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Abstract

Lineage tracing, the joint segmentation and tracking of

living cells as they move and divide in a sequence of light

microscopy images, is a challenging task. Jug et al. [21]

have proposed a mathematical abstraction of this task, the

moral lineage tracing problem (MLTP), whose feasible so-

lutions define both a segmentation of every image and a lin-

eage forest of cells. Their branch-and-cut algorithm, how-

ever, is prone to many cuts and slow convergence for large

instances. To address this problem, we make three contri-

butions: (i) we devise the first efficient primal feasible local

search algorithms for the MLTP, (ii) we improve the branch-

and-cut algorithm by separating tighter cutting planes and

by incorporating our primal algorithms, (iii) we show in ex-

periments that our algorithms find accurate solutions on the

problem instances of Jug et al. and scale to larger instances,

leveraging moral lineage tracing to practical significance.

1. Introduction

Recent advances in microscopy have enabled biologists

to observe organisms on a cellular level with higher spatio-

temporal resolution than before [12, 16, 44]. Analysis of

such microscopy sequences is key to several open questions

in biology, including embryonic development of complex

organisms [25, 26], tissue formation [17] or the understand-

ing of metastatic behavior of tumor cells [50]. However,

to get from a sequence of raw microscopy images to bio-

logically or clinically relevant quantities, such as cell motil-

ity, migration patterns and differentiation schedules, robust

methods for cell lineage tracing are required and have there-

fore received considerable attention [2, 3, 13, 32, 33, 34].

Cell lineage tracing is typically considered a two step

problem: In the first step, individual cells are detected and
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Figure 1. Depicted above is a lineage forest of cells from a se-

quence of microscopy images. The first image of the sequence

is shown on the left. The last image is shown on the right. Cell

divisions are depicted in black.

segmented in every image. Then, in the second step, in-

dividual cells are tracked over time and, in case of a cell

division, linked to their ancestor cell, to finally arrive at the

lineage forest of all cells (Fig. 1). The tracking subproblem

is complicated by cells that enter or leave the field of view,

or low temporal resolution that allows large displacements

or even multiple consecutive divisions within one time step.

In addition to this, mistakes made in the first step, leading

to over- or undersegmentation of the cells, propagate into

the resulting lineage forest and cause spurious divisions or

missing branches, respectively. The tracking subproblem is

closely related to multi-target tracking [11, 42, 47, 20, 43]

or reconstruction of tree-like structures [15, 39, 37, 45, 46].

It has been cast in the form of different optimization prob-

lems [22, 24, 36, 40, 41] that can deal with some of the

mentioned difficulties, e.g., by selecting from multiple seg-

mentation hypotheses [40, 41].

Jug et al. [21], on the other hand, have proposed a rig-

orous mathematical abstraction of the joint problem which

they call the moral lineage tracing problem (MLTP). It is a

hybrid of the minimum cost multicut problem (MCMCP),

which has been studied extensively for image decompo-
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sition [4, 5, 6, 7, 8, 9, 10, 23, 28, 29, 48, 49], and the

minimum cost disjoint arborescence problem, variations

of which have been applied to reconstruct lineage forests

in [22, 24, 36, 41, 40] or tree-like structures [15, 46, 45].

Feasible solutions to the MLTP define not only a valid

cell lineage forest over time, but also a segmentation of the

cells in every frame (c.f . Fig. 2). Solving this optimization

problem therefore tackles both subtasks – segmentation and

tracking – simultaneously. While Jug et al. [21] demon-

strate the advantages of their approach in terms of robust-

ness, they also observe that their branch-and-cut algorithm

(as well as the cutting-plane algorithm for the linear relax-

ation they study) is prone to a large number of cuts and ex-

hibits slow convergence on large instances. That, unfortu-

nately, prevents many applications of the MLTP in practice,

since it would be too computationally expensive.

Contributions. In this paper, we make three contri-

butions: Firstly, we devise two efficient heuristics for the

MLTP, both of which are primal feasible local search al-

gorithms inspired by the heuristics of [28, 31] for the

MCMCP. We show that for fixed intra-frame decomposi-

tions, the resulting subproblem can be solved efficiently via

bipartite matching.

Secondly, we improve the branch-and-cut algorithm [21]

by separating tighter cutting planes and by employing our

heuristics to extract feasible solutions.

Finally, we demonstrate the convergence of our algo-

rithms on the problem instances of [21], solving two (previ-

ously unsolved) instances to optimality and obtaining accu-

rate solutions orders of magnitude faster. We demonstrate

the scalability of our algorithms on larger (previously inac-

cessible) instances.

