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Abstract

We present a novel deep learning architecture for fus-

ing static multi-exposure images. Current multi-exposure

fusion (MEF) approaches use hand-crafted features to fuse

input sequence. However, the weak hand-crafted represen-

tations are not robust to varying input conditions. More-

over, they perform poorly for extreme exposure image pairs.

Thus, it is highly desirable to have a method that is ro-

bust to varying input conditions and capable of handling

extreme exposure without artifacts. Deep representations

have known to be robust to input conditions and have shown

phenomenal performance in a supervised setting. However,

the stumbling block in using deep learning for MEF was the

lack of sufficient training data and an oracle to provide the

ground-truth for supervision. To address the above issues,

we have gathered a large dataset of multi-exposure image

stacks for training and to circumvent the need for ground

truth images, we propose an unsupervised deep learning

framework for MEF utilizing a no-reference quality metric

as loss function. The proposed approach uses a novel CNN

architecture trained to learn the fusion operation without

reference ground truth image. The model fuses a set of com-

mon low level features extracted from each image to gener-

ate artifact-free perceptually pleasing results. We perform

extensive quantitative and qualitative evaluation and show

that the proposed technique outperforms existing state-of-

the-art approaches for a variety of natural images.

1. Introduction

High Dynamic Range Imaging (HDRI) is a photography

technique that helps to capture better-looking photos in dif-

ficult lighting conditions. It helps to store all range of light

(or brightness) that is perceivable by human eyes, instead of

using limited range achieved by cameras. Due to this prop-

erty, all objects in the scene look better and clear in HDRI,

without being saturated (too dark or too bright) otherwise.

The popular approach for HDR image generation is

called as Multiple Exposure Fusion (MEF), in which, a set
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Figure 1. Schematic diagram of the proposed method.

of static LDR images (further referred as exposure stack)

with varying exposure is fused into a single HDR image.

The proposed method falls under this category. Most of

MEF algorithms work better when the exposure bias differ-

ence between each LDR images in exposure stack is mini-

mum1. Thus they require more LDR images (typically more

than 2 images) in the exposure stack to capture whole dy-

namic range of the scene. It leads to more storage require-

ment, processing time and power. In principle, the long ex-

posure image (image captured with high exposure time) has

better colour and structure information in dark regions and

short exposure image (image captured with less exposure

time) has better colour and structure information in bright

regions. Though fusing extreme exposure images is prac-

tically more appealing, it is quite challenging (existing ap-

proaches fail to maintain uniform luminance across image).

Additionally, it should be noted that taking more pictures

increases power, capture time and computational time re-

quirements. Thus, we propose to work with exposure brack-

eted image pairs as input to our algorithm.

In this work, we present a data-driven learning method

for fusing exposure bracketed static image pairs. To our

knowledge this is the first work that uses deep CNN archi-

tecture for exposure fusion. The initial layers consists of a

set of filters to extract common low-level features from each

1Exposure bias value indicates the amount of exposure offset from the

auto exposure setting of an camera. For example, EV 1 is equal to doubling

auto exposure time (EV 0).
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input image pair. These low-level features of input image

pairs are fused for reconstructing the final result. The entire

network is trained end-to-end using a no-reference image

quality loss function.

We train and test our model with a huge set of expo-

sure stacks captured with diverse settings (indoor/outdoor,

day/night, side-lighting/back-lighting, and so on). Further-

more, our model does not require parameter fine-tuning for

varying input conditions. Through extensive experimental

evaluations we demonstrate that the proposed architecture

performs better than state-of-the-art approaches for a wide

range of input scenarios.

The contributions of this work are as follows:

• A CNN based unsupervised image fusion algorithm

for fusing exposure stacked static image pairs.

• A new benchmark dataset that can be used for compar-

ing various MEF methods.

• An extensive experimental evaluation and comparison

study against 7 state-of-the-art algorithms for variety

of natural images.

The paper is organized as follows. Section 2, we briefly

review related works from literature. Section 3, we present

our CNN based exposure fusion algorithm and discuss the

details of experiments. Section 4, we provide the fusion

examples and then conclude the paper with an insightful

discussion in section 5.

