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Abstract

Person Re-identification (re-id) aims to match people

across non-overlapping camera views in a public space. It

is a challenging problem because many people captured in

surveillance videos wear similar clothes. Consequently, the

differences in their appearance are often subtle and only de-

tectable at the right location and scales. Existing re-id mod-

els, particularly the recently proposed deep learning based

ones match people at a single scale. In contrast, in this pa-

per, a novel multi-scale deep learning model is proposed.

Our model is able to learn deep discriminative feature rep-

resentations at different scales and automatically determine

the most suitable scales for matching. The importance of

different spatial locations for extracting discriminative fea-

tures is also learned explicitly. Experiments are carried

out to demonstrate that the proposed model outperforms the

state-of-the art on a number of benchmarks.

1. Introduction

Person re-identification (re-id) is defined as the task of

matching two pedestrian images crossing non-overlapping

camera views [11]. It plays an important role in a num-

ber of applications in video surveillance, including multi-

camera tracking [2, 41], crowd counting [3, 10], and multi-

camera activity analysis [54, 53]. Person re-id is extremely

challenging and remains unsolved for a number of reasons.

First, in different camera views, one person’s appearance

often changes dramatically caused by the variances in body

pose, camera viewpoints, occlusion and illumination condi-

tions. Second, in a public space, many people often wear

very similar clothes (e.g., dark coats in winter). The differ-

ences that can be used to tell them apart are often subtle,

which could be the global, e.g., one person is bulkier than

the other, or local, e.g., the two people wear different shoes.

Early re-id methods use hand-crafted features for per-
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(a) The cognitive process a human may take to match

people

(b) Our model aims to imitate the human cognitive process

Figure 1. Multi-scale learning is adopted by our MuDeep to learn

discriminative features at different spatial scales and locations.

son appearance representation and employ distance metric

learning models as matching functions. They focus on ei-

ther designing cross-view robust features [7, 13, 26, 62, 32],

or learning robust distance metrics [31, 33, 63, 25, 49,

60, 38, 32], or both [24, 32, 57, 59]. Recently, inspired

by the success of convolutional neural networks (CNN) in

many computer vision problems, deep CNN architectures

[1, 48, 27, 51, 44, 50, 4] have been widely used for per-

son re-id. Using a deep model, the tasks of feature repre-

sentation learning and distance metric learning are tackled

jointly in a single end-to-end model. The state-of-the-art re-

id models are mostly based on deep learning; deep re-id is

thus the focus of this paper.

Learning discriminative feature representation is the key

objective of a deep re-id model. These features need to be

computed at multiple scales. More specifically, some peo-

ple can be easily distinguished by some global features such

as gender and body build, whilst for some others, detecting

local images patches corresponding to, say a handbag of a

particular color or the type of shoes, would be critical for
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distinguishing two otherwise very similarly-looking peo-

ple. The optimal matching results are thus only obtainable

when features at different scales are computed and com-

bined. Such a multi-scale matching process is likely also

adopted by most humans when it comes to re-id. In partic-

ular, humans typically compare two images from coarse to

fine. Taking the two images in Fig. 1(a) as an example. At

the coarse level, the color and textual information of clothes

are very similar; humans would thus go down to finer scales

to notice the subtle local differences (e.g. the hairstyle, shoe,

and white stripes on the jacket of the person on the left) to

reach the conclusion that these are two different people.

However, most existing re-id models compute features

at a single scale and ignore the factor that people are of-

ten only distinguishable at the right spatial locations and

scales. Existing models typically adopt multi-branch deep

convolutional neural networks (CNNs). Each domain has a

corresponding branch which consists of multiple convolu-

tional/pooling layers followed by fully connected (FC) lay-

ers. The final FC layer is used as input to pairwise ver-

ification or triplet ranking losses to learn a joint embed-

ding space where people’s appearance from different cam-

era views can be compared. However, recent efforts [9, 39]

on visualizing what each layer of a CNN actually learns re-

veal that higher-layers of the network capture more abstract

semantic concepts at global scales with less spatial informa-

tion. When it reaches the FC layers, the information at finer

and local scales has been lost and cannot be recovered. This

means that the existing deep re-id architectures are unsuit-

able for the multi-scale person matching.

