This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

Submodular Trajectory Optimization for Aerial 3D Scanning

Mike Roberts!?
Shital Shah?

Debadeepta Dey?
Ashish Kapoor?

Sudipta Sinha?
Neel Joshi?

Anh Truong?
Pat Hanrahan'

!Stanford University 2Microsoft Research 3Adobe Research

Abstract

Drones equipped with cameras are emerging as a pow-
erful tool for large-scale aerial 3D scanning, but existing
automatic flight planners do not exploit all available in-
formation about the scene, and can therefore produce in-
accurate and incomplete 3D models. We present an auto-
matic method to generate drone trajectories, such that the
imagery acquired during the flight will later produce a high-
fidelity 3D model. Our method uses a coarse estimate of the
scene geometry to plan camera trajectories that: (1) cover
the scene as thoroughly as possible; (2) encourage obser-
vations of scene geometry from a diverse set of viewing an-
gles; (3) avoid obstacles; and (4) respect a user-specified
flight time budget. Our method relies on a mathematical
model of scene coverage that exhibits an intuitive diminish-
ing returns property known as submodularity. We leverage
this property extensively to design a trajectory planning al-
gorithm that reasons globally about the non-additive cov-
erage reward obtained across a trajectory, jointly with the
cost of traveling between views. We evaluate our method by
using it to scan three large outdoor scenes, and we perform
a quantitative evaluation using a photorealistic video game
simulator.

1. Introduction

Small consumer drones equipped with high-resolution
cameras are emerging as a powerful tool for large-scale
aerial 3D scanning. In order to obtain high-quality 3D re-
constructions, a drone must capture images that densely
cover the scene. Additionally, 3D reconstruction methods
typically require surfaces to be viewed from multiple view-
points, at an appropriate distance, and with sufficient an-
gular separation (i.e., baseline) between views. Existing
autonomous flight planners do not always satisfy these re-
quirements, which can be difficult to reason about, even for
a skilled human pilot manually controlling a drone. Further-
more, the limited battery life of consumer drones provides
only 10-15 minutes of flight time, making it even more
challenging to obtain high-quality 3D reconstructions.

)

*) (o N

A 3 \K) ¥ A = \“
@O\Iemead -
.Ours -

Figure 1. 3D reconstruction results obtained using our algorithm
for generating aerial 3D scanning trajectories, as compared to an
overhead trajectory. Top row: Google Earth visualizations of the
trajectories. Middle and bottom rows: results obtained by flying
a drone along each trajectory, capturing images, and feeding the
images to multi-view stereo software. Our trajectories lead to no-
ticeably more detailed 3D reconstructions than overhead trajecto-
ries. In all our experiments, we control for the flight time, battery
consumption, number of images, and quality settings used in the
3D reconstruction.

In lieu of manual piloting, commercial flight planning
tools generate conservative trajectories (e.g., a lawnmower
or orbit pattern at a safe height above the scene) that at-
tempt to cover the scene while respecting flight time bud-

5324

gets [1, 46]. However, because these trajectories are gen-
erated with no awareness of the scene geometry, they tend
to over-sample some regions (e.g., rooftops), while under-
sampling others (e.g., facades, overhangs, and fine details),
and therefore sacrifice reconstruction quality.

We propose a method to automate aerial 3D scanning, by
planning good camera trajectories for reconstructing large
3D scenes (see Figure 1). Our method relies on a math-
ematical model that evaluates the usefulness of a camera
trajectory for the purpose of 3D scanning. Given a coarse
estimate of the scene geometry as input, our model quanti-
fies how well a trajectory covers the scene, and also quan-
tifies the diversity and appropriateness of views along the
trajectory. Using this model for scene coverage, our method
generates trajectories that maximize coverage, subject to a
travel budget. We bootstrap our method using coarse scene
geometry, which we obtain using the imagery acquired from
a short initial flight over the scene.

