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Abstract

We introduce a novel formulation of temporal color con-

stancy which considers multiple frames preceding the frame

for which illumination is estimated. We propose an end-

to-end trainable recurrent color constancy network – the

RCC-Net – which exploits convolutional LSTMs and a sim-

ulated sequence to learn compositional representations in

space and time. We use a standard single frame color

constancy benchmark, the SFU Gray Ball Dataset, which

can be adapted to a temporal setting. Extensive experi-

ments show that the proposed method consistently outper-

forms single-frame state-of-the-art methods and their tem-

poral variants.

1. Introduction

The human visual system perceives colors of objects in-

dependently of the incident illumination under varying con-

ditions. The phenomenon is known as color constancy.

A pre-processing step compensating effects of changing

illumination is necessary for consumer photos to look natu-

ral. It is also beneficial in a number of computer vision and

graphical applications requiring intrinsic color information

e.g. fine-grained classification, semantic segmentation and

scene rendering. Consequently, illumination color compen-

sation, known as the automatic white balancing, has become

an essential component of the pipeline for processing color

images [31].

The color constancy problem on still images has been

investigated for decades [1, 7, 9, 13, 18, 39]. Assuming that

the illumination is identical for all pixels in an image, the

problem can be expressed as:

ĉ = f(I) (1)

where function f(·) is the estimator of the groundtruth il-

lumination vector cgt for a single image I . With estimated

∗Corresponding author

Figure 1. Color correction by temporal methods on image It us-

ing five-frame sequences with (c)(d) and without (a)(b) significant

pictorial content change, with (d) and without (a)(b)(c) signifi-

cant illumination color change. RCC-Net is the proposed method.

T.GM-edge and T.GP refer to temporal extensions of the standard

Gamut-based [19] and Gray Pixel [44] methods, respectively. Il-

lumination color is visible on the ball in the bottom right corner.

The angular error is shown in the bottom left corner of each color-

corrected image. The images are from the SFU Gray Ball linear

dataset, i.e. without gamma correction and thus appear to have

unusual color composition.

illumination ĉ, chromatic adaption [14] is then adopted to

correct color to obtain an illumination-independent image.

With the rapid development of both cameras and stor-

age devices, taking videos becomes more and more popular
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in everyday life. For some latest devices like the popular

iPhone, a short video can be taken and stored when shooting

a photo. Yet the problem of estimating illumination chro-

maticity in videos has received minimum attention. This

problem, which we call temporal color constancy, is for-

mulated as:

ĉt = f
(

It−(N−1), It−(N−2)...It−1, It
)

, (2)

where f(·) uses, besides the shot frame It to be corrected,

the (N − 1) preceding frames It−1 . . . It−(N−1) (rows

It−1. . . It−4 in Figure 1).

Most of the existing algorithms [1, 7, 9, 13, 18, 39] were

designed for compensating the effect of illumination in sep-

arate images rather than videos. The straightforward solu-

tion is to apply those single-frame color constancy methods

to processing videos frame by frame. However, it is evident

that temporal correlation of illumination changes in adja-

cent frames is not exploited in those algorithms, which can

play a vital role in temporal color constancy.

Recently, several papers concerning color constancy on

image sequences have appeared [29, 42, 45]. However,

these algorithms make strong assumption, requiring iden-

tical illumination either for all video frames [29, 45] or a

small set of frames [42]. This seems reasonable assumption

in high frame rates as illumination changes are not expected

to be abrupt. In practical use, in a video shot, illumination

across video frames can be time-varying (e.g. column (d)

in Figure 1) rather than constant. Illumination changes can

have various reasons, e.g. the changes of illuminant chro-

maticity and varying viewing angles of the camera. In this

sense, this paper aims at relaxing the assumption and coping

with temporal color constancy under the varying illumina-

tion conditions in a varying-length sequence.