In this work, we propose a novel multi-scale deep learn-

ing model (MuDeep) for re-id which aims to learn discrim-

inative feature representations at multiple scales with auto-

matically determined scale weighting for combining them

(see Fig. 1(b)). More specifically, our MuDeep network

architecture is based on a Siamese network but critically

has the ability to learn features at different scales and eval-

uating their importance for cross-camera matching. This

is achieved by introducing two novel layers: multi-scale

stream layers that extract images features by analyzing the

person images in multi-scale; and saliency-based learn-

ing fusion layer, which selectively learns to fuse the data

streams of multi-scale and generate the more discrimina-

tive features of each branch in MuDeep. The multi-scale

data can implicitly serve as a way of augmenting the train-

ing data. In addition to the verification loss used by many

previous deep re-id models, we introduce a pair of classifi-

cation losses at the middle layers of our network, in order

to strongly supervise multi-scale features learning.

2. Related Work

Deep re-id models Various deep learning architectures

have been proposed to either address visual variances of

pose and viewpoint [27], learn better relative distances of

triplet training samples [6], or learn better similarity met-

rics of any pairs [1]. To have enough training samples, [48]

built upon inception module a single deep network and is

trained on multiple datasets; to address the specific person

re-id task, the neural network will be adapted to a single

dataset by a domain guided dropout algorithm. More re-

cently, an extension of the siamese network has been studied

for person re-id [50]. Pairwise and triplet comparison ob-

jectives have been utilized to combine several sub-networks

to form a network for person re-id in [51]. Similarly, [4]

employed triplet loss to integrate multi-channel parts-based

CNN models. To resolve the problem of large variations,

[44] proposed a moderate positive sample mining method

to train CNN. However, none of the models developed is

capable of multi-scale feature computation as our model.

More specifically, the proposed deep re-id model dif-

fers from related existing models in several aspects. (1)

our MuDeep generalizes the convolutional layers with

multi-scale strategy and proposed multi-scale stream lay-

ers and saliency-based learning fusion layer, which is dif-

ferent from the ideas of combing multiple sub-networks

[51] or channels [4] with pairwise or triplet loss. (2)

Comparing with [48], our MuDeep are simplified, re-

fined and flexible enough to be trained from scratch

on either large-scale dataset (e.g. CUHK03) or medium-

sized dataset (e.g. CUHK01). Our experiments show

that without using any extra data, the performance of our

MuDeep is 12.41%/4.27% higher than that of [48] on

CUHK01/CUHK03 dataset. (3) We improve the architec-

ture of [1] by introducing two novel layers to implement

multi-scale and saliency-based learning mechanisms. Our

experiment results validate that the novel layers lead to

much better performance than [1].

Multi-scale re-id The idea of multi-scale learning for

re-id was first exploited in [29]. However, the definition of

scale is different: It was defined as different levels of res-

olution rather than the global-to-local supporting region as

in ours. Therefore, despite similarity between terminology,

very different problems are tackled in these two works. The

only multi-scale deep re-id work that we are aware of is

[36]. Compared to our model, the model in [36] is rather

primitive and naive: Different down-sampled versions of

the input image are fed into shallower sub-networks to ex-

tract features at different resolution and scale. These sub-

networks are combined with a deeper main network for fea-

ture fusion. With an explicit network for each scale, this

network becomes computationally very expensive. In addi-

tion, no scale weighting can be learned automatically and

no spatial importance of features can be modeled as in ours.

Deep saliency modelling Visual saliency has been stud-

ied extensively [19, 20]. It is typically defined in a bottom-

up process. In contrast, attention mechanism [5] works
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Figure 2. Overview of MuDeep architecture.

Layers Stream id number@size output

Multi-scale-A

1 1@3× 3× 96 AF –24@1× 1× 96 CF

78× 28× 96
2 24@1× 1× 96 CF

3 16@1× 1× 96 CF – 24@3× 3× 96 CF

4 16@1× 1× 96 CF –24@3× 3× 96 CF– 24@3× 3× 24 CF

Reduction

1 1@3× 3× 96 MF*

39× 14× 2562 96@3× 3× 96 CF*

3 48@1× 1× 96 CF – 56@3× 3× 48 CF– 64@3× 3× 56 CF*

Multi-scale-B

1 256@1× 1× 256 CF 39× 14× 256

2 64@1× 1× 256 CF –128@1× 3× 64 CF–256@3× 1× 128 CF 39× 14× 256

3
64@1× 1× 256 CF – 64@1× 3× 64 CF

39× 14× 256
–128@3× 1× 64CF– 128@1× 3× 128 CF– 256@3× 1× 128 CF

4 1@3× 3× 256 AF* –256@1× 1× 256 CF 39× 14× 256

Table 1. The parameters of tied multi-scale stream layers of MuDeep. Note that (1) number@size indicates the number and the size of

filters. (2) * means the stride of corresponding filters is 2; the stride of other filters is 1. We add 1 padding to the side of input data stream

if the corresponding side of C-filters is 3. (3) CF, AF, MF indicate the C-filters, A-filters and M-filters respectively. A-filter is the average

pooling filter.