2. Related Works

Many algorithms have been proposed over the years for

exposure fusion. However, the main idea remains the same

in all the algorithms. The algorithms compute the weights

for each image either locally or pixel wise. The fused image

would then be the weighted sum of the images in the input

sequence.

Burt et al. [3] performed a Laplacian pyramid decom-

position of the image and the weights are computed using

local energy and correlation between the pyramids. Use of

Laplacian pyramids reduces the chance of unnecessary arti-

facts. Goshtasby et al. [5] take non-overlapping blocks with

highest information from each image to obtain the fused re-

sult. This is prone to suffer from block artifacts. Mertens et

al. [16] perform exposure fusion using simple quality met-

rics such as contrast and saturation. However, this suffers

from hallucinated edges and mismatched color artifacts.

Algorithms which make use of edge preserving filters

like Bilateral filters are proposed in [19]. As this does not

account for the luminance of the images, the fused image

has dark region leading to poor results. A gradient based

approach to assign the weight was put forward by Zhang et

al. [28]. In a series of papers by Li et al. [9], [10] different

approaches to exposure fusion have been reported. In their

early works they solve a quadratic optimization to extract

finer details and fuse them. In one of their later works [10],

they propose a Guided Filter based approach.

Shen et al. [22] proposed a fusion technique using qual-

ity metrics such as local contrast and color consistency. The

random walk approach they perform gives a global opti-

mum solution to the fusion problem set in a probabilistic

fashion.

All of the above works rely on hand-crafted features for

image fusion. These methods are not robust in the sense

that the parameters need to be varied for different input con-

ditions say, linear and non-linear exposures, filter size de-

pends on image sizes. To circumvent this parameter tuning

we propose a feature learning based approach using CNN.

In this work we learn suitable features for fusing exposure

bracketed images. Recently, Convolutional Neural Network

(CNN) have shown impressive performance across various

computer vision tasks [8]. While CNNs have produced

state-of-the-art results in many high-level computer vision

tasks like recognition ([7], [21]), object detection [11], Seg-

mentation [6], semantic labelling [17], visual question an-

swering [2] and much more, their performance on low-level

image processing problems such as filtering [4] and fusion

[18] is not studied extensively. In this work we explore the

effectiveness of CNN for the task of multi-exposure image

fusion.

To our knowledge, use of CNNs for multi-exposure fu-

sion is not reported in literature. The other machine learning

approach is based on a regression method called Extreme

Learning Machine (ELM) [25], that feed saturation level,

exposedness, and contrast into the regressor to estimate the

importance of each pixel. Instead of using hand crafted fea-

tures, we use the data to learn a representation right from

the raw pixels.

3. Proposed Method

In this work, we propose an image fusion framework us-

ing CNNs. Within a span of couple years, Convolutional

Neural Networks have shown significant success in high-

end computer vision tasks. They are shown to learn com-

plex mappings between input and output with the help of

sufficient training data. CNN learns the model parameters

by optimizing a loss function in order to predict the result as

close as to the ground-truth. For example, let us assume that

input x is mapped to output y by some complex transforma-

tion f. The CNN can be trained to estimate the function f

that minimizes the difference between the expected output

y and obtained output ŷ. The distance between y and ŷ is

calculated using a loss function, such as mean squared er-

ror function. Minimizing this loss function leads to better

estimate of required mapping function.

Let us denote the input exposure sequence and fusion

operator as I and O(I). The input images are assumed to

be registered and aligned using existing registration algo-

rithms, thus avoiding camera and object motion. We model
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Figure 2. Architecture of proposed image fusion CNN illustrated for input exposure stack with images of size h×w. The pre-fusion layers

C1 and C2 that share same weights, extract low-level features from input images. The feature pairs of input images are fused into a single

feature by merge layer. The fused features are input to reconstruction layers to generate fused image Yfused.

O(I) with a feed-forward process FW (I). Here, F denotes

the network architecture and W denotes the weights learned

by minimizing the loss function. As the expected output

O(I) is absent for MEF problem, the squared error loss or

any other full reference error metric cannot be used. In-

stead, we make use of no-reference image quality metric

MEF SSIM proposed by Ma et al. [15] as loss function.