2. Background and Preliminaries

Consider a set of T = {0, . . . , tend} consecutive frames

of microscopy image data. In moral lineage tracing, we seek

to jointly segment the frames into cells and track the latter

and their descendants over time. This problem is formu-

lated by [21] as an integer linear program (ILP) with binary

variables for all edges in an undirected graph as follows.

For each time index t ∈ T , the node set Vt comprises

all cell fragments, e.g. superpixels, in frame t. Each neigh-

boring pair of cell fragments are connected by an edge. The

collection of such edges is denoted by Et. Between consec-

utive frames t and t+ 1, cell fragments that are sufficiently

close to each other are connected by a (temporal) edge. The

set of such inter frame edges is denoted by Et,t+1. By con-

vention, we set Vtend+1 = Etend+1 = Etend,tend+1 = ∅. The

graph G = (V,E) with V =
⋃

t∈T Vt and E =
⋃

t∈T (Et∪
Et,t+1) is called hypothesis graph and illustrated in Fig. 2.

For convenience, we further write Gt = (Vt, Et) for the

subgraph corresponding to frame t and G+
t = (V +

t , E+
t )

time

Figure 2. The moral lineage tracing problem (MLTP)1: Given a

sequence of images decomposed into cell fragments (depicted as

nodes in the figure), cluster fragments into cells in each frame and

simultaneously associate cells into lineage forests over time. Solid

edges indicate joint cells within images and descendant relations

across images. Black nodes depict fragments of cells about to di-

vide.

with V +
t = Vt ∪ Vt+1 and E+

t = Et ∪ Et,t+1 ∪ Et+1 for

the subgraph corresponding to frames t and t+ 1.

For any hypothesis graph G = (V,E), a set L ⊆ E is

called a lineage cut of G and, correspondingly, the subgraph

(V,E \ L) is called a lineage (sub)graph of G if

1. For every t ∈ T , the set Et ∩ L is a multicut2 of Gt.

2. For every t ∈ T and every {v, w} ∈ Et,t+1 ∩ L,

the nodes v and w are not path-connected in the graph

(V +
t , E+

t \ L).

3. For every t ∈ T and nodes vt, wt ∈ Vt, vt+1, wt+1 ∈
Vt+1 with {vt, vt+1}, {wt, wt+1} ∈ Et,t+1 \ L
and such that vt+1 and wt+1 are path-connected in

(V,Et+1 \L), the nodes vt and wt are path-connected

in (V,Et \ L).

For any lineage graph (V,E \ L) and every t ∈ T , the

non-empty, maximal connected subgraphs of (Vt, Et \ L)
are called cells at time index t. Furthermore, Jug et al. call

a lineage cut, respectively lineage graph, binary if it addi-

tionally satisfies

4. For every t ∈ T , every cell at time t is connected to at

most two distinct cells at time t+ 1.

According to [21], any lineage graph well-defines a lineage

forest of cells. Moreover, a lineage cut (and thus a lineage

graph) can be encoded as a 01-labeling on the edges of the

hypothesis graph.

Lemma 1 ([21]). For every hypothesis graph G = (V,E)
and every x ∈ {0, 1}E , the set x−1(1) of edges labeled 1 is

1The figure is a correction of the one displayed in [21].
2A multicut of Gt = (Vt, Et) is a subset M ⊆ Et such that for every

cycle C in Gt it holds that |M ∩ C| 6= 1, cf. [19].
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a lineage cut of G iff x satisfies inequalities (1) – (3):

∀t ∈ T ∀C ∈ cycles(Gt)∀e ∈ C :

xe ≤
∑

e′∈C\{e}

xe′ (1)

∀t ∈ T ∀{v, w} ∈ Et,t+1∀P ∈ vw-paths(G+
t ) :

xvw ≤
∑

e∈P

xe (2)

∀t ∈ T ∀{vt, vt+1}, {wt, wt+1} ∈ Et,t+1(with vt, wt ∈ Vt)

∀S ∈ vtwt-cuts(Gt)∀P ∈ vt+1wt+1-paths(Gt+1) :

1−
∑

e∈S

(1− xe) ≤ xvtvt+1
+ xwtwt+1

+
∑

e∈P

xe (3)

Jug et al. refer to (1) as space cycle, to (2) as space-time

cycle and to (3) as morality constraints. We denote by X ′
G

the set of all x ∈ {0, 1}E that satisfy (1) – (3). For the

formulation of the additional bifurcation constraints, which

guarantee that the associated lineage cut is binary, we refer

to [21, Eq. 4]. The set XG collects all x ∈ X ′
G that also

satisfy the bifurcation constraints.