Inspired by the success of convolutional neural net-

works (CNN) in single-frame color constancy [6, 30] where

CNN can learn powerful perceptual representations, we

adapted it to the problem of color constancy in videos

(T.CNN+MSVR in Section 5.1) via a simple temporal pool-

ing. Another two single-frame methods (Gamut-based

method [19] and Gray Pixel [44]) are also adapted in a natu-

ral way. The adaptation slightly improves their performance

in videos, except on Gamut-based method.

Ideally, a temporal method should learn temporal dy-

namics and also allow varying-length sequence as input.

Considering that long short-term memory (LSTM) unit em-

bodies intrinsic mechanism for capturing inter-frame corre-

lation [12], we build RCC-Net on the convolutional LSTM.

We further present a task-specific data augmentation in both

training and testing phase, namely simulated sequence (SS),

based on a plausible assumption that a method estimat-

ing global illumination should give identical estimation in

different spatial regions. SS consists of generated image

patches along the spatial domain following a random simu-

lated zoom-in trajectory, which carries global-to-local spa-

tial information. SS is integrated into the RCC-Net by a sec-

ond convolutional LSTM. By end-to-end optimization, the

RCC-Net jointly learns temporal dynamics and deep visual

representation, which we discover to be very beneficial for

illumination estimation. Extensive experiments on two tem-

poral variants (non-linear and linear RGB space) of the SFU

Gray Ball Dataset verify that the proposed method achieves

significantly better performance than several state-of-the-art

single-frame methods and their temporal extension.

In a summary, the contributions of this paper are:

• We formulate generically the problem of temporal

color constancy, relaxing the impractical assumptions

about constant or piece-wise constant illumination for

image sequences in the existing works1.

• We present RCC-Net (a novel recurrent deep net) for

temporal color constancy task. The RCC-Net is further

equipped with a simulated sequence module, which

boosts its performance by a large margin2.

• We show that the popular SFU Gray Ball dataset [11] is

suitable for the temporal setting, and introduce a Tem-

poral SFU Gray Ball benchmark. We experimentally

evaluate state-of-the-art methods for temporal color

constancy on the new benchmark.

2. Related work

Single-Frame Color Constancy is a well-established prob-

lem [20] of estimating the color of image pixels under

gray light only given pixel color values (It) under un-

known illumination. Existing color constancy methods

can be grouped into three categories: static algorithms

[7, 8, 39, 44], gamut-based algorithms [19] and learning-

based algorithms [3, 10, 15, 18, 26, 35, 40]. The static

algorithms work on the assumption that zero-order [7, 8],

first-order [39], and/or higher-order [39] statistics of some

pixels in a image have gray average color. Gamut-mapping

based methods assume that in the real world, only part of

the color spectral distribution of objects is observable [19].

With the rise of convolutional neural networks [27], several

CNN regression learning based approaches [6, 28, 30, 35]

have recently achieved the state-of-the-art performance for

color constancy. Recent work [3] formulated the problem

as a localization task in a 2D log-chroma histogram space,

yielding state-of-the-art performance. All of the publica-

tions deal with the color constancy problem in a single im-

age.

Color Constancy for Image Sequences Only a few au-

thors [4, 29, 45, 42] have investigated temporal color con-

stancy. Yang et al. [45] first estimated illuminant chro-

1Note that knowing the illumination is constant is a significant con-

straint (if the assumption is correct, and exploited, results improve).
2code: https://github.com/yanlinqian/RCC-Net
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maticity from pairs of point correspondences in consecu-