in a top-down way and allows for salient features to dy-

namically come to the front as needed. Recently, deep

soft attention modeling has received increasing interest as

a means to attend to/focus on local salient regions for com-

puting deep features [43, 42, 58, 35]. In this work, we use

saliency-based learning strategy in a saliency-based learn-

ing fusion layer to exploit both visual saliency and atten-

tion mechanism. Specifically, with the multi-scale stream

layers, the saliency features of multiple scales are com-

puted in multi-channel (e.g. in a bottom-up way); and a per

channel weighting layer is introduced to automatically dis-

cover the most discriminative feature channels with their

associated scale and locations. Comparing with [35] which

adopts a spatial attention model, our model is much com-

pact and can be learned from scratch on a small re-id

dataset. When comparing the two models, our model, de-

spite being much smaller, yields overall slightly better per-

formance: on CUHK-01 dataset ours is 8% lower than that

of [35] but on the more challenging CUHK-03(detected) we

got around 10% improvement over that of [35]. Such a sim-

ple saliency learning architecture is shown to be very effec-

tive in our experiments.

Our contributions are as follows: (1) A novel multi-scale

representation learning architecture is introduced into the

deep learning architectures for person re-id tasks. (2) We

propose a saliency-based learning fusion layer which can

learn to weight important scales in the data streams in a

saliency-based learning strategy. We evaluate our model on

a number of benchmark datasets, and the experiments show

that our models can outperform state-of-the-art deep re-id

models, often by a significant margin.

3. Multi-scale Deep Architecture (MuDeep)

Problem Definition. Typically, person re-id is formulated

only as a verification task [24, 32, 57, 59]. In contrast, this
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paper formulates person re-id into two tasks: classification

[55, 56] and verification [1, 48]. Specifically, given a pair

of person images, our framework will categorize them (1)

either as the “same person” or “different persons” class, and

(2) predict the person’s identity.

Architecture Overview. As shown in Fig. 2, MuDeep has

two branches to process each of image pairs. It consists

of five components: tied convolutional layers, multi-scale

stream layers (Sec. 3.1), saliency-based learning fusion

layer (Sec. 3.2), verification subnet and classification sub-

net (Sec. 3.3). Note that after each convolutional layer or

fully connected layer, batch normalization [18] is used be-

fore the ReLU activation.

Preprocessing by convolutional layers. The input pairs

are firstly pre-processed by two convolutional layers with

the filters (C-filters) of 48@3× 3× 3 and 96@3× 3× 48;

furthermore, the generated feature maps are fed into a max-

pooling layer with filter size (M-filter) as 1@3 × 3 × 96 to

reduce both length and width by half. The weights of these

layers are tied across two branches, in order to enforce the

filters to learn the visual patterns shared by both branches.

3.1. Multi­scale stream layers

We propose multi-scale stream layers to analyze data

streams in multi-scale. The multi-scale data can implic-

itly serve as a way of augmenting the training data. Differ-

ent from the standard Inception structure [47], all of these

layers share weights between the corresponding stream of

two branches; however, within each two data streams of the

same branch, the parameters are not tied. The parameters

of these layers are shown in Tab. 1; and please refer to Sup-

plementary Material for the visualization of these layers.

Multi-scale-A layer analyses the data stream with the size

1 × 1, 3 × 3 and 5 × 5 of the receptive field. Furthermore,

in order to increase both depth and width of this layer, we

split the filter size of 5× 5 into two 3× 3 streams cascaded

(i.e. stream-4 and stream-3 in Table 1). The weights of each

stream are also tied with the corresponding stream in an-

other branch. Such a design is in general inspired by, and

yet different from Inception architectures [46, 47, 45]. The

key difference lies in the factors that the weights are not tied

between any two streams from the same branch, but are tied

between two corresponding streams of different branches.