We formulate our trajectory planning task as a reward-
collecting graph optimization problem known as orienteer-
ing, that combines aspects of the traveling salesman and
knapsack problems, and is known to be NP-hard [24, 57].
However, unlike the additive rewards in the standard orien-
teering problem, our rewards are non-additive, and globally
coupled through our coverage model. We make the obser-
vation that our coverage model exhibits an intuitive dimin-
ishing returns property known as submodularity [37], and
therefore we must solve a submodular orienteering prob-
lem. Although submodular orienteering is strictly harder
than additive orienteering, it exhibits useful structure that
can be exploited. We propose a novel transformation of our
submodular orienteering problem into an additive orienteer-
ing problem, and we solve the additive problem as an inte-
ger linear program. We leverage submodularity extensively
throughout the derivation of our method, to obtain approx-
imate solutions with strong theoretical guarantees, and dra-
matically reduce computation times.

We demonstrate the utility of our method by using it to
scan three large outdoor scenes: a barn, an office building,
and an industrial site. We also quantitatively evaluate our al-
gorithm in a photorealistic video game simulator. In all our
experiments, we obtain noticeably higher-quality 3D recon-
structions than strong baseline methods.

2. Related Work

Aerial 3D Scanning and Mapping High-quality 3D re-
constructions of very large scenes can be obtained using of-
fline multi-view stereo algorithms [21] to process images
acquired by drones [45]. Real-time mapping algorithms for
drones have also been proposed, that take as input either
RGBD [28, 39, 43, 54] or RGB [62] images, and produce as
output a 3D reconstruction of the scene. These methods are
solving a reconstruction problem, and do not, themselves,

generate drone trajectories. Several commercially available
flight planning tools have been developed to assist with 3D
scanning [1, 46]. However, these tools only generate con-
servative lawnmower and orbit trajectories above the scene.
In contrast, our algorithm generates trajectories that cover
the scene as thoroughly as possible, ultimately leading to
higher-quality 3D reconstructions.

Generating trajectories that explore an unknown environ-
ment, while building a map of it, is a classical problem
in robotics [56]. Exploration algorithms have been pro-
posed for drones based on local search heuristics [58], iden-
tifying the frontiers between known and unknown parts of
the scene [27, 51], maximizing newly visible parts of the
scene [5], maximizing information gain [6, 7], and imita-
tion learning [11]. A closely related problem in robotics
is generating trajectories that cover a known environment
[22]. Several coverage path planning algorithms have been
proposed for drones [3, 4, 26, 29]. In an especially simi-
lar spirit to our work, Heng et al. propose to reconstruct an
unknown environment by executing alternating exploration
and coverage trajectories [26]. However, existing strategies
for exploration and coverage do not explicitly account for
the domain-specific requirements of multi-view stereo al-
gorithms (e.g., observing the scene geometry from a diverse
set of viewing angles). Moreover, existing exploration and
coverage strategies have not been shown to produce visually
pleasing multi-view stereo reconstructions, and are gener-
ally not evaluated on multi-view stereo reconstruction tasks.
In contrast, our trajectories cover the scene in a way that ex-
plicitly accounts for the requirements of multi-view stereo
algorithms, and we evaluate the multi-view stereo recon-
struction performance of our algorithm directly.

Several path planning algorithms have been proposed
for drones, that explicitly attempt to maximize multi-view
stereo reconstruction performance [16, 30, 44, 49]. These
algorithms are similar in spirit to ours, but adopt a two phase
strategy for generating trajectories. In the first phase, these
algorithms select a sequence of next-best-views to visit, ig-
noring travel costs. In the second phase, they find an effi-
cient path that connects the previously selected views. In
contrast, our algorithm reasons about these two problems —
selecting good views and routing between them — jointly
in a unified global optimization problem, enabling us to
generate more rewarding trajectories, and ultimately higher-
quality 3D reconstructions.

View Selection and Path Planning The problem of op-
timizing the placement (and motion) of sensors to improve
performance on a perception task is a classical problem in
computer vision and robotics, where it generally goes by the
name of active vision, e.g., see the comprehensive surveys
[10, 50, 55]. We discuss directly related work not included
in these surveys here. A variety of active algorithms for 3D
scanning with ground-based range scanners have been pro-

5325

posed, that select a sequence of next-best-views [36], and
then find an efficient path to connect the views [19, 6&]. In
a similar spirit to our work, Wang et al. propose a unified
optimization problem that selects rewarding views, while
softly penalizing travel costs [61]. We adapt these ideas
to account for the domain-specific requirements of multi-
view stereo algorithms, and we impose a hard travel budget
constraint, which is an important safety requirement when
designing drone trajectories.