Given cut costs c : E → R on the edges as well as birth

and termination costs c+, c− : V → R
+
0 on the vertices

of the hypothesis graph, [21] defines the following moral

lineage tracing problem (MLTP)

min
x,x+,x−

∑

e∈E

cexe +
∑

v∈V

c+v x
+
v +

∑

v∈V

c−v x
−
v (4)

subject to x ∈ XG, x+, x− ∈ {0, 1}V , (5)

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑

e∈S

(1− xe), (6)

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−
v ≤

∑

e∈S

(1− xe). (7)

The inequalities (6) and (7) are called birth and termina-

tion constraints, respectively.

3. Local Search Algorithms

In this section, we introduce two local search heuris-

tics for the MLTP. The first builds a lineage bottom-up

in a greedy fashion, while the second applies Kernighan-

Lin [27] updates to the intra-frame components. The latter

requires repeatedly optimizing a branching problem, given

a fixed intra-frame decomposition, for which we discuss an

efficient combinatorial minimizer.

Both algorithms maintain a decomposition of the graph

(V,
⋃

t∈T Et), i.e. the components within each frame Gt

that represent the cells. We denote the set of all cells with

G = (V,E)

t

⇒

G = (V,A)

u

v

w a b

Figure 3. For a fixed decomposition of the frames (depicted with

black solid/dashed cut edges), we associate a directed graph G over

the components V . The arcs A bundle all edges going from any

node of one cell to any node of another cell in the successive frame.

For example, the components Va = {u} and Vb = {v, w} are

linked by the arc ab which corresponds to the set of edges Eab =

{uv, uw}. Determining the optimal state of the temporal edges

(grey) given a decomposition into cells boils down to finding an

optimal branching in G.

Algorithm 1 Greedy Lineage Agglomeration (GLA)

while progress do

(a, b)← argminab∈E∪A ∆transform
ab

if ∆transform
ab < 0 then

applyTransform(G, a, b) ⊲ updates partitions

of G and selects

arcs A(y).
else

break

end if

end while

return edgeLabels(G) ⊲ cut-edge labeling x∗

from V and A(y).

V . For each set of edges going from a component a ∈ V
at time point t to a component b at t + 1, we associate an

arc ab ∈ A. This gives a directed graph G = (V,A), as

illustrated in Fig. 3. We write Va for the set of vertices v in

component a ∈ V and Eab for the set of edges represented

by arc ab ∈ A. They further maintain a selection of the

arcs A(y), where y ∈ {0, 1}A, to represent which temporal

edges are cut.

3.1. Greedy Lineage Agglomeration (GLA)

The first algorithm takes an MLTP instance and con-

structs a feasible lineage in a bottom-up fashion. It is

described in Alg. 1 and follows a similar scheme as the

GAEC [28] heuristic for the MCMCP in the sense that it al-

ways takes the currently best possible transformation, start-

ing from V = V . It applies three different types of transfor-

mations: 1) a merge contracts all edges between two com-

ponents of the same time point t, combining them into one

single component. 2) setParent selects an arc ab ∈ A and

thereby sets a of Vt as the (current) parent of b ∈ Vt+1,

while 3) changeParent de-selects such (active) arc ab and

instead selects an alternative cb. While final components V
determine intra-frame cuts, the final selection of arcs then
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a b

a

b

c

c

a

b d

set parent change parent merge components

t t+ 1 t t+ 1 t− 1 t t+ 1

Figure 4. The three transformations of GLA: set a as parent of b

(left), change the parent of b from c to a (middle) or merge two

components a and b into one (right). The major arc along which

the transformation occurs is depicted in red, while other arcs that

affect the transformations cost are blue. When changing a parent,

for example, the presence of other active arcs originating from a

and c determine whether termination costs have to be paid. For

a merge, we have to consider arcs to parents or children, which

would be joined with an active arc and therefore change their state.

determines which temporal edges are cut edges (xe = 1).

Unlike GAEC, transformations concerning the temporal

edges are reversible due to changeParent. All allowed

transformations, merge, setParent and changeParent, are

depicted in Fig. 4. The change in objective (4) caused by a

particular transformation involving a and b is denoted with

∆transform
ab . In order to determine the cost or reward of a

particular transformation, we have to examine not only the

edge between the involved components a and b, but also

whether they have an associated parent or child cell already.

For a merge, we have to consider arcs going to children or

parents of either component, since they would be combined

into an active arc and therefore change their state and af-

fect the objective. The detailed, incremental calculation of

these transformation costs ∆transform
ab can be found in the

appendix. We maintain feasibility at all times: two com-

ponents with different parents cannot be merged (it would

violate morality constraints (3)), and similarly, a merge of

two partitions with a total of more than two active outgo-

ing arcs is not considered (as it would violate bifurcation

constraints). The algorithm stops as soon as no available

transformation decreases the objective.