MEF SSIM is based on structural similarity index metric

(SSIM) framework [27]. It makes use of statistics of a patch

around individual pixels from input image sequence to com-

pare with result. It measures the loss of structural integrity

as well as luminance consistency in multiple scales (see sec-

tion 3.1.1 for more details).

An overall scheme of proposed method is shown in Fig.

1. The input exposure stack is converted into YCbCr color

channel data. The CNN is used to fuse the luminance chan-

nel of the input images. This is due to the fact that the image

structural details are present in luminance channel and the

brightness variation is prominent in luminance channel than

chrominance channels. The obtained luminance channel is

combined with chroma (Cb and Cr) channels generated us-

ing method described in section 3.3. The following subsec-

tion details the network architecture, loss function and the

training procedure.

3.1. DeepFuse CNN

The learning ability of CNN is heavily influenced by

right choice of architecture and loss function. A simple

and naive architecture is to have a series of convolutional

layers connected in sequential manner. The input to this ar-

chitecture would be exposure image pairs stacked in third

dimension. Since the fusion happens in the pixel domain

itself, this type of architecture does not make use of feature

learning ability of CNNs to a great extent.

The proposed network architecture for image fusion is

illustrated in Fig. 2. The proposed architecture has three

components: feature extraction layers, a fusion layer and re-

construction layers. As shown in Fig. 2, the under-exposed

and the over-exposed images (Y1 and Y2) are input to sepa-

rate channels (channel 1 consists of C11 and C21 and chan-

nel 2 consists of C12 and C22). The first layer (C11 and

C12) contains 5 × 5 filters to extract low-level features such

as edges and corners. The weights of pre-fusion channels

are tied, C11 and C12 (C21 and C22) share same weights.

The advantage of this architecture is three fold: first, we

force the network to learn the same features for the input

pair. That is, the F11 and F21 are same feature type. Hence,

we can simply combine the respective feature maps via fu-

sion layer. Meaning, the first feature map of image 1 (F11)

and the first feature map of image 2 (F21) are added and this

process is applied for remaining feature maps as well. Also,

adding the features resulted in better performance than other

choices of combining features (see Table 1). In feature ad-

dition, similar feature types from both images are fused to-

gether. Optionally one can choose to concatenate features,

by doing so, the network has to figure out the weights to

merge them. In our experiments, we observed that feature

concatenation can also achieve similar results by increas-

ing the number of training iterations, increasing number of

filters and layers after C3. This is understandable as the

network needs more number of iterations to figure out ap-

propriate fusion weights. In this tied-weights setting, we

are enforcing the network to learn filters that are invariant

to brightness changes. This is observed by visualizing the

learned filters (see Fig. 8). In case of tied weights, few high

activation filters have center surround receptive fields (typ-

ically observed in retina). These filters have learned to re-

move the mean from neighbourhood, thus effectively mak-

ing the features brightness invariant. Second, the number

of learnable filters is reduced by half. Third, as the net-

work has low number of parameters, it converges quickly.

The obtained features from C21 and C22 are fused by merge

layer. The result of fuse layer is then passed through another
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set of convolutional layers (C3, C4 and C5) to reconstruct

final result (Yfused) from fused features.

3.1.1 MEF SSIM loss function

In this section, we will discuss on computing loss without

using reference image by MEF SSIM image quality mea-

sure [15]. Let {yk}={yk|k=1,2} denote the image patches

extracted at a pixel location p from input image pairs and

yf denote the patch extracted from CNN output fused im-

age at same location p. The objective is to compute a score

to define the fusion performance given yk input patches and

yf fused image patch.

In SSIM [27] framework, any patch can be modelled us-

ing three components: structure (s), luminance (l) and con-

trast (c). The given patch is decomposed into these three

components as:

yk =‖yk − µyk
‖ ·

yk − µyk

‖yk − µyk
‖
+ µyk

=‖ỹk‖ ·
ỹk

‖ỹk‖
+ µyk

=ck · sk + lk, (1)

where, ‖ · ‖ is the ℓ2 norm of patch, µyk
is the mean

value of yk and ỹk is the mean subtracted patch. As the

higher contrast value means better image, the desired con-

trast value (ĉ) of the result is taken as the highest contrast

value of {ck}, (i.e.)

