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Abstract

This paper presents a framework for localization or

grounding of phrases in images using a large collection

of linguistic and visual cues. We model the appearance,

size, and position of entity bounding boxes, adjectives that

contain attribute information, and spatial relationships be-

tween pairs of entities connected by verbs or prepositions.

Special attention is given to relationships between people

and clothing or body part mentions, as they are useful for

distinguishing individuals. We automatically learn weights

for combining these cues and at test time, perform joint in-

ference over all phrases in a caption. The resulting system

produces state of the art performance on phrase localiza-

tion on the Flickr30k Entities dataset [33] and visual rela-

tionship detection on the Stanford VRD dataset [27].1

1. Introduction

Today’s deep features can give reliable signals about a

broad range of content in natural images, leading to ad-

vances in image-language tasks such as automatic cap-

tioning [6, 14, 16, 17, 42] and visual question answer-

ing [1, 8, 44]. A basic building block for such tasks is lo-

calization or grounding of individual phrases [6, 16, 17, 28,

33, 40, 42]. A number of datasets with phrase grounding

information have been released, including Flickr30k Enti-

ties [33], ReferIt [18], Google Referring Expressions [29],

and Visual Genome [21]. However, grounding remains

challenging due to open-ended vocabularies, highly unbal-

anced training data, prevalence of hard-to-localize entities

like clothing and body parts, as well as the subtlety and va-

riety of linguistic cues that can be used for localization.

The goal of this paper is to accurately localize a bound-

ing box for each entity (noun phrase) mentioned in a caption

for a particular test image. We propose a joint localization

objective for this task using a learned combination of single-

phrase and phrase-pair cues. Evaluation is performed on the

1Code: https://github.com/BryanPlummer/pl-clc

A man carries a baby under a red 
and blue umbrella next to a woman 

in a red jacket!

Input Sentence and Image! Cues! Examples!

1)! Entities!
man, baby, umbrella, 

woman, jacket !

2)! Candidate Box Position ! ——!

3)! Candidate Box Size ! ——!

4)!
Common Object !
Detectors !

man →!
baby →!

woman →!

 person !
 person !
 person!

5)! Adjectives!
umbrella →!
umbrella →!

jacket →!

 red !
 blue!
 red !

6)! Subject - Verb! (man, carries)!

7)! Verb – Object !  (carries, baby)!

8)! Verbs! (man, carries, baby)!

9)! Prepositions!
(baby, under, umbrella)!
(man, next to, woman)!

10)!Clothing & Body Parts ! (woman, in, jacket)!

Figure 1: Left: an image and caption, together with ground truth bounding

boxes of entities (noun phrases). Right: a list of all the cues used by our

system, with corresponding phrases from the sentence.

challenging recent Flickr30K Entities dataset [33], which

provides ground truth bounding boxes for each entity in the

five captions of the original Flickr30K dataset [43].

Figure 1 introduces the components of our system using

an example image and caption. Given a noun phrase ex-

tracted from the caption, e.g., red and blue umbrella, we ob-

tain single-phrase cue scores for each candidate box based

on appearance (modeled with a phrase-region embedding as

well as object detectors for common classes), size, position,

and attributes (adjectives). If a pair of entities is connected

by a verb (man carries a baby) or a preposition (woman

in a red jacket), we also score the pair of corresponding

candidate boxes using a spatial model. In addition, actions

may modify the appearance of either the subject or the ob-

ject (e.g., a man carrying a baby has a characteristic appear-

ance, as does a baby being carried). To account for this, we

learn subject-verb and verb-object appearance models for

the constituent entities. We give special treatment to rela-

tionships between people, clothing, and body parts, as these

are commonly used for describing individuals, and are also

among the hardest entities for existing approaches to local-

ize. To extract as complete a set of relationships as possible,

we use natural language processing (NLP) tools to resolve

pronoun references within a sentence: e.g., by analyzing the
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Method

Single Phrase Cues Phrase-Pair Spatial Cues Inference

Phrase-Region Candidate Candidate Object
Adjectives Verbs

Relative Clothing & Joint

Compatibility Position Size Detectors Position Body Parts Localization

Ours X X X X* X X X X X

(a) NonlinearSP [40] X – – – – – – – –

GroundeR [34] X – – – – – – – –

MCB [8] X – – – – – – – –

SCRC [12] X X – – – – – – –

SMPL [41] X – – – – – X* – X

RtP [33] X – X X* X* – – – –

(b) Scene Graph [15] – – – X X – X – X

ReferIt [18] – X X X X* – X – –

Google RefExp [29] X X X – – – – – –

Table 1: Comparison of cues for phrase-to-region grounding. (a) Models applied to phrase localization on Flickr30K Entities. (b) Models on related tasks.

