

images and 5050 test images with pixel-wise labeling of 37

classes for evaluation.

Table 5 shows that our network outperforms existing

RGB-D methods by a large margin. It also achieves the

state-of-the-art accuracy for all metrics, improving the ac-

curacy of RGB-only RefineNet by a considerable amount.

The ability of depth feature might be slightly diminished

for this dataset because it contains many bad depth images

with invalid measurements, e.g., images obtained by Re-

alSense RGB-D camera. Nevertheless, the results demon-

strate that our network learns effective RGB-D features on a

large-scale dataset even without manually weeding the bad

images out.

4.4. Qualitative results

We show some qualitative results of ours compared with

RefineNet [26] in Figure 6. We obtained the results of the

RefineNet by running the publicly available source code

with the provided model based on Res-101. We compare

the results with our RDF-101 using RGB-D inputs. The

comparisons illustrate that our network effectively utilizes

depth features to discriminate regions that might be confus-

ing with only color features.

5. Conclusion

We proposed a novel network that takes full advantage of

residual learning with skip-connection to extract effective

multi-modal CNN features for semantic segmentation. The

residual architecture facilitates efficient end-to-end training

of very deep RGB-D CNN features on a single GPU. Our

MMFNet shows that the recent multi-level feature refine-

ment architecture [26] can be effectively extended to utilize

features in different modalities, while retaining the advan-

tage of skip-connection. Our experiments demonstrated that

the proposed network outperforms existing methods, ob-

taining the state-of-the-art mean IoUs of 50.1% and 47.7%

for NYUDv2 and SUN RGB-D indoor datasets, respec-

tively.
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