Reduction layer further passes the data streams in multi-

scale, and halves the width and height of feature maps,

which should be, in principle, reduced from 78 × 28 to

39 × 14. We thus employ Reduction layer to gradually de-

crease the size of feature representations as illustrated in Ta-

ble 1, in order to avoid representation bottlenecks. Here we

follow the design principle of “avoid representational bot-

tlenecks” [47]. In contrast to directly use max-pooling layer

for decreasing feature map size, our ablation study shows

that the Reduction layer, if replaced by max-pooling layer,

will leads to more than 10% absolute points lower than the

reported results of Rank-1 accuracy on the CUHK01 dataset

[28]. Again, the weights of each filter here are tied for

paired streams.

Multi-scale-B layer serves as the last stage of high-level

features extraction for the multiple scales of 1 × 1, 3 × 3
and 5× 5. Besides splitting the 5× 5 stream into two 3× 3
streams cascaded (i.e. stream-4 and stream-3 in Table 1).

We can further decompose the 3× 3 C-filters into one 1× 3
C-filter followed by 3×1 C-filter [45]. This leads to several

benefits, including reducing the computation cost on 3 ×

3 C-filters, further increasing the depth of this component,

and being capable of extracting asymmetric features from

the receptive field. We still tie the weights of each filter.

3.2. Saliency­based learning fusion layer

This layer is proposed to fuse the outputs of multi-scale

stream layers. Intuitively, with the output processed by pre-

vious layers, the resulting data channels have redundant in-

formation: Some channels may capture relative important

information of persons, whilst others may only model the

background context. The saliency-based learning strategy

is thus utilized here to automatically discover and empha-

size the channels that had extracted highly discriminative

patterns, such as the information of head, body, arms, cloth-

ing, bags and so on, as illustrated in Fig. 3. Thus, we as-

sume Fi⋆ represents the input feature maps of i−th stream

(1 ≤ i ≤ 4) in each branch and Fij represents the j−th

channel of Fi⋆, i.e. (1 ≤ j ≤ 256) and Fij ∈ R
39×14.

The output feature maps denoted as G will fuse the four

streams; Gj represents the j−th channel map of G, which

is computed by:

Gj =

4
∑

i=1

Fij · αij (1 ≤ j ≤ 256) (1)

where αij is the scalar for j−th channel of Fi⋆; and the

saliency-weighted vector αi⋆ is learned to account for the

importance of each channel of stream Fi⋆; αi⋆ is also tied.

A fully connected layer is appended after saliency-based

learning fusion layer, which extracts features of 4096-

dimensions of each image. The idea of this design is 1) to

concentrate the saliency-based learned features and reduce

dimensions, and 2) to increase the efficiency of testing.

3.3. Subnets for person Re­id

Verification subnet accepts feature pairs extracted by

previous layers as input, and calculate distance with fea-

ture difference layer, which followed by a fully connected

layer of 512 neurons with 2 softmax outputs. The out-

put indicates the probability of ”same person” or ”differ-

ent persons”. Feature difference layer is employed here

to fuse the features of two branches and compute the dis-

tance between two images. We denote the output features
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of two branches as G
1 and G

2 respectively. The fea-

ture difference layer computes the difference D as D =
[

G
1 −G

2
]

. ∗
[

G
1 −G

2
]

. Note that (1) ‘.∗’ indicates the

element-wise multiplication; the idea behind using element-

wise subtraction is that if an input image pair is labelled

”same person”, the features generated by multi-scale stream

layers and saliency-based learning fusion layers should be

similar; in other words, the output values of feature differ-

ence layer should be close to zero; otherwise, the values

have different responses. (2) We empirically compare the

performance of two difference layer operations including
[

G
1 −G

2
]

. ∗
[

G
1 −G

2
]

and
[

G
1 −G

2
]

. Our experi-

ment shows that the former achieves 2.2% higher perfor-

mance than the latter on Rank-1 accuracy on CUHK01.

Classification subnet In order to learn strong discrimi-

native features for appearance representation, we add clas-

sification subnet following saliency-based learning fusion

layers of each branch. The classification subnet is learned

to classify images with different pedestrian identities. Af-

ter extracting 4096-D features in saliency-based learning fu-

sion layers, a softmax with N output neurons are connected,

where N denotes the number of pedestrian identities.