* indicates that the cue is used in a limited fashion, i.e. [18, 33] restricted their adjective cues to colors, [41] only modeled possessive pronoun phrase-pair

spatial cues ignoring verb and prepositional phrases, [33] and we limit the object detectors to 20 common categories.

sentence A man puts his hand around a woman, we can de-

termine that the hand belongs to the man and introduce the

respective pairwise term into our objective.

Table 1 compares the cues used in our work to those in

other recent papers on phrase localization and related tasks

like image retrieval and referring expression understanding.

To date, other methods applied to the Flickr30K Entities

dataset [8, 12, 34, 40, 41] have used a limited set of single-

phrase cues. Information from the rest of the caption, like

verbs and prepositions indicating spatial relationships, has

been ignored. One exception is Wang et al. [41], who tried

to relate multiple phrases to each other, but limited their re-

lationships only to those indicated by possessive pronouns,

not personal ones. By contrast, we use pronoun cues to the

full extent by performing pronominal coreference. Also,

ours is the only work in this area incorporating the visual

aspect of verbs. Our formulation is most similar to that

of [33], but with a larger set of cues, learned combination

weights, and a global optimization method for simultane-

ously localizing all the phrases in a sentence.

In addition to our experiments on phrase localization, we

also adapt our method to the recently introduced task of

visual relationship detection (VRD) on the Stanford VRD

dataset [27]. Given a test image, the goal of VRD is to de-

tect all entities and relationships present and output them in

the form (subject, predicate, object) with the correspond-

ing bounding boxes. By contrast with phrase localization,

where we are given a set of entities and relationships that

are in the image, in VRD we do not know a priori which

objects or relationships might be present. On this task, our

model shows significant performance gains over prior work,

with especially acute differences in zero-shot detection due

to modeling cues with a vision-language embedding. This

adaptability to never-before-seen examples is also a notable

distinction between our approach and prior methods on re-

lated tasks (e.g. [7, 15, 18, 20]), which typically train their

models on a set of predefined object categories, providing

no support for out-of-vocabulary entities.

Section 2 discusses our global objective function for si-

multaneously localizing all phrases from the sentence and

describes the procedure for learning combination weights.

Section 3.1 details how we parse sentences to extract enti-

ties, relationships, and other relevant linguistic cues. Sec-

tions 3.2 and 3.3 define single-phrase and phrase-pair cost

functions between linguistic and visual cues. Section 4

presents an in-depth evaluation of our cues on Flickr30K

Entities [33]. Lastly, Section 5 presents the adaptation of

our method to the VRD task [27].

2. Phrase localization approach

We follow the task definition used in [8, 12, 33, 34, 40,

41]: At test time, we are given an image and a caption with

a set of entities (noun phrases), and we need to localize each

entity with a bounding box. Section 2.1 describes our infer-

ence formulation, and Section 2.2 describes our procedure

for learning the weights of different cues.

2.1. Joint phrase localization

For each image-language cue derived from a single

phrase or a pair of phrases (Figure 1), we define a cue-

specific cost function that measures its compatibility with an

image region (small values indicate high compatibility). We

will describe the cost functions in detail in Section 3; here,

we give our test-time optimization framework for jointly lo-

calizing all phrases from a sentence.

Given a single phrase p from a test sentence, we score

each region (bounding box) proposal b from the test image

based on a linear combination of cue-specific cost functions

φ{1,··· ,KS}(p, b) with learned weights wS :

S(p,b;wS)=

KS
∑

s=1

✶s(p)φs(p,b)w
S
s , (1)

where ✶s(p) is an indicator function for the availability of

cue s for phrase p (e.g., an adjective cue would be avail-

able for the phrase blue socks, but would be unavailable for
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socks by itself). As will be described in Section 3.2, we use

14 single-phrase cost functions: region-phrase compatibil-

ity score, phrase position, phrase size (one for each of the

eight phrase types of [33]), object detector score, adjective,

subject-verb, and verb-object scores.

For a pair of phrases with some relationship r =
(p, rel, p′) and candidate regions b and b′, an analogous

scoring function is given by a weighted combination of pair-

wise costs ψ{1,··· ,KQ}(r, b, b
′):

Q(r,b,b′;wQ)=

KQ
∑

q=1

✶q(r)ψq(r,b,b
′)wQ

q . (2)

We use three pairwise cost functions corresponding to spa-

tial classifiers for verb, preposition, and clothing and body

parts relationships (Section 3.3).