tive images and then adopted majority voting for discretized

values of the illuminant chromaticity. Similarly, Prinet et

al. [29] kept the same dichromatic reflection model but re-

placed majority voting by a more robust probabilistic op-

timization. Both [29, 45] are early attempts to cope with

automatic white balance in image sequences, but require

high frame rate (e.g. 60 Hz frame rate in [29]) to keep

the incident illumination identical in a short space-time do-

main. Moreover, both methods are limited to processing

image pairs. Wang et al. [42] proposed a simple yet effec-

tive multi-frame illumination estimation method by cluster-

ing illumination of each frame into a number of video shots

and then adopting the statistics (mean or median value) of

illumination estimation within each shot as its global illu-

mination. The strong assumption on constant illumination

in one sequence is relaxed to piece-wise constant illumi-

nation. Recently, Barron et al. [4] handled temporal color

constancy by constructing a Kalman filter-like smoothing

model for image sequences, on the basis of reducing their

single-frame method [3] CCC to localize a signature on a

log-chroma torus space. The method is aimed at smoothing

erratic predictions from neighboring frames, but it cannot

capture temporal dynamics in a sequence of frames.

Convolutional LSTM – Long Short Term Memory net-

works are a special kind of Recurrent Neural Network

(RNN), first introduced by Hochreiter and Schmidhu-

ber [24] to learn long-term dependencies in sequences.

Convolutional LSTM is LSTM equipped with CNN, con-

sidered as typically “deep in space” and “deep in time” re-

spectively, which can be seen as two modalities of deep

learning. CNNs have achieved massive success in visual

recognition tasks [6, 30], while LSTMs sparkle in long se-

quence processing [33, 37]. Because of the decent prop-

erties (rich visual description, long-term temporal memory

and end-to-end training) of the convolutional LSTM, it is

heavily investigated for many other computer vision tasks

involving sequences (e.g. activity recognition [12], image

captioning [25], human re-identification in videos [43] and

video description [12]) and brought significant improve-

ment. Our work is the first attempt to introduce convolu-

tional LSTM to the field of color constancy.

3. Temporal SFU Gray Ball Datasets

In this section, we explain how the existing and widely

adopted single-frame color constancy benchmark, the SFU

Gray Ball [11], was used for temporal color constancy

evaluation. The Gray Ball was generated from 15 video

clips with significantly different content. From each video,

81 − 1312 frames were selected and provided with ground

truth. The videos are sampled at roughly 3 frames per sec-

ond. The images in the original dataset are stored in a non-

linear device specific RGB color space. We refer to the

original images as the non-linear SFU Gray Ball dataset.

Following the procedure in [17], we modified this set by

applying gamma-correction (gamma = 2.2). The resulting

images are assumed to be approximately linearized and thus

we call the transformed image dataset the linear SFU Gray

Ball dataset.

Another temporal color constancy dataset, containing 11

videos, is introduced by Prinet et al. [29]. However, the

videos are short, consisting of 13 frames. The camera mo-

tion is small and the illumination is constant. The small size

of this dataset does not permit training a deep net.

In the experiments, all evaluated methods were run in a

causal way, i.e. the prediction of illumination color of the

frame was based solely on its content and on past frames.

Only such methods are suitable for on-line applications

such as real-time camera white balancing. Non-causal pro-

cessing utilizes past and future knowledge to help estimate

illumination. In this work we only consider causal process-

ing.

Our benchmark protocol is straightforward. For

learning-based methods we use 15-fold cross-validation by

leave-one-sequence-out. Sequence border effects were han-

dled by repetition of the first frame in a video. Since pre-

dictions for all frames of the videos were made, the pro-

posed method can be compared with single-frame methods.

For temporal color constancy experiments, the number of

frames processed as a sequence used for predictions is im-

portant parameter, which we denote subsequence length N.

In our experiments (see Table 3) we tested different values

of N. Five-frame example sequences from the SFU Gray

Ball Dataset with different characteristics are shown in Fig-

ure 1. Consistent with the pre-processing of the ordinary

Gray Ball Dataset, the pixels of the gray sphere, which is in

a known fixed location,1 are excluded by cropping.

4. Recurrent Color Constancy Networks

In this section, we present the RCC-Net – an end-to-end

trainable recurrent color constancy network (Figure 2). The

proposed model has two parallel convolutional LSTM sub-

networks, one for processing the original frame sequence

and the other for processing a simulated spatial sequence.