ĉ = max
{k=1,2}

ck

The structure of the desired result (ŝ) is obtained by

weighted sum of structures of input patches as follows,

s̄ =

∑
2

k=1
w (ỹk) sk∑

2

k=1
w (ỹk)

and ŝ =
s̄

‖s̄‖
, (2)

where the weighting function assigns weight based on

structural consistency between input patches. The weight-

ing function assigns equal weights to patches, when they

have dissimilar structural components. In the other case,

when all input patches have similar structures, the patch

with high contrast is given more weight as it is more ro-

bust to distortions. The estimated ŝ and ĉ is combined to

produce desired result patch as,

ŷ = ĉ · ŝ (3)

As the luminance comparison in the local patches is in-

significant, the luminance component is discarded from

above equation. Comparing luminance at lower spatial res-

olution does not reflect the global brightness consistency.

Instead, performing this operation at multiple scales would

effectively capture global luminance consistency in coarser

Table 1. Choice of blending operators: Average MEF SSIM

scores of 23 test images generated by CNNs trained with different

feature blending operations. The maximum score is highlighted in

bold. Results illustrate that adding the feature tensors yield better

performance. Results by addition and mean methods are similar,

as both operations are very similar, except for a scaling factor. Re-

fer text for more details.

Product Concatenation Max Mean Addition

0.8210 0.9430 0.9638 0.9750 0.9782

scale and local structural changes in finer scales. The fi-

nal image quality score for pixel p is calculated using SSIM

framework,

Score(p) =
2σŷyf

+ C

σ2

ŷ
+ σ2

yf
+ C

, (4)

where, σ2

ŷ
is variance and σŷyf

is covariance between ŷ and

yf . The total loss is calculated as,

Loss = 1−
1

N

∑

p∈P

Score(p) (5)

where N is the total number of pixels in image and P is the

set of all pixels in input image. The computed loss is back-

propagated to train the network. The better performance of

MEF SSIM is attributed to its objective function that maxi-

mizes structural consistency between fused image and each

of input images.

3.2. Training
We have collected 25 exposure stacks that are available

publicly [1]. In addition to that, we have curated 50 expo-

sure stacks with different scene characteristics. The images

were taken with standard camera setup and tripod. Each

scene consists of 2 low dynamic range images with ±2 EV

difference. The input sequences are resized to 1200 × 800

dimensions. We give priority to cover both indoor and out-

door scenes. From these input sequences, 30000 patches of

size 64 ×64 were cropped for training. We set the learning

rate to 10−4 and train the network for 100 epochs with all

the training patches being processed in each epoch.

3.3. Testing
We follow the standard cross-validation procedure to

train our model and test the final model on a disjoint test

set to avoid over-fitting. While testing, the trained CNN

takes the test image sequence and generates the luminance

channel (Yfused) of fused image. The chrominance compo-

nents of fused image, Cbfused and Crfused, are obtained

by weighted sum of input chrominance channel values.

The crucial structural details of the image tend to be

present mainly in Y channel. Thus, different fusion strate-

gies are followed in literature for Y and Cb/Cr fusion ([18],

[24], [26]). Moreover, MEF SSIM loss is formulated to

compute the score between 2 gray-scale (Y ) images. Thus,
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(a) Underexposed image (b) Overexposed image (c) Li et al. [9] (d) Li et al. [10] (e) Mertens et al. [16] (f) Raman et al. [20]

(g) Shen et al. [23] (h) Ma et al. [14] (i) Guo et al. [12] (j) DF-Baseline (k) DF-Unsupervised

Figure 3. Results for House image sequence. Image courtesy of Kede ma. Best viewed in color.

measuring MEF SSIM for Cb and Cr channels may not be

meaningful. Alternately, one can choose to fuse RGB chan-

nels separately using different networks. However, there is

typically a large correlation between RGB channels. Fus-

ing RGB independently fails to capture this correlation and

introduces noticeable color difference. Also, MEF-SSIM is

not designed for RGB channels. Another alternative is to

regress RGB values in a single network, then convert them

to a Y image and compute MEF SSIM loss. Here, the net-

work can focus more on improving Y channel, giving less

importance to color. However, we observed spurious colors

in output which were not originally present in input.