We train all cue-specific cost functions on the training set

and the combination weights on the validation set. At test

time, given an image and a list of phrases {p1, · · · , pN},

we first retrieve top M candidate boxes for each phrase pi
using Eq. (1). Our goal is then to select one bounding box

bi out of the M candidates per each phrase pi such that the

following objective is minimized:

min
b1,···,bN







∑

pi

S(pi,bi) +
∑

rij=(pi,relij ,pj)

Q(rij ,bi,bj)







(3)

where phrases pi and pj (and respective boxes bi and bj)

are related by some relationship relij . This is a binary

quadratic programming formulation inspired by [38]; we

relax and solve it using a sequential QP solver in MAT-

LAB. The solution gives a single bounding box hypothe-

sis for each phrase. Performance is evaluated using Re-

call@1, or proportion of phrases where the selected box has

Intersection-over-Union (IOU) ≥ 0.5 with the ground truth.

2.2. Learning scoring function weights

We learn the weights wS and wQ in Eqs. (1) and (2) by

directly optimizing recall on the validation set. We start by

finding the unary weights wS that maximize the number of

correctly localized phrases:

wS = argmax
w

N
∑

i=1

✶IOU≥0.5(b
∗
i , b̂(pi;w)), (4)

where N is the number of phrases in the training set,

✶IOU≥0.5 is an indicator function returning 1 if the two

boxes have IOU ≥ 0.5, b∗i is the ground truth bounding box

for phrase pi, b̂(p;w) returns the most likely box candidate

for phrase p under the current weights, or, more formally,

given a set of candidate boxes B,

b̂(p;w) = min
b∈B

S(p, b;w). (5)

We optimize Eq. (4) using a derivative-free direct search

method [22] (MATLAB’s fminsearch). We randomly ini-

tialize the weights, keep the best weights after 20 runs based

on validation set performance (takes just a few minutes to

learn weights for all single phrase cues in our experiments).

Next, we fix wS and learn the weights wQ over phrase-

pair cues in the validation set. To this end, we formulate an

objective analogous to Eq. (4) for maximizing the number

of correctly localized region pairs. Similar to Eq. (5), we

define the function ρ̂(r;w) to return the best pair of boxes

for the relationship r = (p, rel, p′):

ρ̂(r;w)= min
b,b′∈B

S(p,b;wS)+S(p′,b′;wS)+Q(r,b,b′;w). (6)

Then our pairwise objective function is

wQ = argmax
w

M
∑

k=1

■PairIOU≥0.5(ρ
∗
k, ρ̂(rk;w)), (7)

where M is the number of phrase pairs with a relation-

ship, ■PairIOU≥0.5 returns the number of correctly local-

ized boxes (0, 1, or 2), and ρ∗k is the ground truth box pair

for the relationship rk = (pk, relk, p
′
k).

Note that we also attempted to learn the weights wS and

wQ using standard approaches such as rank-SVM [13], but

found our proposed direct search formulation to work bet-

ter. In phrase localization, due to its Recall@1 evaluation

criterion, only the correctness of one best-scoring candidate

region for each phrase matters, unlike in typical detection

scenarios, where one would like all positive examples to

have better scores than all negative examples. The VRD

task of Section 5 is a more conventional detection task, so

there we found rank-SVM to be more appropriate.

3. Cues for phrase-region grounding

Section 3.1 describes how we extract linguistic cues from

sentences. Sections 3.2 and 3.3 give our definitions of the

two types of cost functions used in Eqs. (1) and (2): sin-

gle phrase cues (SPC) measure the compatibility of a given

phrase with a candidate bounding box, and phrase pair cues

(PPC) ensure that pairs of related phrases are localized in a

spatially coherent manner.

3.1. Extracting linguistic cues from captions

The Flickr30k Entities dataset provides annotations for

Noun Phrase (NP) chunks corresponding to entities, but lin-

guistic cues corresponding to adjectives, verbs, and preposi-

tions must be extracted from the captions using NLP tools.

Once these cues are extracted, they will be translated into

visually relevant constraints for grounding. In particular,

we will learn specialized detectors for adjectives, subject-

verb, and verb-object relationships (Section 3.2). Also, be-

cause pairs of entities connected by a verb or preposition
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have constrained layout, we will train classifiers to score

pairs of boxes based on spatial information (Section 3.3).

Adjectives are part of NP chunks so identifying them is

trivial. To extract other cues, such as verbs and preposi-

tions that may indicate actions and spatial relationships, we

obtain a constituent parse tree for each sentence using the

Stanford parser [37]. Then, for possible relational phrases

(prepositional and verb phrases), we use the method of Fi-

dler et al. [7], where we start at the relational phrase and

then traverse up the tree and to the left until we reach a noun

phrase node, which will correspond to the first entity in an

(entity1, rel, entity2) tuple. The second entity is given by

the first noun phrase node on the right side of the relational

phrase in the parse tree. For example, given the sentence A

boy running in a field with a dog, the extracted NP chunks

would be a boy, a field, a dog. The relational phrases would

be (a boy, running in, a field) and (a boy, with, a dog).