The simulated sequence consists of randomly generated

frames from the shot frame (Section 4.2). Simulated se-

quences can be produced online and therefore the two sub-

networks can run in parallel and their outputs are concate-

nated in a merging layer implemented as a single shallow

network.

There are three essential components in the RCC-Net:

1. Convolutional LSTM for temporal sequence (Sec-

tion 4.1, the top branch in Figure 2),

2. Simulated sequence network for training(Section 4.2,

the bottom branch in Figure 2),
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Figure 2. The RCC-Net architecture. The RCC-Net learns and infers in an end-to-end manner and outputs a global illumination vector

for the shot frame (highlighted in red rectangle) given an image sequence. The RCC-Net has two independent convolutional LSTM sub-

networks, one (b, c) for processing the input temporal sequence (a) and the other (f, g) for processing a simulated spatial sequence (e). The

outputs of the two sub-nets are combined in the shallow network (d).

3. End-to-end optimization of the whole net (Section

4.3).

Given an unseen test sequence, we obtain an estimate of

global illumination of the shot frame using the RCC-Net.

Afterwards we correct the color of the final shot frame with

the estimated illumination. We apply the standard von Kries

model [41] to correct the R, G and B channels by indepen-

dent scaling.

4.1. Convolutional LSTM for Color Constancy

Given an image sequence (Figure 2(a)), a convolutional

LSTM is employed to produce a temporal sequence de-

scriptor for global illumination of the shot frame. Aim-

ing at end-to-end learning, an integration of fully-connected

layers (Figure 2(d)) is used to map the high-dimensional

LSTM descriptor to a 3-dimensional chromatic vector ĉ =
(ĉR, ĉG, ĉB). Specifically, our shallow network consists of

two fully-connected layers and one Dropout layer control-

ling the training data over-fitting. The convolutional LSTM

can be divided into CNN and LSTM, which we will de-

scribe separately in the following paragraphs.

CNN for Feature Extraction. Inspired by its success, we

adopt the 19-layer VGGNet [36] (Figure 2(b)) with lay-

ers removed after the fully-connected fc6 to directly out-

put deep representation of each frame. Following [30],

with the limited training data, we do not fine-tune the net-

work. The 4096-dimensional representations after the non-

linearity of the fully-connected fc6 are then used as the se-

quential LSTM input.

LSTM for Sequence Processing. Let us assume a se-

quence of CNN representations of input frames as input and

a vector describing the last (shot) frame color as output. The

key challenge is the design of the model to recursively pro-

cess a sequence and produce a single vector. Here LSTM

unit (Figure 2(c)) is adopted to learn such “many-to-one”

mapping. More particularly, during training, our LSTM

model takes a sequence of 4096-dimensional deep repre-

sentations (CNN1,CNN2,. . . ,CNNt). LSTM computes a se-

quence of hidden states (h1,h2,. . . ,ht), but produces only

a 128-dimensional output (yt), by iterating the following

equations:

ht = f(CNNt, ht−1) (3)

yt = sigmoid(wohht + bo), (4)

where f(·), woh and bo are learnable functions and parame-

ters to be optimized in LSTM. Function f(·) includes input

gate, forget gate, output gate and the computation of mem-

ories [24]. Equation (4) only runs in the last iteration (the

shot frame at the time step t), outputting a sequence descrip-

tor yt for the illumination regression step. The number of

hidden layer neurons in our LSTM is 128.

The training proceeds in the following order: initializ-

ing all weights by Glorot uniform [21] and all cells by or-

thogonal vectors [23], ht is computed recurrently on the

basis of CNNt and ht−1 until the end of the sequence. Note

that LSTM is a intermediate unit in our framework which is

trained entirely end-to-end and no auxiliary loss function is

employed in the LSTM.

4.2. Simulated Zoom­in­like Sequence (SS)

Our hypothesis for adopting simulated shot frame se-

quences is the following: intra-frame global illumination

is consistent for all regions in the frame. This is clearly

not always true due to spatial distribution the illumination.