Several algorithms have been proposed to select an ap-
propriate subset of views for multi-view stereo reconstruc-
tion [15, 31, 40, 41], and to optimize coverage of a scene
[23, 42]. However, these methods do not model travel costs
between views. In contrast, we impose a hard constraint on
the travel cost of the path formed by the views we select.

Submodular Path Planning Submodularity [37] has
been considered in path planning scenarios before, first in
the theory community [8, 9], and more recently in the ar-
tificial intelligence [52, 53, 69] and robotics [26, 29] com-
munities. The coverage path planning formulation of Heng
et al. [26] is similar to ours, in the sense that both for-
mulations use the same technique for approximating cov-
erage [32, 33]. We extend this formulation to account for
the domain-specific requirements of multi-view stereo al-
gorithms, and we evaluate the multi-view stereo reconstruc-
tion performance of our algorithm directly.

3. Technical Overview

In order to generate scanning trajectories, our algorithm
leverages a coarse estimate of the scene geometry. Initially,
we do not have any estimate of the scene geometry, so we
adopt an explore-then-exploit approach.

In the explore phase, we fly our drone (i.e., we command
our drone to fly autonomously) along a default trajectory
at a safe distance above the scene, acquiring a sequence of
images as we are flying. We land our drone, and subse-
quently feed the acquired images to an open-source multi-
view stereo pipeline, thereby obtaining a coarse estimate of
the scene geometry, and a strictly conservative estimate of
the scene’s free space. We include a more detailed discus-
sion of our explore phase in the supplementary material.

In the exploit phase, we use this additional information
about the scene to plan a scanning trajectory that attempts
to maximize the fidelity of the resulting 3D reconstruc-
tion. At the core of our planning algorithm, is a coverage
model that accounts for the domain-specific requirements
of multi-view stereo reconstruction (Section 4). Using this
model, we generate a scanning trajectory that maximizes
scene coverage, while respecting the drone’s limited flight
time (Section 5). We fly the drone along our scanning tra-
jectory, acquiring another sequence of images. Finally, we
land our drone again, and we feed all the images we have

(a) Evaluating coverage for three
cameras and a single surface point trajectory and multiple surface points

(b) Evaluating coverage for a camera

Figure 2. Our coverage model for quantifying the usefulness of
camera trajectories for multi-view stereo reconstruction. More
useful trajectories cover more of the hemisphere of viewing an-
gles around surface points. (a) An illustrative example showing
coverage of a single surface point with three cameras. Each cam-
era covers a circular disk on a hemisphere around the surface point
s, and the total solid angle covered by all the disks determines the
total usefulness of the cameras. Note that the angular separation
(i.e., baseline) between cameras c2 and c3 is small and leads to
diminishing returns in their combined usefulness. (b) The useful-
ness of a camera trajectory, integrated over multiple surface points,
is determined by summing the total covered solid angle for each
of the individual surface points. Our model naturally encourages
diverse observations of the scene geometry, and encodes the even-
tual diminishing returns of additional observations.

acquired to our multi-view stereo pipeline to obtain a de-
tailed 3D reconstruction of the scene.

4. Coverage Model for Camera Trajectories

In this section, we model the usefulness of a camera
trajectory for multi-view stereo reconstruction, in terms of
how well it covers the scene geometry. We provide an
overview of our coverage model in Figure 2.

In reality, the most useful camera trajectory is the one
that yields the highest-quality 3D reconstruction of the
scene. However, it is not clear how we would search for
such a camera trajectory directly, without resorting to flying
candidate trajectories and performing expensive 3D recon-
structions for each of them. In contrast, our coverage model
only roughly approximates the true usefulness of a camera
trajectory. However, as we will see in the following sec-
tion, our coverage model: (1) is motivated by established
best practices for multi-view stereo image acquisition; (2)
is easy to evaluate; (3) only requires a coarse estimate of
the scene geometry as input; and (4) exhibits submodular
structure, which will enable us to efficiently maximize it.