Notice that a single relational phrase can give rise to mul-

tiple relationship cues. Thus, from (a boy, running in, a

field), we extract the verb relation (boy, running, field) and

prepositional relation (boy, in, field). An exception to this

is a relational phrase where the first entity is a person and

the second one is of the clothing or body part type,2 e.g.,

(a boy, running in, a jacket). For this case, we create a sin-

gle special pairwise relation (boy, jacket) that assumes that

the second entity is attached to the first one and the exact

relationship words do not matter, i.e., (a boy, running in, a

jacket) and (a boy, wearing, a jacket) are considered to be

the same. The attachment assumption can fail for phrases

like (a boy, looking at, a jacket), but such cases are rare.

Finally, since pronouns in Flickr30k Entities are not

annotated, we attempt to perform pronominal coreference

(i.e., creating a link between a pronoun and the phrase

it refers to) in order to extract a more complete set of

cues. As an example, given the sentence Ducks feed them-

selves, initially we can only extract the subject-verb cue

(ducks, feed), but we don’t know who or what they are

feeding. Pronominal coreference resolution tells us that the

ducks are themselves eating and not, say, feeding ducklings.

We use a simple rule-based method similar to knowledge-

poor methods [11, 31]. Given lists of pronouns by type,3 our

rules attach each pronoun with at most one non-pronominal

mention that occurs earlier in the sentence (an antecedent).

We assume that subject and object pronouns often refer to

the main subject (e.g. [A dog] laying on the ground looks

up at the dog standing over [him]), reflexive and recipro-

cal pronouns refer to the nearest antecedent (e.g. [A tennis

player] readies [herself].), and indefinite pronouns do not

refer to a previously described entity. It must be noted that

2Each NP chunk from the Flickr30K dataset is classified into one of

eight phrase types based on the dictionaries of [33].
3Relevant pronoun types are subject, object, reflexive, reciprocal, rela-

tive, and indefinite.

compared with verb and prepositional relationships, rela-

tively few additional cues are extracted using this procedure

(432 pronoun relationships in the test set and 13,163 in the

train set, while the counts for the other relationships are on

the order of 10K and 300K).

3.2. Single Phrase Cues (SPCs)

Region-phrase compatibility: This is the most basic cue

relating phrases to image regions based on appearance. It

is applied to every test phrase (i.e., its indicator function

in Eq. (1) is always 1). Given phrase p and region b, the

cost φCCA(p, b) is given by the cosine distance between

p and b in a joint embedding space learned using normal-

ized Canonical Correlation Analysis (CCA) [10]. We use

the same procedure as [33]. Regions are represented by the

fc7 activations of a Fast-RCNN model [9] fine-tuned using

the union of the PASCAL 2007 and 2012 trainval sets [5].

After removing stopwords, phrases are represented by the

HGLMM fisher vector encoding [19] of word2vec [30].

Candidate position: The location of a bounding box in

an image has been shown to be predictive of the kinds of

phrases it may refer to [4, 12, 18, 23]. We learn location

models for each of the eight broad phrase types specified

in [33]: people, clothing, body parts, vehicles, animals,

scenes, and a catch-all “other.” We represent a bounding

box by its centroid normalized by the image size, the per-

centage of the image covered by the box, and its aspect

ratio, resulting in a 4-dim. feature vector. We then train

a support vector machine (SVM) with a radial basis func-

tion (RBF) kernel using LIBSVM [2]. We randomly sample

EdgeBox [46] proposals with IOU < 0.5 with the ground

truth boxes for negative examples. Our scoring function is

φpos(p, b) = − log(SVMtype(p)(b)),

where SVMtype(p) returns the probability that box b is of the

phrase type type(p) (we use Platt scaling [32] to convert the

SVM output to a probability).

Candidate size: People have a bias towards describing

larger, more salient objects, leading prior work to consider

the size of a candidate box in their models [7, 18, 33]. We

follow the procedure of [33], so that given a box b with di-

mensions normalized by the image size, we have

φsizetype(p)
(p, b) = 1− bwidth × bheight.

Unlike phrase position, this cost function does not use a

trained SVM per phrase type. Instead, each phrase type is

its own feature and the corresponding indicator function re-

turns 1 if that phrase belongs to the associated type.