4. Experiments

4.1. Datasets and settings

Datasets. The proposed method is evaluated on three

widely used datasets, i.e. CUHK03 [27], CUHK01 [28] and

VIPeR [12]. The CUHK03 dataset includes 14, 096 im-

ages of 1, 467 pedestrians, captured by six camera views.

Each person has 4.8 images on average. Two types of per-

son images are provided [27]: manually labelled pedestrian

bounding boxes (labelled) and bounding boxes automati-

cally detected by the deformable-part-model detector [8]

(detected). The manually labelled images generally are of

higher quality than those detected images. We use the set-

tings of both manually labelled and automatically detected

person images on the standard splits in [27] and report the

results in Sec. 4.2 and Sec. 4.3 respectively. CUHK01

dataset has 971 identities with 2 images per person of each

camera view. As in [28], we use as probe the images from

camera A and take those from camera B as gallery. Out of

all data, we select randomly 100 identities as the test set.

The remaining identities for training and validation. The

experiments are repeated over 10 trials. For all the experi-

ments, we train our models from the scratch. VIPeR has 632
pedestrian pairs in two views with only one image per per-

son of each view. We split the dataset and half of pedestrian

pairs for training and the left for testing as in [1] over 10 tri-

als. In addition, we also evaluate proposed method on two

video-based re-id datasets, i.e., iLIDS-VID dataset [52] and

PRID-2011 dataset [15]. The iLIDS-VID dataset contains

300 persons, which are captured by two non-overlapping

cameras. The sequences range in length from 23 to 192

frames, with an average number of 73. The PRID-2011

dataset contains 385 persons for camera view A; 749 per-

sons for camera view B, with sequences lengths of 5 to 675

frames. These two camera views have no nonoverlapping.

Since the primary focus of this paper is on image-based per-

son re-id, we employ the simplest feature fusion scheme for

video re-id: Given a video sequence, we compute features

of each frame which are aggregated by max-pooling to form

video level representation. In contrast, most of the state-of-

the-art video-based re-id methods [40, 37, 52, 23, 30, 22]

utilized the RNN models such as LSTM to perform tempo-

ral/sequence video feature fusion from each frame.

Experimental settings. On the CUHK03 dataset, in term

of training set used, we introduce two specific experimen-

tal settings; and we report the results for both settings: (a)

Jointly: as in [48], under this setting the model is firstly

trained with the image set of both labelled and detected

CUHK03 images, and for each task, the corresponding im-

age set is used to fine-tune the pre-trained networks. (b) Ex-

clusively: for each of the “labelled” and “detected” tasks,

we only use the training data from each task without using

the training data of the other task.

Implementation details. We implement our model based

on the Caffe framework [21] and we make our own imple-

mentation for the proposed layers. We follow the train-

ing strategy used in [1] to first train the network without

classification subnets; secondly, we add the classification

subnets and freeze other weights to learn better initializa-

tion of the identity classifier; finally we train classification

loss and verification loss simultaneously, with a higher loss

weight of the former. The training data include positive and

negative pedestrian pairs. We augment the data to increase

the training set size by 5 times with the method of random

2D translation as in [27]. The negative pairs are randomly

sampled as twice the number of positive pairs. We use the

stochastic gradient descent algorithm with the mini-batch

size of 32. The learning rate is set as 0.001, and gradually

decreased by 1/10 every 50000 iterations. The size of input

image pairs is1 60×160×3. Unless specified otherwise, the

dropout ratio is set as 0.3. The proposed MuDeep get con-

verged in 9 ∼ 12 hours on re-id dataset on a NVIDIA TI-

TANX GPU. Our MuDeep needs around 7GB GPU mem-

ory. Code and models will be made available on the first

author’s webpage.

Competitors. We compare with the deep learning based

methods including DeepReID [27], Imp-Deep [1], En-Deep

[55], and G-Dropout [48], Gated Sia [50], EMD [44], SI-CI

[51], and MSTC2 [36], as well as other non-deep competi-

tors, such as Mid-Filter [62], and XQDA [32], LADF [31],

1To make a fair comparision with [1], the input images are resized to

60× 160× 3.
2We re-implement [36] for evaluation purpose.
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eSDC [61], LMNN [16], and LDM [14].

Evaluation metrics. In term of standard evaluation metrics,

we report the Rank-1, Rank-5 and Rank-10 accuracy with

single-shot setting in our paper. For more detailed results

using Cumulative Matching Characteristics (CMC) curves,

please refer to the Supplementary Material.