We follow the procedure used by Prabhakar et al. [18]

for chrominance channel fusion. If x1 and x2 denote the Cb

(or Cr) channel value at any pixel location for image pairs,

then the fused chrominance value x is obtained as follows,

x =
x1(|x1 − τ |) + x2(|x2 − τ |)

|x1 − τ |+ |x2 − τ |
(6)

The fused chrominance value is obtained by weighing two

chrominance values with τ subtracted value from itself. The

value of τ is chosen as 128. The intuition behind this ap-

proach is to give more weight for good color components

and less for saturated color values. The final result is ob-

tained by converting {Yfused, Cbfused, Crfused} channels

into RGB image.

4. Experiments and Results
We have conducted extensive evaluation and comparison

study against state-of-the-art algorithms for variety of natu-

ral images2. For evaluation, we have chosen standard image

sequences to cover different image characteristics includ-

ing indoor and outdoor, day and night, natural and artificial

lighting, linear and non-linear exposure. The proposed al-

gorithm is compared against seven best performing MEF

algorithms, (1) Mertens09 [16], (2) Li13 [10] (3) Li12 [9]

2Due to space limitations, we have shown results for only few se-

quences. More results are shared in supplementary material

(4) Ma15 [14] (5) Raman11 [20] (6) Shen11 [23] and (7)

Guo17 [12]. In order to evaluate the performance of algo-

rithms objectively, we adopt MEF SSIM. Although num-

ber of other IQA models for general image fusion have also

been reported, none of them makes adequate quality predic-

tions of subjective opinions [15].

4.1. DeepFuse - Baseline
So far, we have discussed on training CNN model in un-

supervised manner. One interesting variant of that would

be to train the CNN model with results of other state-of-

art methods as ground truth. This experiment can test the

capability of CNN to learn complex fusion rules from data

itself without the help of MEF SSIM loss function. The

ground truth is selected as best of Mertens [16] and GFF

[10] methods based on MEF SSIM score3. The choice of

loss function to calculate error between ground truth and

estimated output is very crucial for training a CNN in super-

vised fashion. The Mean Square Error or ℓ2 loss function is

generally chosen as default cost function for training CNN.

The ℓ2 cost function is desired for its smooth optimization

properties. While ℓ2 loss function is better suited for clas-

sification tasks, they may not be a correct choice for image

processing tasks [29]. It is also a well known phenomena

that MSE does not correlate well with human perception of

image quality [27]. In order to obtain visually pleasing re-

sult, the loss function should be well correlated with HVS,

like Structural Similarity Index (SSIM) [27]. We have ex-

perimented with different loss functions such as ℓ1, ℓ2 and

SSIM.

The fused image appear blurred when the CNN was

trained with ℓ2 loss function. This effect termed as regres-

sion to mean, is due to the fact that ℓ2 loss function com-

pares the result and ground truth in a pixel by pixel manner.

The result by ℓ1 loss gives sharper result than ℓ2 loss but it

has halo effect along the edges. Unlike ℓ1 and ℓ2, results

by CNN trained with SSIM loss function are both sharp and

3In a user survey conducted by Ma et al. [15], Mertens and GFF results

are ranked better than other MEF algorithms
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(a) Underexposed input (b) Overexposed input (c) Mertens et al. [16] (d) Zoomed result of (c) (e) DF - Unsupervised (f) Zoomed result of (e)

(g) Underexposed input (h) Overexposed input (i) Mertens et al. [16] (j) Zoomed result

of (i)

(k) DF - Unsupervised (l) Zoomed result

of (k)

Figure 4. Comparison of the proposed method with Mertens et al. [16]. The Zoomed region of the result by Mertens et al. in (d) show

that some highlight regions are not completely retained from input. The zoomed region of the result by Mertens et al. in (j) show that fine

details of lamp are missing.