Detectors: CCA embeddings are limited in their ability to

localize objects because they must account for a wide range

of phrases and because they do not use negative examples
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during training. To compensate for this, we use Fast R-

CNN [9] to learn three networks for common object cate-

gories, attributes, and actions. Once a detector is trained, its

score for a region proposal b is

φdet(p, b) = − log(softmaxdet(p, b)),

where softmaxdet(p, b) returns the output of the softmax

layer for the object class corresponding to p. We manu-

ally create dictionaries to map phrases to detector categories

(e.g., man, woman, etc. map to ‘person’), and the indicator

function for each detector returns 1 only if one of the words

in the phrase exists in its dictionary. If multiple detectors for

a single cue type are appropriate for a phrase (e.g., a black

and white shirt would have two adjective detectors fire, one

for each color), the scores are averaged. Below, we describe

the three detector networks used in our model. Complete

dictionaries can be found in supplementary material.

Objects: We use the dictionary of [33] to map nouns to the

20 PASCAL object categories [5] and fine-tune the network

on the union of the PASCAL VOC 2007 and 2012 trainval

sets. At test time, when we run a detector for a phrase that

maps to one of these object categories, we also use bound-

ing box regression to refine the original region proposals.

Regression is not used for the other networks below.

Adjectives: Adjectives found in phrases, especially color,

provide valuable attribute information for localization [7,

15, 18, 33]. The Flickr30K Entities baseline approach [33]

used a network trained for 11 colors. As a generalization

of that, we create a list of adjectives that occur at least 100

times in the training set of Flickr30k. After grouping to-

gether similar words and filtering out non-visual terms (e.g.,

adventurous), we are left with a dictionary of 83 adjectives.

As in [33], we consider color terms describing people (black

man, white girl) to be separate categories.

Subject-Verb and Verb-Object: Verbs can modify the ap-

pearance of both the subject and the object in a relation. For

example, knowing that a person is riding a horse can give

us better appearance models for finding both the person and

the horse [35, 36]. As we did with adjectives, we collect

verbs that occur at least 100 times in the training set, group

together similar words, and filter out those that don’t have

a clear visual aspect, resulting in a dictionary of 58 verbs.

Since a person running looks different than a dog running,

we subdivide our verb categories by phrase type of the sub-

ject (resp. object) if that phrase type occurs with the verb

at least 30 times in the train set. For example, if there are

enough animal-running occurrences, we create a new cate-

gory with instances of all animals running. For the remain-

ing phrases, we train a catch-all detector over all the phrases

related to that verb. Following [35], we train separate detec-

tors for subject-verb and verb-object relationships, resulting

in dictionary sizes of 191 (resp. 225). We also attempted to

learn subject-verb-object detectors as in [35, 36], but did not

see a further improvement.

3.3. PhrasePair Cues (PPCs)

So far, we have discussed cues pertaining to a single

phrase, but relationships between pairs of phrases can also

provide cues about their relative position. We denote such

relationships as tuples (pleft , rel, pright) with left , right in-

dicating on which side of the relationship the phrases oc-

cur. As discussed in Section 3.1, we consider three distinct

types of relationships: verbs (man, riding, horse), preposi-

tions (man, on, horse), and clothing and body parts (man,

wearing, hat). For each of the three relationship types, we

group phrases referring to people but treat all other phrases

as distinct, and then gather all relationships that occur at

least 30 times in the training set. Then we learn a spatial

relationship model as follows. Given a pair of boxes with

coordinates b = (x, y, w, h) and b′ = (x′, y′, w′, h′), we

compute a four-dim. feature

[(x− x′)/w, (y − y′)/h, w′/w, h′/h] , (8)

and concatenate it with combined SPC scores S(pleft , b),
S(pright , b

′) from Eq. (1). To obtain negative examples, we

randomly sample from other box pairings with IOU < 0.5
with the ground truth regions from that image. We train

an RBF SVM classifier with Platt scaling [32] to obtain a

probability output. This is similar to the method of [15], but

rather than learning a Gaussian Mixture Model using only

positive data, we learn a more discriminative model. Below

are details on the three types of relationship classifiers.

Verbs: Starting with our dictionary of 58 verb detectors

and following the above procedure of identifying all rela-

tionships that occur at least 30 times in the training set, we

end up with 260 (pleft , relverb , pright) SVM classifiers.

Prepositions: We first gather a list of prepositions that oc-

cur at least 100 times in the training set, combine simi-

lar words, and filter out words that do not indicate a clear

spatial relationship. This yields eight prepositions (in, on,

under, behind, across, between, onto, and near) and 216

(pleft , relprep , pright) relationships.

Clothing and body part attachment: We collect

(pleft , relc&bp , pright) relationships where the left phrase is

always a person and the right phrase is from the clothing or

body part type and learn 207 such classifiers. As discussed

in Section 3.1, this relationship type takes precedence over

any verb or preposition relationships that may also hold be-

tween the same phrases.