4.2. Results on CUHK03­Detected

On the CUHK03-Detected dataset, our results are com-

pared with the state-of-the-art methods in Table 2.

Firstly and most importantly, our best results – MuDeep

(jointly) outperforms all the other baselines at all ranks. Par-

ticularly, we notice that our results are significantly better

than both the methods of using hand-crafted features and

the recent deep learned models. This validates the efficacy

of our architectures and suggests that the proposed multi-

scale and saliency-based learning fusion layer can help ex-

tract discriminative features for person re-id.

Secondly, comparing with the Gated Sia [50] which is

an extension of Siamese network with the gating function

to selectively emphasize fine common local patterns from

data, our result is 7.54% higher at Rank-1 accuracy. This

suggests that our framework can better analyze the multi-

scale patterns from data than Gated Sia [50], again thanks

to the novel multi-scale stream layers and saliency-based

learning fusion layers.

Finally, we further compare our results on both “Jointly”

and “Exclusively” settings. The key difference is that in

the “jointly” settings, the models are also trained with the

data of CUHK03-Labelled, i.e. the images with manually

labelled pedestrian bounding boxes. As explained in [27],

the quality of labelled images is generally better than those

of detected images. Thus with more data of higher qual-

ity used for training, our model under the “Jointly” setting

can indeed beat our model under the “Exclusively” setting.

However, the improved margins between these two settings

at all Ranks are very small if compared with the margin

between our results and the results of the other methods.

This suggests that our multi-scale stream layers have effi-

ciently explored and augmented the training data; and with

such multi-scale information explored, we can better train

our model. Thanks to our multi-scale stream layers, our

MuDeep can still achieve good results with less training

data, i.e. under the Exclusively setting.

4.3. Results on CUHK03­Labelled

The results of CUHK03-Labelled dataset are shown in

Table 3 and we can make the following observations.

Firstly, in this setting, our MuDeep still outperforms the

other competitors by clear margins on all the rank accura-

cies. Our result is 4.27% higher than the second best one

– G-Dropout[48]. Note that the G-Dropout adopted the do-

main guided dropout strategies and it utilized much more

Dataset “Detected”

Rank 1 5 10

SDALF[7] 4.87 21.17 35.06

eSDC [61] 7.68 21.86 34.96

LMNN [16] 6.25 18.68 29.07

XQDA [32] 46.25 78.90 88.55

LDM [14] 10.92 32.25 48.78

DeepReid [27] 19.89 50.00 64.00

MSTC [36] 55.01 – –

Imp-Deep [1] 44.96 76.01 83.47

SI-CI [51] 52.17 84.30 92.30

Gated Sia [50] 68.10 88.10 94.60

EMD [44] 52.09 82.87 91.78

MuDeep (Jointly) 75.64 94.36 97.46

MuDeep (Exclusively) 75.34 94.31 97.40
Table 2. Results of CUHK03-Detected dataset.

Dataset “Labelled”

Rank 1 5 10

SDALF[7] 5.60 23.45 36.09

eSDC [61] 8.76 24.07 38.28

LMNN [16] 7.29 21.00 32.06

XQDA [32] 52.20 82.23 92.14

LDM [14] 13.51 40.73 52.13

DeepReid [27] 20.65 51.50 66.50

Imp-Deep [1] 54.74 86.50 93.88

G-Dropout[48] 72.60 92.30* 94.30*

EMD [44] 61.32 88.90 96.44

MuDeep (Jointly) 76.87 96.12 98.41

MuDeep (Exclusively) 76.34 95.96 98.40
Table 3. Results of CUHK03-Labelled dataset. Note that: * repre-

sents the results reproduced from [48] with the model trained only

by CUHK03 dataset.

training data in this task. This further validates that our

multi-scale stream layers can augment the training data to

exploit more information from medium-scale dataset rather

than scaling up the size of training data; and saliency-based

learning fusion layers can better fuse the output of multi-

scale information which can be used for person re-id.

Secondly, we can draw a similar conclusion as from

the CUHK03-Detected results: Our MuDeep with “Jointly”

setting is only marginally better than that with “Exclu-

sively” setting. This means that more available related train-

ing data can always help improve the performance of deep

learning model; and this also validates that our multi-scale

stream layers and saliency-based fusion layers can help ex-

tract and fuse the multi-scale information and thus cope well

with less training data.