Best Practices for Multi-View Stereo Image Acquisition
As a rule of thumb, it is recommended to capture an im-
age every 5—15 degrees around an object, and it is generally
accepted that capturing images more densely will eventu-
ally lead to diminishing returns in the fidelity of the 3D re-
construction [21]. Similarly, close-up and fronto-parallel
views can help to resolve fine geometric details, because
these views increase the effective resolution of estimated

5326

L S e it
»
»
-

2 A e il

(a) Original problem: find the
closed path of camera poses
that maximizes coverage

(b) Solve for the optimal set of
camera orientations, ignoring
path constraints

(c) Coarsened problem

¥ ¥
LA
4

(d) Additive approximation to
the coarsened problem

(e) Solve for the optimal
closed path on the additive
approximation

Figure 3. Overview of our algorithm for generating camera trajectories that maximize coverage. (a) Our goal is to find the optimal closed
path of camera poses through a discrete graph. (b) We begin by solving for the optimal camera orientation at every node in our graph,
ignoring path constraints. (c) In doing so, we remove the choice of camera orientation from our problem, coarsening our problem into a
more standard form. (d) The solution to the problem in (b) defines an approximation to our coarsened problem, where there is an additive
reward for visiting each node. (e) Finally, we solve for the optimal closed path on the additive approximation defined in (d).

depth images, and contribute more reliable texture informa-
tion to the reconstruction [60]. We explicitly encode these
best practices for multi-view stereo image acquisition into
our coverage model.

Formal Definition Given a candidate camera trajectory
and approximate scene geometry as a triangle mesh, our
goal is to quantify how well the trajectory covers the scene
geometry. We first uniformly sample the camera trajectory
to generate a discrete set C', consisting of individual camera
poses cg.7. Similarly, we uniformly sample oriented surface
points sg. 7 from the scene geometry. For each oriented sur-
face point s;, we define an oriented hemisphere H; around
it. For each surface point s; and camera c;, we define a
circular disk D{ that covers an angular region of the hemi-
sphere H, centered at the location where c; projects onto
H; (see Figure 2). When the surface point s; is not visi-
ble from the camera c;, we define the disk Dg to have zero
radius, and we truncate the extent of each disk so that it
does not extend past the equator of H;. We define the to-
tal covered region of the hemisphere H; as the union of all
the disks that partially cover H; (see Figure 2), referring to
this total covered region as V; = Uf:o DJ. We define our
coverage model as follows,

(€)=

M&

/ w;(h)dh (1)
Vi

Jj=0

where the outer summation is over all hemispheres; f v, dh
refers to the surface integral over the covered region Vj;
and w;(h) is a non-negative weight function that assigns
different reward values for covering different parts of Hj.
Our model can be interpreted as quantifying how well a set
of cameras covers the scene’s surface light field [13, 63].
We include a method for efficiently evaluating our coverage
model in the supplementary material. _

To encourage close-up views, we set the radius of D/
to decay exponentially as the camera c; moves away from
the surface point s;. To encourage fronto-parallel views, we

design each function w,(h) to decay in a cosine-weighted
fashion, as the hemisphere location h moves away from the
hemisphere pole. We include our exact formulation for D!
and w; (h) in the supplementary material.

Submodularity Roughly speaking, a set function is sub-
modular if the marginal reward for adding an element to
the input set always decreases, as more elements are added
to the input set [37]. Our coverage model is submodular,
because all coverage functions with non-negative weights
are submodular [37]. Submodularity is a useful property
to identify when attempting to optimize a set function, and
is often referred to as the discrete analogue of convexity.
We will leverage submodularity extensively in the follow-
ing section, as we derive our algorithm for generating cam-
era trajectories that maximizing coverage.