Implementation. We use a priority queue to efficiently

retrieve the currently best transformation. After applying

it, each affected transformation is re-calculated and inserted

into the queue. We invalidate previous editions of trans-

formations indirectly by keeping track of the most recent

version for all E . For each component, we actively main-

tain the number of children and its parent to represent the

selected arcs A(y).

3.2. Kernighan­Lin with Optimal Branchings
(KLB)

Algorithm 2 takes an MLTP instance and an initial de-

composition, e.g. the result of GLA, and attempts to de-

crease the objective function (4) in each step by changing

t t

7→

Figure 5. Depicted above is a transformation carried out by the

KLB algorithm. One node in the middle image is moved from the

blue component to the red component. Consequently, the optimal

branching changes.

Algorithm 2 KL with Optimal Branchings (KLB)

while progress do

for a, b ∈ V do

if 6 ∃uv ∈ Et : u ∈ Va ∧ v ∈ Vb then

continue

end if

improveBipartition(G, a, b) ⊲ move nodes

across border

or merge.
end for

for a ∈ V do

splitPartition(G, a) ⊲ split partition.

end for

end while

return cutEdgeLabels(G) ⊲ cut-edge labeling x∗

from V and A(y∗).

the intra-frame partitions in a Kernighan-Lin-fashion [27],

an example is illustrated in Fig. 5. Like the algorithm pro-

posed by [28] for the related MCMCP, it explores three dif-

ferent local transformations to decrease the objective func-

tion maximally: a) apply a sequence of k node switches

between two adjacent components a and b, b) a complete

merge of two components, and c) splitting a component into

two. Transforms that do not decrease the objective will be

discarded. In contrast to the setting of a MCMCP, judg-

ing the effect of such local modifications on the objective

is more difficult, since it requires according changes to the

temporal cut-edges. This can be seen when reordering the

terms of the MLTP objective fMLTP (4):

fMLTP(x) =
∑

e∈
⋃

t∈T
Et,t+1

ce +
∑

e∈
⋃

t∈T
Et

cexe + fMCBP(x) , (8)

where we identify the first sum to be an instance-dependent

constant, the second sum is the contribution from intra-

frame edges (i.e. the decomposition into cells) and the last

term, summarized with fMCBP is the sum over all inter-

frame edges as well as birth and termination costs. Given

a particular KLB-transformation, the change to the intra-

frame part is straight-forward to calculate, while the change

of the inter-frame part involves solving min fMCBP(.)
anew. This sub-problem turns out to be a variant of a min-

imum cost branching problem (MCBP), which we discuss
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next. Afterwards, we describe a combinatorial optimizer

for this MCBP, and finally provide additional details on its

usage within KLB.

Minimum Cost Branching on G. Given a fixed decom-

position into cells V , i.e. is a fixed value for all intra-frame

cut-edge variables xe, we can reduce the remaining (partial)

MLTP to the following MCBP over G = (V,A):

min
y,y−,y+

∑

ab∈A

cabyab +
∑

a∈V

c+a y
+
a +

∑

a∈V

c−a y
−
a (9)

subject to ∀a ∈ V : (1− y+a ) =
∑

b∈δ−(a)

yba (10)

∀a ∈ V : (1− y−a ) ≤
∑

b∈δ+(a)

yab ≤ 2 (11)

y ∈ {0, 1}A, y−, y+ ∈ {0, 1}V , (12)

where y, y−, y+ are substitutes for those original cut vari-

ables x, x+, x− that are bundled within an arc or com-

ponent in G. The objective (9) is exactly fMCBP of (8).

Each yab indicates whether arc ab is active (yab = 1) or

not (yab = 0). The equality constraint (10) ensures that

at most one incoming arc is selected (preventing a viola-

tion of morality) and, if none is chosen, the birth indi-

cator y+a is active. In the same sense, (11) enforces the

penalty for termination if necessary, and its upper bound

limits the number of children to 2, which enforces the bifur-

cation constraint. Since G is acyclic by construction, we do

not require cycle elimination constraints that are typically

present in general formulations of MCBPs. Observing that

∀e ∈ Eab : 1 − yab = xe, i.e. all edges in an arc need

to have the same state to satisfy space-time constraints, we

derive the weights cab = −
∑

e∈Eab
ce. With a similar rea-

soning, all vertices of a component a need to be in the same

birth/termination state, ∀v ∈ Va : y+a = x+
v , hence we de-

rive c+a =
∑

v∈Va
c+v (and analogous for termination costs

c−a ). The derivation is found in the supplement.

Matching-Based Algorithm for the MCBP. We now

show that the MCBP (9)-(11) can be solved efficiently by

reducing it to a set of minimum cost bipartite matching

problems (MCBMPs).