However, for the global-illumination setting, we empiri-

cally prove that the approach boosts the estimation perfor-

mance (see Table 1). The method requires a process for spa-

tial region generation. We tested several region-generating
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Figure 3. Simulated zoom-in-like sequences (red → yellow →

green → blue) generated from the three images. These sequences

simulate camera zoom-in actions in the view finding stage that end

with a “frame” shot by user.

methods (e.g. spatial pyramid [22], random patches, etc.).

The results are given in Table 2.

Inspired by people who often move a camera, zoom

in, and finally focus on a certain object, we introduce a

region-generating strategy called the Simulated zoom-in-

like Sequence (SS). SS is composed of multiple synthesized

frames generated by a random zoom-in path consisting of

sub-windows with geometric transformations applied (see

the examples in Figure 3). As opposed to other region-

generating methods, our SS produces smoothly-changing

frames, which are not visually isolated. We ensure that in

each pair of consecutive frames in SS, the latter frame is

fully contained in the previous one.

The generation of SS is defined by a number of free pa-

rameters. These parameters are resolution-independent and

refer to the ratios with respect to the original image size (for

the first generated image) or last generated image (for gen-

erated image after the first one). All random parameters are

generated from a uniform distribution:

• zoom range: The frame-wise zoom-in scale parame-

ter 0.8.

• xshift range: Random horizontal translation shift

[−0.1, 0.1].
• yshift range: Random vertical translation shift

[−0.1, 0.1].
• rotation range: Random in-plane rotation [−5◦, 5◦].

SS is generated only from the shot frame, then fed to

an AlexNet-based CNN (Figure 2(f)) [6] followed by a

LSTM for SS (Figure 2(g)). The reason we switched to

the AlexNet-based CNN here instead of VGGNet is that

we achieve competitive performance with less computation.

One explanation of this can be that SS consists of low-

resolution frames and color constancy is a low-level vision

task. It is easy to integrate the convolutional LSTM for SS

to our RCC-Net, owing to the merging layer added to the

front of the shallow regression network, i.e. Figure 2(d).

From the data perspective, we consider SS as a specific data

augmentation in both training and testing phase, providing

more regulating data for our RCC-Net.

4.3. End­to­End Optimization

As shown in Figure 2, RCC-Net training takes image se-

quences (Ik1 ,. . . ,Ikt )N
k=1 and illumination ground truth col-

ors ckgt,t as inputs. As the objective function, general multi-

output CNN regression and related CNN-based color con-

stancy algorithms use the Euclidean loss [6, 35]. However,

instead of the Euclidean loss we employ the angular er-

ror in Equation (5) as the objective function since com-

mon performance metrics are based on it. RMSprop [38]

optimization strategy with mini-batches of 128 sequence-

illumination pairs is employed and we complete 50 epochs

to train our deep model.

5. Experiments

5.1. Adaption of Single­frame Methods

For fair comparison, the single frame state-of-the-art

color constancy algorithms can be easily “upgraded” for se-

quence processing. A straight-forward solution is to apply

a statistical approach and estimate the illumination color as

a mean or median value of the per-frame estimates in the

sequence of frames [32, 42].

From the set of single-frame methods compared in

[10, 30, 44], three well-performing methods are selected

and specifically modified to the temporal setting. One

method achieving relatively competitive performance from

static, gamut-based and learning-based algorithms respec-

tively was selected. Specifically, we choose Gray Pixel [44],

GM-edge [19] and CNN+MSVR [30].

Temporal Gray Pixel (T.GP) – We employ the Gray Pixel

algorithm [44] to generate gray pixels, i.e. illumination

color estimates, for all frames. The illumination in the shot

frame is estimated by averaging the gray pixels over a vari-

able length subsequence preceding the frame.

Temporal GM-edge (T.GM-edge) – This method incre-

mentally builds the color space convex hull (gamut) along

the sequence, and the final gamut is used for illumination

estimation (mapping of the gamut).