Table 2. MEF SSIM scores of different methods against DeepFuse (DF) for test images. Bolded values indicate the highest score by that

corresponding column algorithm than others for that row image sequence.
Mertens09 Raman11 Li12 Li13 Shen11 Ma15 Guo17 DF-Baseline DF-UnSupervised

AgiaGalini 0.9721 0.9343 0.9438 0.9409 0.8932 0.9465 0.9492 0.9477 0.9813

Balloons 0.9601 0.897 0.9464 0.9366 0.9252 0.9608 0.9348 0.9717 0.9766

Belgium house 0.9655 0.8924 0.9637 0.9673 0.9442 0.9643 0.9706 0.9677 0.9727

Building 0.9801 0.953 0.9702 0.9685 0.9513 0.9774 0.9666 0.965 0.9826

Cadik lamp 0.9658 0.8696 0.9472 0.9434 0.9152 0.9464 0.9484 0.9683 0.9638

Candle 0.9681 0.9391 0.9479 0.9017 0.9441 0.9519 0.9451 0.9704 0.9893

Chinese garden 0.990 0.8887 0.9814 0.9887 0.9667 0.990 0.9860 0.9673 0.9838

Corridor 0.9616 0.898 0.9709 0.9708 0.9452 0.9592 0.9715 0.9740 0.9740

Garden 0.9715 0.9538 0.9431 0.932 0.9136 0.9667 0.9481 0.9385 0.9872

Hostel 0.9678 0.9321 0.9745 0.9742 0.9649 0.9712 0.9757 0.9715 0.985

House 0.9748 0.8319 0.9575 0.9556 0.9356 0.9365 0.9623 0.9601 0.9607

Kluki Bartlomiej 0.9811 0.9042 0.9659 0.9645 0.9216 0.9622 0.9680 0.9723 0.9742

Landscape 0.9778 0.9902 0.9577 0.943 0.9385 0.9817 0.9467 0.9522 0.9913

Lighthouse 0.9783 0.9654 0.9658 0.9545 0.938 0.9702 0.9657 0.9728 0.9875

Madison capitol 0.9731 0.8702 0.9516 0.9668 0.9414 0.9745 0.9711 0.9459 0.9749

Memorial 0.9676 0.7728 0.9644 0.9771 0.9547 0.9754 0.9739 0.9727 0.9715

Office 0.9749 0.922 0.9367 0.9495 0.922 0.9746 0.9624 0.9277 0.9749

Room 0.9645 0.8819 0.9708 0.9775 0.9543 0.9641 0.9725 0.9767 0.9724

SwissSunset 0.9623 0.9168 0.9407 0.9137 0.8155 0.9512 0.9274 0.9736 0.9753

Table 0.9803 0.9396 0.968 0.9501 0.9641 0.9735 0.9750 0.9468 0.9853

TestChart1 0.9769 0.9281 0.9649 0.942 0.9462 0.9529 0.9617 0.9802 0.9831

Tower 0.9786 0.9128 0.9733 0.9779 0.9458 0.9704 0.9772 0.9734 0.9738

Venice 0.9833 0.9581 0.961 0.9608 0.9307 0.9836 0.9632 0.9562 0.9787

artifact-free. Therefore, SSIM is used as loss function to

calculate error between generated output and ground truth

in this experiment4.

The quantitative comparison between DeepFuse baseline

and unsupervised method is shown in Table 2. The MEF

SSIM scores in Table 2 shows the superior performance of

DeepFuse unsupervised over baseline method in almost all

test sequences. The reason is due to the fact that for baseline

method, the amount of learning is upper bound by the other

algorithms, as the ground truth for baseline method is from

Merterns et al. [16] or Li et al. [10]. We see from Table 2

4Refer to supplementary material for more detailed analysis on results

by network trained with different loss functions

that the baseline method does not exceed both of them.

The idea behind this experiment is to combine advan-

tages of all previous methods, at the same time avoid short-

comings of each. From Fig. 3, we can observe that though

DF-baseline is trained with results of other methods, it can

produce results that do not have any artifacts observed in

other results.