To this end, observe that the graph G = (V,A) is

acyclic by construction, cf. Fig. 3. Denote by Gt,t+1 =
(Vt ∪ Vt+1,At,t+1) the subgraph of G that corresponds to

the consecutive frames t and t+ 1.

Lemma 2. For every G = (V,A) arising from a fixed intra-

frame decomposition, the solution of the MCBP on G can

be found by solving the MCBP for all Gt,t+1 individually.

Proof. The constraints (10) only couple birth variables y+a
for a ∈ Vt+1 with arc variables yba where ba ∈ At,t+1.

t

⇒
a b

Gt,t+1

a

a′

a−

b
b+

Figure 6. Illustration of the constructed bipartite matching problem

(right) for an MCBP in the subgraph of two consecutive frames

t, t + 1 (left). The matching problem graph consists of the orig-

inal nodes and edges, duplicates a′ for a ∈ Vt, auxiliary termi-

nation nodes a− and auxiliary birth nodes b+. Auxiliary edges

which have zero cost by construction are gray. For simplicity,

we illustrate only two edges between termination and birth nodes.

Matched nodes correspond to active arcs in the original Gt,t+1.

Similarly, the constraints (11) only couple termination vari-

ables y−a for a ∈ Vt with arc variables yab where ab ∈
At,t+1. Thus, the objective function and the constraints

split into a set of MCBPs corresponding to the subgraphs

Gt,t+1 of G. Hence, solving |T | − 1 many sub-MCBPs in-

dividually gives the solution of the MCBP on G.

Lemma 3. An MCBP on Gt,t+1 can be transformed into

an equivalent minimum cost bipartite matching problem

(MCBMP).

Proof. For a given MCBP on Gt,t+1, we construct an

MCBMP as follows (illustrated in Fig. 6): 1) insert a du-

plicate a′ for each node a ∈ Vt and add an arc a′b for each

original arc ab ∈ At,t+1 with identical cost ca′b = cab. 2)

For each node a ∈ Vt, insert a node a− and an arc aa−

with its cost being c−a , i.e. the cost of terminating in a. Re-

peat this for all duplicate nodes a′ but set the according cost

c−a′ = 0. Similarly, add a node b+ for each b ∈ Vt+1 and an

arc b+b with a cost of c+b . 3) Connect each pair of auxiliary

nodes b+ and a− (or a′−) with an arc if ab ∈ At,t+1 with a

cost of 0. The resulting graph is clearly bipartite.

Now, consider the MCBMP on this graph: A match

(a, b) or (a′, b) corresponds to yab = 1, respectively ya′b =
1, a match of (a, a′) to y−a = 1 and vice versa for birth

variables y+b . Exactly one incoming arc for each node of

Vt+1 or the link to its birth node b+ is matched, satisfy-

ing (10). In the same fashion, each a ∈ Vt is assigned to a

node b ∈ Vt+1 or its termination node a−, satisfying the left

hand side of (11). Assigning a duplicate node a′ to a node

b ∈ Vt+1 allows having bifurcations, i.e. satisfies the right-

hand side of (11), while its alternative choice, matching it

to its zero-cost termination node has no effect on the cost.

Finally, the zero-cost arcs between the auxiliary birth and

termination nodes a− and b+ are matched whenever a pair

of a or and b is matched (due to lack of alternatives).
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The MCBMP can be solved in polynomial time by the

hungarian algorithm [30, 35]. Applying it to each of the

|T | − 1 subgraphs of Gt,t+1 thus leaves us with an efficient

minimizer for the MCBP.

Implementation of KLB. The algorithm maintains the

weighted G = (V,A), the current objective in terms of each

of the three parts of (8), and solves the MCBP on G by the

matching-based algorithm described in the previous section.

We initially solve the entire MCBP, but then, within both

methods that propose transformations, improveBipartition
and splitPartition, we exploit the locality of the introduced

changes. By applying Lemma 2, we note that for a given V ,

modifying two of its cells a and b in frame t will only af-

fect arcs that go from t − 1 to t and from t to t + 1. In

other words, ∆fMCBP can be computed only from the sub-

problems of (t − 1, t) and (t, t + 1). In practice, we find

that the effect is often also spatially localized, hence we op-

tionally restrict ourselves to only updating the MCBP in a

range of dMCBP (undirected) arc hops from a and b, where

the modification occured. This dMCBP parameter should be

explored and set depending on the instance, since choos-

ing it too small may result in misjudged moves and thus, in

wrong incremental changes to the current objective. Note,

however, that feasibility is still maintained in any case. We

handle this by solving the entire MCBP once at the end of

every outer iteration. Doing so ensures that the final ob-

jective is always correct and allows us to detect choices of

dMCBP that are too small. Since we observe that it takes rel-

atively few outer iterations, we find the overhead by these

extra calls to be negligible.