Temporal CNN+MSVR (T.CNN+MSVR) – For learn-

ing based CNN+MSVR, we simply extend CNN+MSVR

by obtaining the channel-wise mean vectors of the illumi-

nation vectors for all frames in the sequence.

5.2. Parameter Settings

The following settings were used in the experiments:

• Data preprocessing of image sequences: subtracting

channel-wise mean from each channel.

• The sub-sequence length N controlling the length of

input sequence – N = {1, 2, 5, 10}.

• The simulated sequence length ws = 5.

• The optimizer is set to RMSprop [38] for end-to-end

training of the complete model.
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Table 1. Color constancy on the non-linear and linear SFU Gray Ball Datasets. 90% refers to the 90%-percentile of the obtained angular

errors. All values are in degrees as defined in (5). The source of the results: w - color constancy benchmarking website [17]), p - the cited

paper, and r - from our rerun of authors’ implementation, i - our implementation.

SFU Gray Ball (non-linear) SFU Gray Ball (linear)

Med Mean 90% Max Med Mean 90% Max

Single Frame Methods

Gray World (GW) [7] (w) 7.0 7.9 – 48.1 (w) 11.0 13.0 – 63.0

General GW (gGW) [1] (w) 5.3 6.1 – 41.2 (w) 9.7 11.6 – 58.1

Gray Pixel (edge) [44] (p) 4.6 6.1 – – – – – –

GM-edge [19] (w) 5.8 6.8 – 40.3 (w) 10.9 12.8 – 58.3

1stGE [39]1 (w) 4.7 5.9 – 41.2 (w) 8.8 10.6 – 58.4

SVR [15]2 (p) – – – 15.9 (w) 11.2 13.1 – 59.6

Automatic-CC [5]3 (p) 3.2 4.8 – – – – – –

NIS [18] (w) 3.9 5.2 – 44.5 (w) 7.7 9.9 – 56.1

Exemplar-based [26] (w) 3.4 4.4 – 45.6 (w) 6.5 8.0 – 53.6

Top-down [40] (i) – – – – (w) 8.3 10.2 – 63.0

Regression Tree [10] (r) 4.8 6.1 13.1 30.6 (r) 8.5 10.6 22.2 56.3

Existing Temporal or Multi-frame Methods

Image Sequence [29] 4,5 (p) 4.6 5.4 – – – – – –

Wang [42] (p) 4.1 5.4 – 26.8 – – – –

Extended methods (Section 5.1)

T.GP (i) 4.7 6.0 16.7 25.8 (i) 9.7 12.4 32.4 49.7

T.GM-edge (i) 8.2 9.3 21.8 37.8 (i) 12.8 14.5 33.7 57.3

T.CNN+MSVR (i) 4.0 4.8 12.7 26.0 (i) 7.2 10.0 33.7 48.1

Our Convolutional LSTM based method

RCC-Net (no SS) (i) 3.2 4.5 13.6 23.2 (i) 6.3 7.7 23.7 45.9

RCC-Net (i) 2.9 4.0 12.2 25.2 (i) 5.1 7.2 22.5 45.7

1 For GE, the original paper reports a different result – median error of 4.1, which results from the evaluation experiments performed only

on a subset of 150 images.
2 For SVR, only 2-fold cross-validation was made and only average RMS and maximum error were reported.
3 For Automatic-CC, their evaluation are performed only on a subset of 1135 images.
4 The setting of linear RGB only applies to the Prinet dataset, while other experiments are evaluated on the *non-linear* Grey Ball dataset

[29].

• The image size for VGG (w×h): 224×224.

• The image size for AlexNet-based SS: 32×32.

Free parameters of the temporal extensions in Section 5.1

are tuned by 15-fold cross-validation.