4. Experiments on Flickr30k Entities

4.1. Implementation details

We utilize the provided train/test/val split of 29,873

training, 1,000 validation, and 1,000 testing images [33].
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Method Accuracy

(a) Single-phrase cues

CCA 43.09

CCA+Det 45.29

CCA+Det+Size 51.45

CCA+Det+Size+Adj 52.63

CCA+Det+Size+Adj+Verbs 54.51

CCA+Det+Size+Adj+Verbs+Pos (SPC) 55.49

(b) Phrase pair cues

SPC+Verbs 55.53

SPC+Verbs+Preps 55.62

SPC+Verbs+Preps+C&BP (SPC+PPC) 55.85

(c) State of the art

SMPL [41] 42.08

NonlinearSP [40] 43.89

GroundeR [34] 47.81

MCB [8] 48.69

RtP [33] 50.89

Table 2: Phrase-region grounding performance on the Flickr30k Entities

dataset. (a) Performance of our single-phrase cues (Sec. 3.2). (b) Further

improvements by adding our pairwise cues (Sec. 3.3). (c) Accuracies of

competing state-of-the-art methods. This comparison excludes concurrent

work that was published after our initial submission [3].

Following [33], our region proposals are given by the top

200 EdgeBox [46] proposals per image. At test time, given

a sentence and an image, we first use Eq. (1) to find the

top 30 candidate regions for each phrase after performing

non-maximum suppression using a 0.8 IOU threshold. Re-

stricted to these candidates, we optimize Eq. (2) to find a

globally consistent mapping of phrases to regions.

Consistent with [33], we only evaluate localization for

phrases with a ground truth bounding box. If multiple

bounding boxes are associated with a phrase (e.g., four in-

dividual boxes for four men), we represent the phrase as the

union of its boxes. For each image and phrase in the test set,

the predicted box must have at least 0.5 IOU with its ground

truth box to be deemed successfully localized. As only a

single candidate is selected for each phrase, we report the

proportion of correctly localized phrases (i.e. Recall@1).

4.2. Results

Table 2 reports our overall localization accuracy for com-

binations of cues and compares our performance to the state

of the art. Object detectors, reported on the second line of

Table 2(a), show a 2% overall gain over the CCA baseline.

This includes the gain from the detector score as well as the

bounding box regressor trained with the detector in the Fast

R-CNN framework [9]. Adding adjective, verb, and size

cues improves accuracy by a further 9%. Our last cue in Ta-

ble 2(a), position, provides an additional 1% improvement.

We can see from Table 2(b) that the spatial cues give only

a small overall boost in accuracy on the test set, but that

is due to the relatively small number of phrases to which

they apply. In Table 4 we will show that the localization

improvement on the affected phrases is much larger.

Table 2(c) compares our performance to the state of

the art. The method most similar to ours is our earlier

model [33], which we call RtP here. RtP relies on a subset

of our single-phrase cues (region-phrase CCA, size, object

detectors, and color adjectives), and localizes each phrase

separately. The closest version of our current model to

RtP is CCA+Det+Size+Adj, which replaces the 11 colors

of [33] with our more general model for 83 adjectives, and

obtains almost 2% better performance. Our full model is

5% better than RtP. It is also worth noting that a rank-SVM

model [13] for learning cue combination weights gave us

8% worse performance than the direct search scheme of

Section 2.2.

Table 3 breaks down the comparison by phrase type.

Our model has the highest accuracy on most phrase types,

with scenes being the most notable exception, for which

GroundeR [34] does better. However, GroundeR uses Se-

lective Search proposals [39], which have an upper bound

performance that is 7% higher on scene phrases despite us-

ing half as many proposals. Although body parts have the

lowest localization accuracy at 25.24%, this represents an

8% improvement in accuracy over prior methods. However,

only around 62% of body part phrases have a box with high

enough IOU with the ground truth, showing a major area of

weakness of category-independent proposal methods. In-

deed, if we were to augment our EdgeBox region proposals

with ground truth boxes, we would get an overall improve-

ment in accuracy of about 9% for the full system.

Since many of the cues apply to a small subset of the

phrases, Table 4 details the performance of cues over only

the phrases they affect. As a baseline, we compare against

the combination of cues available for all phrases: region-

phrase CCA, position, and size. To have a consistent set of

regions, the baseline also uses improved boxes from bound-

ing box regressors trained along with the object detectors.

As a result, the object detectors provide less than 2% gain

over the baseline for the phrases on which they are used,

suggesting that the regression provides the majority of the

gain from CCA to CCA+Det in Table 2. This also confirms

that there is significant room for improvement in select-

ing candidate regions. By contrast, adjective, subject-verb,

and verb-object detectors show significant gains, improving

over the baseline by 6-7%.