To reduce the number of overall calculations in later it-

erations, we mark components that have changed and then,

in the next iteration, attempt to improve only those pairs

of components which involve at least one changed compo-

nent. To account for changes that affect moves in previous

or subsequent frames, we propagate these changed flags to

all potential parents or children of a changed component.

4. Improved Branch-and-Cut Algorithm

Jug et al. propose to solve the MLTP with a branch-and-

cut algorithm, for which they design separation procedures

for inequalities (1) – (3), (6) – (7) and the bifurcation con-

straints. In the following, we propose several modifications

of the optimization algorithm, which drastically improve its

performance.

It is sufficient to consider only chordless cycles in (1)

and, furthermore, it is well-known that chordless cycle in-

equalities are facet-defining for multicut polytopes (cf. [14]

and [19]). This argument can be analogously transferred to

inequalities (2) and (3).

Moreover, the inequalities of (3) where {vt, wt} ∈ Et

is an edge of the hypothesis graph may be considerably

strengthened by a less trivial, yet simple modification.

Lemma 4 shows that with both results combined, we can

equivalently replace (1) – (3) by the set of tighter inequali-

ties (13) and (14). Proofs are provided in the supplementary

material. In relation to our improved version of the branch-

and-cut algorithm, we refer to (13) as cycle and to (14) as

morality constraints.

Lemma 4. For every hypothesis graph G = (V,E) it holds

that x ∈ X ′
G iff x ∈ {0, 1}E and x satisfies

∀t ∈ T ∀{v, w} ∈ Et ∪ Et,t+1

∀ chordless vw-paths P in G+
t :

xvw ≤
∑

e∈P

xe (13)

∀t ∈ T ∀v′, w′ ∈ Vt such that {v′, w′} /∈ Et

∀v′w′-cuts S in Gt∀ chordless v′w′-paths P in G+
t :

1−
∑

e∈S

(1− xe) ≤
∑

e∈P

xe (14)

Remark. Suppose we introduce for every pair of non-

neighboring nodes v′, w′ ∈ Vt a variable xv′w′ indicating

whether v′ and w′ belong to the same cell (xv′w′ = 0) or

not (xv′w′ = 1). Then any inequality of (14) is exactly the

combination of a cut inequality 1−xv′w′ ≤
∑

e∈S(1−xe)
and a path inequality xv′w′ ≤

∑

e∈P xe in the sense of

lifted multicuts [19]. For neighboring nodes v, w ∈ Vt, i.e.

{v, w} ∈ Et, we have the variable xvw at hand and can thus

omit the cut part of the morality constraint, as the lemma

shows.

Termination and Birth Constraints. We further suggest

a strengthening of the birth and termination constraints in

the MLTP. To this end, for any v ∈ Vt+1 let Vt(v) = {u ∈
Vt | {u, v} ∈ Et,t+1} be the set of neighboring nodes in

frame t. Further, we denote by E
(

Vt(v), Vt+1 \ {v}
)

the

set of inter frame edges that connect some node ut ∈ Vt(v)
with some node ut+1 ∈ Vt+1 different from v.

Lemma 5. For every hypothesis graph G = (V,E), the

vectors x ∈ X ′
G, x

+, x− ∈ {0, 1}V satisfy inequalities (6)

iff the following inequalities hold:

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑

e∈S\E(Vt(v),Vt+1\{v})

(1− xe). (15)

Similarly, x ∈ X ′
G, x

+, x− ∈ {0, 1}V satisfy (7) iff

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−
v ≤

∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) (16)

hold true.
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Figure 7. Comparison of algorithms for the MLTP in terms of

runtime, objective (solid) and bounds (dashed) on the large in-

stances of [21]. Our heuristics are able to determine feasible solu-

tions quickly, while our branch-and-cut algorithm (ILP ours) con-

verges to the optimal solution in up to one hundredth of the time of

the original branch-and-cut algorithm (ILP original) and provides

tight bounds in both cases. On these instances, KLB exhibits no

significant runtime difference between the two choices of dMCBP.

Additional Odd Wheel Constraints. A wheel W =
(V (W ), E(W )) is a graph that consists of a cycle and a

dedicated center node w ∈ V (W ) which is connected by

an edge to every node in the cycle. Let EC denote the edges

of W in the cycle and Ew the remaining center edges. With

a wheel subgraph W = (V (W ), E(W )) of a graph G we

may associate an inequality

∑

e∈EC

xe −
∑

e∈Ew

xe ≤

⌊

|V (W )| − 1

2

⌋

, (17)

which is valid for multicut polytopes [14]. A wheel is called

odd if |V (W )|−1 is odd. It is known that wheel inequalities

are facet-defining for multicut polytopes iff the associated

wheel is odd [14].