5.3. Performance Metric

Following the prior works [2, 11, 16, 34], we adopt the

angular error ε between the estimated illumination vector ĉ

and the groundtruth cgt as the performance measure:

εĉ,cgt = arccos

(

ĉ · cgt
‖ ĉ ‖‖ cgt ‖

)

, (5)

where · denotes the inner product between the two vectors

and ‖ ‖ is the Euclidean norm.

5.4. Results

Table 1 compares the proposed methods with the state-

of-the-art single-frame methods and their adapted variants

(Section 5.1) in terms of the median, mean, maximum and

90th-percentile of the obtained angular errors. We report

the experimental results on both non-linear and linear tem-

poral SFU Gray Ball benchmarks. With the exception of

the maximum errors, the (RCC-Net) obtains the best per-

formance on the non-linear dataset with leading by at least

15% on median, 8% on mean angular error. On linear one,

this performance improvement is more evident – over 22%

on median and 10% on mean error. We note that the max-

imum errors results from a few of incorrect “ground truth”

labels in the SFU Gray Ball Dataset (please refer to our sup-

plementary material in the code page).

The behavior of the methods for five sequences with

large groundtruth changes is illustrated in Figure 4. The

plots show that the proposed RCC-Net (red line) has rela-

tively low error, demonstrating the approach performs bet-

ter in varying-illumination conditions (e.g. relative change

of the spatial arrangement of the object viewed, changing

lighting conditions) in comparison to other temporal meth-

ods. Experimental results under challenging conditions are

also presented in Figure 1, i.e. varying-illumination and/or

varying-content (Figure 1(c) and (d)) .
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Figure 4. Five five-frame sub-sequences from linear Temporal SFU Gray Ball with significant illumination change. Rapid illumination

angle change mainly occurs in the last frame (see the ground truth graphs in the top row) which no method handles well. Top: the angle

change between two consecutive frames ∢(ct−1, ct), t is the index marking the position of the frame in the original video. RCC-Net (no

SS) is not equipped with sequence simulation.

We also evaluate robustness of the proposed RCC-Net

against the cross-dataset setting: on the small Prinet Dataset

released in [29], we can evaluate RCC-Net pretrained on

the linear Gray Ball benchmark. Using leave-one-out cross-

validation for video sequences recorded under normal light

conditions (allows fine-tuning with 6 sequences out of 7),

the RCC-Net achieved 5.0 degree mean error which is better

than 5.4 degree reported in [29].

Moreover, we consider the effect of image resolution on

illumination estimation to conducted an experiment on the

non-linear data with 50% resolution. RCC-Net obtained 4.2

mean error and 3.0 median error, compared to 4.0 mean er-

ror and 2.9 median error on full-resolution images. This

indicates that a lower resolution can slightly affect the per-

formance of color constancy in a negative way.

5.5. Ablation Study

In this section, we report how selection of the method

parameters (strategies for image patch generation, subse-

quence length N and loss function) affect the performance

of our RCC-Net. We experimentally evaluate the proposed

method and report on both non-linear and linear Temporal

SFU Gray Ball. The ablation study results are collected

to Figure 5 which shows the progressive error reduction

achieved by each module of our RCC-Net. Switching from

CNN to Convolutional LSTM (+LSTM) predates the ex-

tended conventional deep model T.CNN+MSVR effectively

on linear dataset, with a 17% lower median angular error.

One explanation is that the preceding frames contributes to

the illumination estimation of the shot frame. Error reduc-

Figure 5. Median angular errors of the RCC-Net architecture

with/without the proposed processing modules on the non-linear

Temporal Gray Ball (green line) and the linear version (blue line).

+LSTM is 5-frame-long RCC-Net without the simulated sequence

SS and with the MSE loss function.

tion can also be observed on the non-linear dataset, but not

significant. It is also interesting to point out that SS and

angular loss function benefit our method in the direction of

adding spatial illumination consistency and alighted opti-

mization.