The right side of Table 4 shows the improvement on

phrases due to phrase pair cues. Here, we separate the

phrases that occur on the left side of the relationship, which

corresponds to the subject, from the phrases on the right

side. Our results show that the subject, is generally eas-

ier to localize. On the other hand, clothing and body parts

show up mainly on the right side of relationships and they

tend to be small. It is also less likely that such phrases will

have good candidate boxes – recall from Table 3 that body

parts have a performance upper bound of only 62%. Al-

though they affect relatively few test phrases, all three of our

relationship classifiers show consistent gains over the SPC
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People Clothing Body Parts Animals Vehicles Instruments Scene Other

#Test 5,656 2,306 523 518 400 162 1,619 3,374

SMPL [41] 57.89 34.61 15.87 55.98 52.25 23.46 34.22 26.23

GroundeR [34] 61.00 38.12 10.33 62.55 68.75 36.42 58.18 29.08

RtP [33] 64.73 46.88 17.21 65.83 68.75 37.65 51.39 31.77

SPC+PPC (ours) 71.69 50.95 25.24 76.25 66.50 35.80 51.51 35.98

Upper Bound 97.72 83.13 61.57 91.89 94.00 82.10 84.37 81.06

Table 3: Comparison of phrase localization performance over phrase types. Upper Bound refers to the proportion of phrases of each type for which there

exists a region proposal having at least 0.5 IOU with the ground truth.

Single Phrase Cues (SPC) Phrase-Pair Cues (PPC)

Method Object

Detectors
Adjectives

Subject-

Verb

Verb-

Object

Verbs Prepositions
Clothing &

Body Parts

Left Right Left Right Left Right

Baseline 74.25 57.71 69.68 40.70 78.32 51.05 68.97 55.01 81.01 50.72

+Cue 75.78 64.35 75.53 47.62 78.94 51.33 69.74 56.14 82.86 52.23

#Test 4,059 3,809 3,094 2,398 867 858 780 778 1,464 1,591

#Train 114,748 110,415 94,353 71,336 26,254 25,898 23,973 23,903 42,084 45,496

Table 4: Breakdown of performance for individual cues restricted only to test phrases to which they apply. For SPC, Baseline is given by

CCA+Position+Size. For PPC, Baseline is the full SPC model. For all comparisons, we use the improved boxes from bounding box regression on top

of object detector output. PPC evaluation is split by which side of the relationship the phrases occur on. The bottom two rows show the numbers of affected

phrases in the test and training sets. For reference, there are 14.5k visual phrases in the test set and 427k visual phrases in the train set.

model. This is encouraging given that many of the relation-

ships that are used on the validation set to learn our model

parameters do not occur in the test set (and vice versa).

Figure 2 provides a qualitative comparison of our output

with the RtP model [33]. In the first example, the prediction

for the dog is improved due to the subject-verb classifier for

dog jumping. For the second example, pronominal corefer-

ence resolution (Section 3.1) links each other to two men,

telling us that not only is a man hitting something, but also

that another man is being hit. In the third example, the RtP

model is not able to locate the woman’s blue stripes in her

hair despite having a model for blue. Our adjective detec-

tors take into account stripes as well as blue, allowing us

to correctly localize the phrase, even though we still fail

to localize the hair. Since the blue stripes and hair should

co-locate, a method for obtaining co-referent entities would

further improve performance on such cases. In the last ex-

ample, the RtP model makes the same incorrect prediction

for the two men. However, our spatial relationship between

the first man and his gray sweater helps us correctly localize

him. We also improve our prediction for the shopping cart.

5. Visual Relationship Detection

In this section, we adapt our framework to the recently

introduced Visual Relationship Detection (VRD) bench-

mark of Lu et al. [27]. Given a test image without any text

annotations, the task of VRD is to detect all entities and

relationships present and output them in the form (subject,

predicate, object) with the corresponding bounding boxes.

A relationship detection is judged to be correct if it exists

in the image and both the subject and object boxes have

IOU ≥ 0.5 with their respective ground truth. In contrast to

phrase grounding, where we are given a set of entities and

relationships that are assumed to be in the image, here we

do not know a priori which objects or relationships might

be present. On the other hand, the VRD dataset is easier

than Flickr30K Entities in that it has a limited vocabulary

of 100 object classes and 70 predicates annotated in 4000

training and 1000 test images.

Given the small fixed class vocabulary, it would seem

advantageous to train 100 object detectors on this dataset,

as was done by Lu et al. [27]. However, the training set

is relatively small, the class distribution is unbalanced, and

there is no validation set. Thus, we found that training de-

tectors and then relationship models on the same images

causes overfitting because the detector scores on the train-

ing images are overconfident. We obtain better results by

training all appearance models using CCA, which also takes

into account semantic similarity between category names

and is trivially extendable to previously unseen categories.