We propose to add additional odd wheel inequalities to

the MLTP in order to strengthen the corresponding LP re-

laxation. More precisely, we consider only wheels W =
(V (W ), E(W )) ⊂ G such that w ∈ Vt+1 and v ∈ Vt for

all v ∈ V (W ) \ w and some t ∈ T . This structure guar-

antees that for any x ∈ X ′
G, the restriction xE(W ) is the

incidence vector of a multicut of W . Therefore, (17) holds

with respect to x.

Implementation. For a subset of the constraints, we use

the commercial branch-and-cut solver Gurobi (7.0) [18] to

solve the LP relaxation and find integer feasible solutions.

Whenever Gurobi finds an integer feasible solution x, we

check whether x ∈ XG and all birth and termination con-

straints are satisfied. If not, then we provide Gurobi with

an additional batch of violated inequalities from (13) – (16)

as well as violated bifurcation constraints and repeat. To

this end, we adapt the separation procedures of [21] to ac-

count for our improvements in a straight-forward manner.

We further add odd wheel inequalities for wheels with 3

outer nodes as described above (so-called 3-wheels) to the

starting LP relaxation.
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Figure 8. Number of morality cuts (top), i.e. (3) or (14), and cy-

cle cuts (bottom), i.e. (1) and (2) or (13), separated in the differ-

ent branch-and-cut algorithms. We observe that our branch-and-

cut algorithm requires considerably fewer morality cuts, while the

number of cycle cuts (including both space-cycles and space-time-

cycles) is in the same order of magnitude.

For every integer feasible solution that Gurobi finds, we

fix the connected components of the intra-frame segmenta-

tion and solve the remaining MCBP. This allows for the

early extraction of feasible lineage forests from the ILP.

5. Experiments & Results

Instances and Setup. We evaluate our algorithms on the

two large instances of [21]: Flywing-epithelium and N2DL-

HeLa-full. The hypothesis graph of the former instance

consists of 5026 nodes and 19011 edges, while the latter

consists of 10882 nodes and 19807 edges. In addition to

this, we report experiments on two more sequences of a fly-

wing epithelium time-lapse microscopy with a wider field

of view. Their hypothesis graphs consist of 10641 nodes

and 42236 edges, respectively 76747 edges. We denote the

data sets with Flywing-wide I and II. These instances are

preprocessed with the same pipeline as Flywing-epithelium.

For details on the preprocessing, we refer to [21].

Our choice of birth and termination costs follows [21],

i.e. we set c+ = c− = 5 for all instances. We initialize

the KLB heuristic with the solution of GLA to decrease the

number of outer iterations. We benchmark two versions of

KLB: The first one is denoted with KLB-d=inf and solves

the MCBP within the (reachable) subgraph of t ± 1, while

the second, KLB-d=10, additionally exploits spatial local-

ity, i.e. it uses dMCBP = 10.

Convergence Analysis. The convergence of our algo-

rithms in comparison to the branch-and-cut algorithm

of [21] is reported in Fig. 7 and Table 1. We find that GLA

is the fastest in all instances, but only reaches a local opti-

mum with a gap of about 1.95% and 3.69%, respectively.

This solution is improved by KLB in terms of objective, up

to a gap of 0.76% and 1.86%. Both variants of KLB obtain

the same solution in terms of cut-edge labeling and show no
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Table 1. Detailed quantitative comparison of algorithms for the MLTP. BestGap is calculated using the tightest bound of any algorithm,

while Gap is based on the bound established by each particular algorithm. KLB-d=inf solves the MCBP in the entire reachable subgraph

of {t− 1, t, t+ 1}, while KLB-d=10 additionally uses spatial locality with dMCBP = 10.

Flywing-epithelium N2DL-HeLa-full

Method Time / s objBest objBound Gap BestGap Time / s objBest objBound Gap BestGap

GLA 0.26 -38835.90 0.0195 0.12 -6095.85 0.0369

KLB-d=10 6.42 -39294.65 0.0076 1.95 -6205.54 0.0186

KLB-d=inf 6.24 -39294.65 0.0076 2.06 -6205.54 0.0186

ILP (ours) 189.41 -39593.90 -39593.90 0.0000 0.0000 931.07 -6320.81 -6320.81 0.0000 0.0000

ILP (original) [21] 23460.80 -39593.90 -39717.80 0.0031 0.0000 156542.00 -6320.81 -6484.02 0.0258 0.0000
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Figure 9. Results on the more extensive instances Flywing-wide

I and II. Our branch-and-cut algorithm with 3-wheel constraints

provides slightly tighter bounds, with which we determine the

gaps for GLA to be 2.9% (I) and 2.1% (II), and 1.3% (I) and

0.95% (II) for KLB. Exploiting spatial locality when re-solving

the MCBPs considerably reduces runtime of KLB.

considerable runtime difference. We find that KLB spends

most of the time in the first outer iteration, where it has to

check a large number of bipartitions that do not improve

and will therefore not be considered in the next iteration.