Effect on Region Generation – In this experiment, we in-

vestigate three strategies for generating spatial regions as a

sequence. The random patch is implemented by sampling

ws = 5 quarter-sized regions randomly while the spatial

pyramid is constructed in two layers, i.e. top layer from

the root level (full frame) and four non-overlapping sub-

windows jointly covering the whole image. Table 2 shows

that all strategies improve the performance by a noticeable

margin on both datasets. The SS is comparable with or even
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Table 2. Comparison of data augmentation procedures for the

RCC-Net: RP – random patch, SP – spatial pyramid [22], SS –

simulated sequence. Other settings: N = 5, angular loss function.

SFU Gray Ball non-linear/linear

Med Mean 90% Max

No 3.2 / 6.3 4.5 / 7.7 13.6 / 23.7 23.2 / 45.9

RP 3.0 / 4.9 4.3 / 7.2 13.8 / 23.6 24.3 / 49.8

SP 2.9 / 4.7 4.3 / 7.1 12.9 / 22.8 24.1 / 47.5

SS 2.9 / 5.1 4.1 / 7.2 12.2 / 22.5 25.2 / 45.7

better than spatial pyramid, but significantly outperforms

random patches. This observation can be explained by the

fact that superior robustness can be achieved by discovering

latent correlation across the overlapping spatial regions in

the sequences.

Table 3. Performance of the RCC-Net with varying sub-sequence

length N . Other settings: SS, angular loss function.

SFU Gray Ball non-linear/linear

N Med Mean 90% Max

1 3.3 / 5.5 4.4 / 7.7 12.8 / 22.7 26.9 / 47.4

2 3.2 / 5.4 4.3 / 7.7 12.4 / 22.2 26.8 / 47.6

5 2.9 / 5.1 4.0 / 7.2 12.2 / 22.5 25.2 / 45.7

10 2.9 / 5.2 4.0 / 7.5 12.2 / 23.0 23.4 / 47.5

Effect on Subsequence Length N – An important param-

eter of our method is the subsequence length N , i.e. how

many frames processed as a sequence. Such a setting cer-

tainly depends on the viewfinder frame rate in digital cam-

eras. From the results shown in Table 3, we found that

N = 5 provides good accuracy and no significant improve-

ment can be achieved with longer sequences. Our results

agree with the observation that training on shorter video

clips is a useful data augmentation strategy [12].

Table 4. Performance of the RCC-Net with the standard MSE and

the proposed angular loss function ε with and without SS augmen-

tation. The number of frames was set to N = 5.

SFU Gray Ball non-linear/linear

Med Mean 90% Max

without SS

MSE 3.9 / 6.0 5.1 / 8.0 14.3 / 22.9 25.5 / 45.9

ε 3.2 / 6.3 4.5 / 7.7 13.6 / 23.7 23.2 / 45.9

with SS

MSE 3.8 / 5.4 4.5 / 7.7 14.1 / 24.0 30.9 / 46.2

ε 2.9 / 5.1 4.0 / 7.2 12.2 / 22.5 25.2 / 45.7

Effect on Loss Function – We test the effect of loss func-

tions: the angular loss function vs. the MSE loss function.

The results in Table 4 verify that the angular loss function

is superior to the MSE cost function, especially when SS is

given (25% improvement in median error for the non-linear

dataset). This observation is consistent with the philoso-

phy of deep learning – optimization on the objective directly

boosts the performance.

6. Conclusion

In this paper, we formulate the temporal color constancy

problem and propose the RCC-Net, a novel recurrent deep

net, which consists of a convolutional LSTM, a novel simu-

lated sequence component and a shallow network for merg-

ing. An ablation study confirms that all components of the

RCC-Net improve performance.

On the non-linear and linear versions of the Temporal

SFU Gray Ball Dataset, the RCC-Net achieves state-of-the-

art performance – 2.9 and 5.1 median angular error respec-

tively, outperforming the single-frame methods and their

temporal variants by 14∼22%. The RCC-Net is very fast

in inference on a GPU, e.g. illumination for a frame in a

five-frame sequence is estimated in less than 50 ms on a

Nvidia K40C GPU.
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