5. Generating Optimal Camera Trajectories

We provide an overview of our algorithm in Figure 3.
Our approach is to formulate a reward-collecting optimiza-
tion problem on a graph. The nodes in the graph represent
camera positions, the edges represent Euclidean distances
between camera positions, and the rewards are collected by
visiting new nodes. The goal is to find a path that collects
as much reward as possible, subject to a budget constraint
on the total path length. This general problem is known as
the orienteering problem [24, 57].

A variety of approaches have been proposed to approx-
imately solve the orienteering problem, which is NP-hard.
However, these methods are not directly applicable to our
problem, because they assume that the rewards on nodes are
additive. But the total reward we collect in our problem is
determined by our coverage model, which does not exhibit
additive structure. Indeed, the marginal reward we collect
at a node might be very large, or very small, depending on
the entire set of other nodes we visit.

The marginal reward we collect at each node also de-
pends strongly on the orientation of our camera. In other
words, our orienteering problem involves extra choices —

5327

how to orient the camera at each visited node — and these
choices are globally coupled through our submodular cov-
erage function. Therefore, even existing algorithms for sub-
modular orienteering [8, 9, 26, 52, 53, 69] are not directly
applicable to our problem, because these algorithms assume
there are no extra choices to make at each visited node.
Our strategy will be to apply two successive problem
transformations. First, we leverage submodularity to solve
for the approximately optimal camera orientation at every
node in our graph, ignoring path constraints (Fig. 3b, Sec-
tion 5.1). In doing so, we remove the choice of camera
orientation from our orienteering problem, thereby coars-
ening it into a more standard form (Fig. 3c). Second, we
leverage submodularity to construct a tight additive approx-
imation of our coverage function (Fig. 3d, Section 5.2). In
doing so, we relax our coarsened submodular orienteering
problem into a standard additive orienteering problem. We
formulate this additive orienteering problem as a compact
integer linear program, and solve it approximately using a
commercially available solver (Fig. 3e, Section 5.3).

Preprocessing We begin by constructing a discrete set of
all the possible camera poses we might include in our path.
We refer to this set as our ground set of camera poses, C.
We construct this set by uniformly sampling a user-defined
bounding box that spans the scene, then uniformly sam-
pling a downward-facing unit hemisphere to produce a set
of look-at vectors that our drone camera can actuate. We
define our ground set as the Cartesian product of these posi-
tions and look-at vectors. We construct the graph for our
orienteering problem as the grid graph of all the unique
camera positions in C, pruned so that it is entirely restricted
to the known free space in the scene (see Section 3).

Our Submodular Orienteering Problem Let P =
(Po,vo), (P1,V1)s - -, (Pg; Vq) be a camera path through
our graph, represented as a sequence of camera poses taken
from our ground set. We represent each camera pose as a
position p; and a look-at vector v;. We would like to find
the optimal path P* as follows,

P* = argmax f(Cp)
P 2)
subjectto [(P) < B po = Py = Proot
where Cp C C is the set of all the unique camera poses
along the path; [(P) is the length of the path; B is a user-
defined travel budget; and py is the position where our
path must start and end. For safety reasons, we would also
like to design trajectories that consume close to, but no more
than, some fixed fraction of our drone’s battery (e.g., 80%
or so). However, constraining battery consumption directly
is difficult to express in our orienteering formulation, so we
model this constraint indirectly by imposing a budget con-
straint on path length. We make the observation that our

problem is intractable in its current form, because it requires
searching over an exponential number of paths through our
graph. This observation motivates the following two prob-
lem transformations.

5.1. Solving for Optimal Camera Orientations

Our goal in this subsection is to solve for the optimal
camera orientation at every node in our graph, ignoring path
constraints. We achieve this goal with the following relax-
ation of the problem in equation (2). Let Cs C C be a
subset of camera poses from our ground set. We would like
to find the optimal subset of camera poses C'% as follows,