4.4. Results on CUHK01 and VIPeR

CUHK01 dataset. Our MuDeep is trained only on

CUHK01 dataset without using extra dataset. As listed in
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Table 4, our approach obtains 79.01% on Rank-1 accuracy,

which can beat all the state-of-the-art; and is 7.21% higher

than the second best method [51]. This further shows the

advantages of our framework.

VIPeR dataset. This dataset is extremely challenging due

to small data size and low resolution. In particular, this

dataset has relatively small number of distinct identities

and thus the positive pairs for each identity are much less

if compared with the other two datasets. Thus for this

dataset, our network is initialized by the model pre-trained

on CUHK03-Labelled dataset with the “Jointly” setting.

The training set of VIPeR dataset is used to fine-tune the

pre-trained network. We still use the same network struc-

ture except changing the number of neurons on the last layer

in the classification subnet. The results on VIPeR dataset

are listed in Table 5. The results of our MuDeep remains

competitive and outperforms all compared methods.

Qualitative visualization. We give some qualitative re-

sults of visualizing the saliency-based learning maps on

CUHK01. The visualization of our saliency-based learn-

ing maps is computed from saliency-based learning fusion

layer in Fig. 3. Given one input pair of images (left of

Fig. 3), for each branch, the saliency-based learning fusion

layer combines four data streams into a single data stream

with selectively learning learned from the saliency of each

data stream. The heatmaps of three channels are visualized

for each stream and each branch is shown on the right side

of Fig. 3. Each row corresponds to one data stream; and

each column is for one channel of heatmap of features. The

weight α (in Eq. (1)) for each feature channel is learned

and updated accordingly with the iteration of the whole net-

work. The three channels illustrated in Fig. 3 have a high

reaction (i.e. high values) in the heatmaps on discrimina-

tive local patterns of the input image pair. For example, the

first and third columns highlight the difference of clothes

and body due to the existence of different visual patterns

learned by our multi-scale stream layers. Thus these two

channels have relative higher α weights, whilst the second

column models the background patterns which are less dis-

criminative for the task of person re-id and results in lower

α value. Our saliency-based learning fusion layer can auto-

matically learn the optimal α weights from training data.

4.5. Ablation study

Multi-scale stream layers. We compare our multi-scale

stream layers with three variants of Inception-v4 [45] on

CUHK01 dataset. Specifically, Inception-v4 has Inception

A and Inception B modules, both of which are compared

against here. Furthermore, we also compare Inception A+B

structure which is constructed by connecting Inception A,

Reduction, and Inception B modules. The Inception A+B

structure is the most similar one to our multi-scale stream

layers except that (1) we modify some parameters; (2) the

Rank 1 5 10

KISSME [34, 25] 29.40 60.18 74.44

SDALF[7] 9.90 41.21 56.00

eSDC [61] 22.84 43.89 57.67

LMNN [16] 21.17 49.67 62.47

LDM [14] 26.45 57.68 72.04

DeepReid [27] 27.87 58.20 73.46

G-Dropout [48] 66.60 – –

MSTC [36] 64.12 – –

Imp-Deep [1] 65.00 88.70 93.12

SI-CI [51] 71.80 91.35* 95.23*

EMD [44] 69.38 91.03 96.84

MuDeep 79.01 97.00 98.96
Table 4. Results of CUHK01 dataset. *: reported from CMC

curves in [51].

Rank 1 5 10

kCCA[34] 30.16 62.69 76.04

Mid-Filter [62] 29.11 52.34 65.95

RPLM [17] 27.00 55.30 69.00

MtMCML [38] 28.83 59.34 75.82

LADF [31] 30.22 64.70 78.92

XQDA [32] 40.00 68.13 80.51

Imp-Deep [1] 34.81 63.61 75.63

G-Dropout [48] 37.70 – –

MSTC [36] 31.24 – –

SI-CI [51] 35.76 67.40 83.50

Gated Sia [50] 37.90 66.90 76.30

EMD [44] 40.91 67.41 79.11

MuDeep 43.03 74.36 85.76
Table 5. Results on the VIPeR dataset

Figure 3. Saliency Map of G in Eq (1).
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weights of our layers are tied between the corresponding

streams of two branches. Such weight tieing strategy en-

forces each paired stream of our two branches to extract the

common patterns. With the input of each image pair, we use

Inception A, Inception B, and Inception A+B as the based

network structure to predict whether this pair is the “same

person” or “different persons”. The results are compared in

Table 6. We can see that our MuDeep architecture has the

best performance over the other baselines. This shows that

our MuDeep is the most powerful at learning discriminative

patterns than the Inceptions variants, since the multi-scale

stream layers can more effectively extract multi-scale infor-

mation and the saliency-based learning fusion layer facili-

tates the automatic selection of the important feature chan-

nels.