4.2. Comparison with State-of-the-art

Comparison with Mertens et al.: Mertens et al. [16] is

a simple and effective weighting based image fusion tech-

nique with multi resolution blending to produce smooth re-

sults. However, it suffers from following shortcomings: (a)

it picks “best” parts of each image for fusion using hand
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(a) UE input (b) OE input (c) Li et al. [9] (d) Li et al. [10] (e) Shen et al. [23] (f) DeepFuse

Figure 5. Comparison of the proposed method with Li et al. [9], Li et al. [10] and Shen et al. [23] for Balloons and Office. Image courtesy

of Kede ma.

(a) Underexposed im-

age

(b) Ma et al. [14] (c) Zoomed re-

sult of (b)

(d) Overexposed im-

age

(e) DF - Unsupervised (f) Zoomed re-

sult of (e)

Figure 6. Comparison of the proposed method with Ma et al. [14]

for Table sequence. The zoomed region of result by Ma et al.

[14] shows the artificial halo artifact effect around edges of lamp.

Image courtesy of Kede ma.

(a) Ma et al. [14] (b) Zoomed result of (a)

(c) DF - Unsupervised (d) Zoomed result of (c)

Figure 7. Comparison of the proposed method with Ma et al. [14].

A close-up look on the results for Lighthouse sequence. The re-

sults by Ma et al. [14] show a halo effect along the roof and light-

house. Image courtesy of Kede Ma.

crafted features like saturation and well-exposedness. This

approach would work better for image stacks with many

exposure images. But for exposure image pairs, it fails to

maintain uniform brightness across whole image. Com-

pared to Mertens et al., DeepFuse produces images with

Figure 8. Filter Visualization. Some of the filters learnt in first

layer resemble Gaussian, Difference of Gaussian and Laplacian of

Gaussian filters. Best viewed electronically, zoomed in.

consistent and uniform brightness across whole image. (b)

Mertens et al. does not preserve complete image details

from under exposed image. In Fig. 4(d), the details of the

tile area is missing in Mertens et al.’s result. The same is the

case in Fig. 4(j), the fine details of the lamp are not present

in the Mertens et al. result. Whereas, DeepFuse has learned

filters that extract features like edges and textures in C1 and

C2, and preserves finer structural details of the scene.

Comparison with Li et al. [9] [10]: It can be noted that,

similar to Mertens et al. [16], Li et al. [9] [10] also suffers

from non-uniform brightness artifact (Fig. 5). In contrast,

our algorithm provides a more pleasing image with clear

texture details.

Comparison with Shen et al. [23]: The results generated

by Shen et al. show contrast loss and non-uniform bright-

ness distortions (Fig. 5). In Fig. 5(e1), the brightness dis-

tortion is present in the cloud region. The cloud regions in

between balloons appear darker compared to other regions.

This distortion can be observed in other test images as well

in Fig. 5(e2). However, the DeepFuse (Fig. 5(f1) and (f2) )

have learnt to produce results without any of these artifacts.

Comparison with Ma et al. [14]: Fig. 6 and 7 shows

comparison between results of Ma et al. and DeepFuse

for Lighthouse and Table sequences. Ma et al. proposed a

patch based fusion algorithm that fuses patches from input

images based on their patch strength. The patch strength is

calculated using a power weighting function on each patch.

This method of weighting would introduce unpleasant halo

effect along edges (see Fig. 6 and 7).

Comparison with Raman et al. [20]: Fig. 3(f) shows
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(a) Near focused image (b) Far focused image (c) DF result

Figure 9. Application of DeepFuse CNN to multi-focus fusion.

The first two column images are input varying focus images. The

All-in-focus result by DeepFuse is shown in third column. Images

courtesy of Liu et al. [13]. Image courtesy of Slavica savic.

the fused result by Raman et al. for House sequence. The

result exhibit color distortion and contrast loss. In contrast,

proposed method produces result with vivid color quality

and better contrast.