Our KLB implementation could potentially be sped up by

updating components (of disjoint Gt−1:t+1) in parallel.

The improved branch-and-cut algorithm retrieves fea-

sible solutions considerably faster and provides tighter

bounds than the algorithm of [21]. The instances Flywing-

epithelium and N2DL-HeLa are solved to optimality in less

than 200 s, respectively 1000 s, while the original algorithm

did not find any feasible solutions in that time. As shown in

Fig. 8, we observe that our modifications of the branch-and-

cut algorithm greatly reduce the number of morality cuts.

On the larger instances Flywing-wide I and II, we present

our results in Fig. 9. We are able to determine the maximal

optimality gaps for GLA to be 2.9% (I) and 2.1% (II), and

1.3% (I) and 0.95% (II) for KLB. Again, both variants of

KLB obtain identical solutions. Here, exploiting spatial lo-

cality helps: KLB-d=inf runs in 477 s (I) and 9129 s (II),

while KLB-d=10 reduces this to 104 s and 3359 s, respec-

tively. The particular choice of dMCBP = 10 was found to

be stable in both cases. More extensive results with varying

dMCBP can be found in the supplement.

Solution Quality. We compare the solution quality of our

two heuristics by segmentation (SEG) and tracking (TRA)

metrics as used in [33] for Flywing-epithelium. The results

Table 2. Comparison of the similarity to ground truth of seg-

mentation (SEG) and traced lineage forest (TRA) on Flywing-

epithelium. ILP denotes the result of the branch-and-cut algorithm,

while PA [1] is a common tracking tool used by biologists.

Algorithm SEG TRA

GLA 0.9363 0.9640

KLB 0.9485 0.9721

ILP 0.9722 0.9813

PA (auto) 0.7980 0.9206

are reported in Table 2. We observe that KLB improves

the scores of GLA slightly (up to an additional 1.2% and

0.81% for SEG and TRA, respectively). The optimal ILP

solutions achieve slightly better scores in both measures

than the heuristics. All presented algorithms outperform

the baseline, the packing analyzer [1], whose scores were

originally reported in [21].

6. Conclusion

We have introduced local search algorithms for the re-

cently introduced MLTP [21], a mathematical framework

for cell lineage reconstruction, which treats both subprob-

lems, image decomposition and tracking, jointly. We pro-

pose two efficient heuristics for the MLTP: a fast agglom-

erative procedure called GLA that constructs a feasible lin-

eage bottom-up, and a variant of the KL-algorithm which

attempts to improve a given lineage by switching nodes be-

tween components, merging or splitting them. The latter

algorithm repeatedly solves a MCBP conditioned on fixed

partitions. We show that this subproblem can be solved

as a minimum cost bipartite matching problem, which is

of independent interest. Furthermore, we improve the

branch-and-cut algorithm of [21] by separating tighter cut-

ting planes and employing our result about the MCBP sub-

problem. Our branch-and-cut algorithm solves previous in-

stances quickly to optimality. For both the previous and

larger instances, our heuristics efficiently find high quality

solutions. This demonstrates empirically that our methods

alleviate runtime issues with MLTP instances and makes

moral lineage tracing applicable in practice (e.g. in [38]).
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[5] B. Andres, T. Kröger, K. L. Briggman, W. Denk, N. Koro-
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order segmentation via multicuts. Computer Vision and Im-

age Understanding, 143:104–119, 2016. 2

[24] B. X. Kausler, M. Schiegg, B. Andres, M. Lindner,

U. Koethe, H. Leitte, J. Wittbrodt, L. Hufnagel, and F. A.

Hamprecht. A discrete chain graph model for 3d+ t cell

tracking with high misdetection robustness. In ECCV, pages

144–157. Springer, 2012. 1, 2

[25] P. J. Keller, A. D. Schmidt, A. Santella, K. Khairy,

Z. Bao, J. Wittbrodt, and E. H. Stelzer. Fast, high-contrast

imaging of animal development with scanned light sheet-

based structured-illumination microscopy. Nature methods,

7(8):637–642, 2010. 1

[26] P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer.

Reconstruction of zebrafish early embryonic development by

scanned light sheet microscopy. Science, 322(5904):1065–

1069, 2008. 1

[27] B. W. Kernighan and S. Lin. An efficient heuristic proce-

dure for partitioning graphs. Bell system technical journal,

49(2):291–307, 1970. 3, 4

[28] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox,
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