Saliency-based learning fusion layer and classification

subset. To further investigate the contributions of the fusion

layer and the classification subset, we compare three vari-

ants of our model with one of or both of the two components

removed on CUHK01 dataset. In Table 7, the “– Fusion”

denotes our MuDeep without using the fusion layer; and

“–ClassNet” indicates our MuDeep without the classifica-

tion subnet; and “– Fusion – ClasNet” means that MuDeep

has neither fusion layer nor classification subnet. The re-

sults in Table 7 show that our full model has the best perfor-

mance over the three variants. We thus conclude that both

components help and the combination of the two can further

boost the performance.

4.6. Further evaluations

Multi-scale vs. Multi-resolution. Due to the often differ-

ent camera-to-object distances and the resultant object im-

age resolutions, multi-resolution re-id is also interesting on

its own and could potentially complement multi-scale re-id.

Here a simplest multi-resolution multi-scale re-id model is

formulated, by training the proposed multi-scale models at

different resolutions followed by fusing the different model

outputs. We consider the original resolution (60× 160) and

a lower one (45× 145). The feature fusion is done by con-

catenation. We found that the model trained at the lower

resolution achieves lower results and when the two models

are fused, the final performance is around 1−2% lower than

the model learned at the original resolution alone. Possible

reasons include (1) All three datasets have images of simi-

lar resolutions; and (2) more sophisticated multi-resolution

learning model is required which can automatically deter-

mine the optimal resolution for measuring similarity given

a pair of probe/gallery images.

Results on video-based re-id. Our method can be eval-

uated on iLIDS-VID and PRID-2011 datasets. Particu-

larly, two datasets are randomly split into 50% of persons

for training and 50% of persons for testing. We follow

the evaluation protocol in [15] on PRID-2011 dataset and

Rank 1 5 10

Inception A 60.11 85.30 92.44

Inception B 67.31 92.71 97.43

Inception A+B 72.11 91.90 96.45

MuDeep 79.01 97.00 98.96
Table 6. Results of comparing with different inception models on

the CUHK01 dataset.

Rank 1 5 10

– Fusion 77.88 96.81 98.21

– ClassNet 76.21 94.47 98.41

– Fusion – ClasNet 74.21 92.10 97.63

MuDeep 79.01 97.00 98.96
Table 7. Results of comparing with the variants of MuDeep on the

CUHK01 dataset. Note that “–Fusion” means that saliency-based

learning fusion layer is not used; “–ClassNet” indicates that the

classification subnet is not used in the corresponding structure.

Dataset PRID-2011 iLIDS-VID

Rank 1 5 10 1 5 10

RCNvrid[40] 70 90 95 58 84 91

STA [37] 64 87 90 44 72 84

VR [52] 42 65 78 35 57 68

SRID [23] 35 59 70 25 45 56

AFDA [30] 43 73 85 38 63 73

DTDL [22] 41 70 78 26 48 57

DDC [15] 28 48 55 – – –

MuDeep 65 87 93 41 70 83
Table 8. Results on the PRID-2011 and iLIDS-VID datasets

only consider the first 200 persons who appear in both cam-

eras. We compared our model with the results reported in

[15, 52, 40]. The results are listed in Table 8. These results

are higher than those in [15, 52], but lower than those in

[40] (only slightly on PRID-2011)3. These results are quite

encouraging and we expect that if the model is extended to

a CNN-RNN model, better performance can be achieved.

5. Conclusion

We have identified the limitations of existing deep re-

id models in the lack of multi-scale discriminative feature

learning. To overcome the limitation, we have presented

a novel deep architecture – MuDeep to exploit the multi-

scale and saliency-based learning strategies for re-id. Our

model has achieved state-of-the-art performance on several

benchmark datasets.
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two NSFC projects (#U1611461 and #U1509206) and
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3We also note that our results are better than those of most video-based

re-id specialist models listed in Table 1 of [40].
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