After examining the results by both subjective and ob-

jective evaluations, we observed that our method is able to

faithfully reproduce all the features in the input pair. We

also notice that the results obtained by DeepFuse are free of

artifacts such as darker regions and mismatched colors. Our

approach preserves the finer image details along with higher

contrast and vivid colors. The quantitative comparison be-

tween proposed method and existing approaches in Table

2 also shows that proposed method outperforms others in

most of the test sequences. From the execution times shown

in Table 3 we can observe that our method is roughly 3-4×
faster than Mertens et al. DeepFuse can be easily extended

to more input images by adding additional streams before

merge layer. We have trained DeepFuse for sequences with

3 and 4 images. For sequences with 3 images, average MEF

SSIM score for DF is 0.987 and 0.979 for Mertens et al. For

sequences with 4 images, average MEF SSIM score for DF

is 0.972 and 0.978 for Mertens et al. For sequences with

4 images, we attribute dip in performance to insufficient

training data. With more training data, DF can be trained

to perform better in such cases as well.

4.3. Application to Multi-Focus Fusion

In this section, we discuss the possibility of applying our

DeepFuse model for solving other image fusion problems.

Due to the limited depth-of-field in the present day cameras,

only object in limited range of depth are focused and the

remaining regions appear blurry. In such scenario, Multi-

Focus Fusion (MFF) techniques are used to fuse images

taken with varying focus to generate a single all-in-focus

image. MFF problem is very similar to MEF, except that the

input images have varying focus than varying exposure for

MEF. To test the generalizability of CNN, we have used the

Table 3. Computation time: Running time in seconds of different

algorithms on a pair of images. The numbers in bold denote the

least amount of time taken to fuse. ‡: tested with NVIDIA Tesla

K20c GPU, †: tested with Intel R©Xeon @ 3.50 GHz CPU

Image size Ma15† Li13† Mertens07† DF ‡

512*384 2.62 0.58 0.28 0.07

1024*768 9.57 2.30 0.96 0.28

1280*1024 14.72 3.67 1.60 0.46

1920*1200 27.32 6.60 2.76 0.82

already trained DeepFuse CNN to fuse multi-focus images

without any fine-tuning for MFF problem. Fig. 9 shows

that the DeepFuse results on publicly available multi-focus

dataset show that the filters of CNN have learnt to identify

proper regions in each input image and successfully fuse

them together. It can also be seen that the learnt CNN filters

are generic and could be applied for general image fusion.

5. Conclusion and Future work

In this paper, we have proposed a method to efficiently

fuse a pair of images with varied exposure levels to pro-

duce an output which is artifact-free and perceptually pleas-

ing. DeepFuse is the first ever unsupervised deep learning

method to perform static MEF. The proposed model extracts

set of common low-level features from each input images.

Feature pairs of all input images are fused into a single fea-

ture by merge layer. Finally, the fused features are input to

reconstruction layers to get the final fused image. We train

and test our model with a huge set of exposure stacks cap-

tured with diverse settings. Furthermore, our model is free

of parameter fine-tuning for varying input conditions. Fi-

nally, from extensive quantitative and qualitative evaluation,

we demonstrate that the proposed architecture performs bet-

ter than state-of-the-art approaches for a wide range of input

scenarios.

In summary, the advantages offered by DF are as fol-
lows: 1) Better fusion quality: produces better fusion result
even for extreme exposure image pairs, 2) SSIM over ℓ1 :
In [29], the authors report that ℓ1 loss outperforms SSIM
loss function. In their work, the authors have implemented
approximate version of SSIM and found it to perform sub-
par compared to ℓ1. We have implemented the exact SSIM
formulation and observed that SSIM loss function perform
much better than MSE and ℓ1. Further, we have shown
that a complex perceptual loss such as MEF SSIM can be
successfully incorporated with CNNs in absense of ground
truth data. The results encourage the research community
to examine other perceptual quality metrics and use them
as loss functions to train a neural net. 3) Generalizability
to other fusion tasks: The proposed fusion is generic in na-
ture and could be easily adapted to other fusion problems as
well. In our current work, DF is trained to fuse static im-
ages. For future research, we aim to generalize DeepFuse
to fuse images with object motion as well.
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