Here, we use fc7 features from a Fast RCNN model trained

on MSCOCO [26] due to the larger range of categories

than PASCAL, and word2vec for object and predicate class

names. We train the following CCA models:
1. CCA(entity box, entity class name): this is the equiv-

alent to region-phrase CCA in Section 3.2 and is used

to score both candidate subject and object boxes.
2. CCA(subject box, [subject class name, predicate class

name]): analogous to subject-verb classifiers of Sec-

tion 3.2. The 300-dimensional word2vec features of

subject and predicate class names are concatenated.
3. CCA(object box, [predicate class name, object class

name]): analogous to verb-object classifiers of Section

3.2.
4. CCA(union box, predicate class name): this model

measures the compatibility between the bounding box

of both subject and object and the predicate name.
5. CCA(union box, [subject class name, predicate class

name, object class name]).
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A young man kneeling in front 

of a young girl who has blond 

hair and blue stripes. !

RtP!

Ours !

Two people are hitting each 

other in a karate match, while 

an audience and referee watch. !

This dog is jumping through 

the water. !

man !

A man in a gray sweater 

speaks to two women and 

a man pushing a shopping 

cart through Walmart. !

Figure 2: Example results on Flickr30k Entities comparing our SPC+PPC model’s output with the RtP model [33]. See text for discussion.

Note that models 4 and 5 had no analogue in our phrase

localization system. On that task, entities were known to be

in the image and relationships simply provided constraints,

while here we need to predict which relationships exist. To

make predictions for predicates and relationships (which is

the goal of models 4 and 5), it helps to see both the subject

and object regions. Union box features were also less useful

for phrase localization due to the larger vocabularies and

relative scarcity of relationships in that task.

Each candidate relationship gets six CCA scores (model

1 above is applied both to the subject and the object). In

addition, we compute size and position scores as in Sec-

tion 3.2 for subject and object, and a score for a pairwise

spatial SVM trained to predict the predicate based on the

four-dimensional feature of Eq. (8). This yields an 11-

dim. feature vector. By contrast with phrase localization,

our features for VRD are dense (always available for every

relationship).

In Section 2.2 we found feature weights by maximiz-

ing our recall metric. Here we have a more conventional

detection task, so we obtain better performance by train-

ing a linear rank-SVM model [13] to enforce that correctly

detected relationships are ranked higher than negative de-

tections (where either box has < 0.5 IOU with the ground

truth). We use the test set object detections (just the boxes,

not the scores) provided by [27] to directly compare per-

formance with the same candidate regions. During testing,

we produce a score for every ordered pair of detected boxes

and all possible predicates, and retain the top 10 predicted

relationships per pair of (subject, object) boxes.

Consistent with [27], Table 5 reports recall, R@{100,

50}, or the portion of correctly localized relationships in the

top 100 (resp. 50) ranked relationships in the image. The

right side shows performance for relationships that have not

been encountered in the training set. Our method clearly

outperforms that of Lu et al. [27], which uses separate vi-

sual, language, and relationship likelihood cues. We also

Method
Rel. Det. Zero-shot Rel. Det.

R@100 R@50 R@100 R@50

(a) Visual Only Model [27] 1.85 1.58 0.78 0.67

Visual + Language +
14.70 13.86 3.52 3.13

Likelihood Model [27]

VTransE [45] 15.20 14.07 2.14 1.71

(b) CCA 13.69 10.08 11.12 6.59

CCA + Size 14.05 10.36 11.46 6.76

CCA + Size + Position 18.37 15.08 13.43 9.67

Table 5: Relationship detection recall at different thresholds

(R@{100,50}). CCA refers to the combination of six CCA models

(see text). Position refers to the combination of individual box position

and pairwise spatial classifiers. This comparison excludes concurrent

work that was published after our initial submission [24, 25].

outperform Zhang et al. [45], which combines object detec-

tors, visual appearance, and object position in a single neu-

ral network. We observe that cues based on object class and

relative subject-object position provide a noticeable boost in

performance. Further, due to using CCA with multi-modal

embeddings, we generalize better to unseen relationships.

6. Conclusion

This paper introduced a framework incorporating a com-

prehensive collection of image- and language-based cues

for visual grounding and demonstrated significant gains

over the state of the art on two tasks: phrase localization on

Flickr30k Entities and relationship detection on the VRD

dataset. For the latter task, we got particularly pronounced

gains for the zero-shot learning scenario. In future work, we

would like to train a single network for combining multiple

cues. Doing this in a unified end-to-end fashion is chal-

lenging, since one needs to find the right balance between

parameter sharing and specialization or fine-tuning required

by individual cues. To this end, our work provides a strong

baseline and can help to inform future approaches.
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