C§ = argmax f(Cg)
Cs 3)

subject to

|Cs|:N CseM

where |C's| is the cardinality of C's; N is the total number of
unique positions in our graph; and the constraint C's € M
enforces mutual exclusion, where we are allowed to select
at most one camera orientation at each node in our graph. In
this relaxed problem, we are attempting to maximize cover-
age by selecting exactly one camera orientation at each node
in our graph. We can interpret such a solution as a coarsened
ground set for the problem in equation (2), thereby trans-
forming it into a standard submodular orienteering problem.
Because our coverage function is submodular, the prob-
lem in equation (3) can be solved very efficiently, and to
within 50% of global optimality, with a very simple greedy
algorithm [37]. Roughly speaking, the greedy algorithm se-
lects camera poses from our ground set in order of marginal
reward, taking care to respect the mutual exclusion con-
straint, until no more elements can be selected. Submodu-
larity can also be exploited to significantly reduce the com-
putation time required by the greedy algorithm (e.g., from
multiple hours to a couple of minutes, for the problems we
consider in this paper) [37]. The approximation guarantee
in this subsection relies on the fact that selecting more cam-
era poses never reduces coverage, i.e., our coverage func-
tion exhibits a property known as monotonicity [37]. We
include a more detailed discussion of the greedy algorithm,
and provide pseudocode, in the supplementary material.

5.2. Additive Approximation of Coverage

Our goal in this subsection is to construct an additive ap-
proximation of coverage. In other words, we would like to
define an additive reward at each node in our graph, that
closely approximates our coverage function for arbitrary
subsets of visited nodes.

To construct our additive approximation, we draw inspi-
ration from the approach of Iyer et al. [32, 33]. We be-
gin by choosing a permutation of elements in our coarsened
ground set. Let C = cg,cq,...,cy be our permutation,
where c; is the i element of our coarsened ground set in

5328

permuted order. Let C; = {cg,cy,...,c;_1} be the subset
containing the first ¢ elements of our permutation. We de-
fine the additive reward for each element in our permutation
as f; = f(C; Uc;) — f(C;). For an arbitrary subset Cs,
our additive approximation is simply the sum of additive re-
wards for each element in C's. Due to submodularity, this
additive approximation is guaranteed to be exact for all sub-
sets C, and to underestimate our true coverage function for
all other subsets. This guarantee is useful for our purposes,
because any solution we get from optimizing our additive
approximation will yield an equal or greater reward on our
true coverage function.

When choosing a permutation, it is generally advanta-
geous to place camera poses with the greatest marginal re-
ward at the front of our permutation. With this intuition in
mind, we form our permutation by sorting the camera poses
in our coarsened ground set according to their marginal re-
ward. Fortunately, we have already computed this ordering
in Section 5.1 using the greedy algorithm. So, we simply
reuse this ordering to construct our additive approximation.

5.3. Orienteering as an Integer Linear Program

After constructing our additive approximation of cover-
age, we obtain the following additive orienteering problem,

P* =arg maxz fi
P “)

subjectto [(P) < B Py = Pg = Proot

where ﬁ is the additive reward for each unique node along
the path P. In its current form, it is still not clear how to
solve this problem efficiently, because we must still search
over an exponential number of paths through our graph.
Fortunately, we can express this problem as a compact inte-
ger linear program, using a formulation suggested by Letch-
ford et al. [38]. We transform our undirected graph into a
directed graph, and we define integer variables to represent
if nodes are visited and directed edges are traversed. Re-
markably, we can constrain the configuration of these inte-
ger variables to form only valid paths through our graph,
with a compact set of linear constraints. We include a more
detailed derivation of this formulation in the supplementary
material.

Leveraging the formulation suggested by Letchford et
al., we convert the problem in equation (4) into a standard
form that can be given directly to an off-the-shelf solver.
We use the modeling language CVXPY [14] to specify our
problem, and we use the commercially available Gurobi
Optimizer [25] as the back-end solver. Solving integer pro-
gramming problems to global optimality is NP-hard, and
can take a very long time, so we specify a solver time limit
of 5 minutes. Gurobi returns the best feasible solution it
finds within the time limit, along with a worst-case optimal-
ity gap. In our experience, Gurobi consistently converges

to a close-to-optimal solution in the allotted time (i.e., typ-
ically with an optimality gap of less than 10%). At this
point, the resulting orienteering trajectory can be safely and
autonomously executed on our drone.

6. Evaluation

In all the experiments described in this section, we ex-
ecute all drone flights at 2 meters per second, with a total
travel budget of 960 meters (i.e., an 8 minute flight) un-
less otherwise noted. All flights generate 1 image every 3.5
meters. Each method has the same travel budget, and gen-
erates roughly 275 images. Small variations in the number
of generated images are possible, due to differences in how
close each method gets to the travel budget. We describe our
drone hardware, data acquisition pipeline, and experimental
methodology in more detail in the supplementary material.

Real-World Reconstruction Performance We evalu-
ated the real-world reconstruction performance of our al-
gorithm by using it to scan three large outdoor scenes: a
barn, an office building, and an industrial site.! We show
results from these experiments in Figures 1 and 4, as well
as in the supplementary material. We compared our recon-
struction results to two baseline methods: OVERHEAD and
RANDOM.

OVERHEAD. We designed OVERHEAD to generate tra-
jectories that are representative of those produced by exist-
ing commercial flight planning software [1, 46]. OVER-
HEAD generates a single flight at at a safe height above
the scene; consisting of an orbit path that always points the
camera at the center of the scene; followed by a lawnmower
path that always points the camera straight down.

RANDOM. We designed RANDOM to have roughly the
same level of scene understanding as our algorithm, except
that RANDOM does not optimize our coverage function. We
gave RANDOM access to the graph of camera positions gen-
erated by our algorithm, which had been pruned according
to the free space in the scene. RANDOM generates trajecto-
ries by randomly selecting graph nodes to visit and traveling
to them via shortest paths, until no more nodes can be vis-
ited due to the travel budget. RANDOM always points the
camera towards the center of the scene, which is a reason-
able strategy for the scenes we consider in this paper.

During our explore phase, we generate an orbit trajectory
exactly as we do for OVERHEAD. For the scenes we con-
sider in this paper, this initial orbit trajectory is always less
than 250 meters.

When generating 3D reconstructions, our algorithm and
RANDOM have access to the images from our explore phase,

'We conducted this experiment with an early implementation of our
method that differs slightly from the implementation used in our other ex-
periments. In particular, the graph of camera positions used in this experi-
ment included diagonal edges. We subsequently excluded diagonal edges
to enable our integer programming formulation to scale to larger problem
instances.

5329

Figure 4. Qualitative comparison of the 3D reconstructions obtained from an overhead trajectory, a random trajectory, and our trajectory
for two real-world scenes. Our reconstructions contain noticeably fewer visual artifacts than the baseline reconstructions. In all our
experiments, we control for the flight time, battery consumption, number of images, and quality settings used in the 3D reconstruction.

Figure 5. Quantitative comparison of the 3D reconstructions obtained from an overhead trajectory, a random trajectory, a next-best-view
trajectory, and our trajectory for our synthetic scene. We show close-up renderings of each reconstruction, as well as per-pixel visual error,
relative to a ground truth rendering of the scene. Our method leads to quantitatively lower visual error than baseline methods.

but OVERHEAD does not. The images in our explore phase
are nearly identical to the orbit images from OVERHEAD,
and would therefore provide OVERHEAD with negligible
additional information, so all three methods are directly
comparable. We generated 3D reconstructions using the
commercially available Pix4Dmapper Pro software [47],
configured with maximum quality settings.

Reconstruction Performance on a Synthetic Scene We
evaluated our algorithm using a photorealistic video game
simulator, which enabled us to measure reconstruction per-
formance relative to known ground truth geometry and ap-
pearance. We show results from this experiment in Figure 5
and Table 1.

Our experimental design here is exactly as described pre-
viously, except we acquired images by programmatically
maneuvering a virtual camera in the Unreal Engine [18], us-
ing the UnrealCV Python library [48]. We also included an
additional baseline method, NEXT-BEST-VIEW, that greed-
ily selects nodes according to their marginal submodular
reward, and finds an efficient path to connect them using
the Approx-TSP algorithm [2] until no more nodes can be
added due to the travel budget. This method is intended to
be representative of the next-best-view planning strategies
that occur frequently in the literature [19, 29, 36, 68], in-
cluding those that have been applied to aerial 3D scanning

[16, 30, 44, 49].

5330

