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Abstract

Dominant approaches to action detection can only pro-
vide sub-optimal solutions to the problem, as they rely on
seeking frame-level detections, to later compose them into
‘action tubes’ in a post-processing step. With this paper
we radically depart from current practice, and take a first
step towards the design and implementation of a deep net-
work architecture able to classify and regress whole video
subsets, so providing a truly optimal solution of the action
detection problem. In this work, in particular, we propose
a novel deep net framework able to regress and classify
3D region proposals spanning two successive video frames,
whose core is an evolution of classical region proposal net-
works (RPNs). As such, our 3D-RPN net is able to effec-
tively encode the temporal aspect of actions by purely ex-
ploiting appearance, as opposed to methods which heavily
rely on expensive flow maps. The proposed model is end-to-
end trainable and can be jointly optimised for action local-
isation and classification in a single step. At test time the
network predicts ‘micro-tubes’ encompassing two succes-
sive frames, which are linked up into complete action tubes
via a new algorithm which exploits the temporal encoding
learned by the network and cuts computation time by 50%.
Promising results on the J-HMDB-21 and UCF-101 action
detection datasets show that our model does outperform the
state-of-the-art when relying purely on appearance.

1. Introduction

In recent years most action detection frameworks [0,

, 20, 22] employ deep convolutional neural network
(CNN) architectures, mainly based on region proposal al-
gorithms [29, 37, 21] and two-stream RGB and optical flow
CNNs [24, 6]. These methods first construct training hy-
potheses by generating region proposals (or ‘regions of in-
terest’, ROI"), using either Selective Search [29], Edge-
Boxes [37] or a region proposal network (RPN) [21]. ROIs
are then sampled as positive and negative training examples
as per the ground-truth. Subsequently, CNN features are ex-

'A ROI is a rectangular bounding box parameterized as 4 coordinates
in a 2D plane [z1 y1 22 y2].

tracted from each region proposal. Finally, ROI pooled fea-
tures are fed to a softmax and a regression layer for action
classification and bounding box regression, respectively.
This dominant paradigm for action detection [6, 33, 20,
], however, only provides a sub-optimal solution to the
problem. Indeed, rather than solving for

T = T 1
arg max score(T), (1)

where T is a subset of the input video of duration D as-
sociated with an instance of a known action class, they
seek partial solutions for each video frame R*(t) =
arg maxpcy(y) score(RR), to later compose in a post-
processing step partial frame-level solutions into a so-
lution 7 = [R*(1),..., R*(D)] of the original prob-
lem (1), typically called action tubes [6]. By definition,
score(1") <score(T™*) and such methods are bound to pro-
vide suboptimal solutions. The post-processing step is es-
sential as those CNNs do not learn the temporal associations
between region proposals belonging to successive video
frames. This way of training is mostly suitable for object
detection, but inadequate for action detection where both
spatial and temporal localisation are crucial. To compensate
for this and learn the temporal dynamics of human actions,
optical flow features are heavily exploited [0, 33, 20, 22].
With this paper we intend to initiate a research pro-
gramme leading, in the medium term, to a new deep net-
work architecture able to classify and regress whole video
subsets. In such a network, the concepts of (video) region
proposal and action tube will coincide.
In this work, in particular, we take a first step towards a truly
optimal solution of the action detection problem by consid-
ering video region proposals formed by a pair of bound-
ing boxes spanning two successive video frames at an ar-
bitrary temporal interval A (see Figure 2). We call these
pairs of bounding boxes 3D region proposals. The advan-
tages of this approach are that a) appearance features can be
exploited to learn temporal dependencies (unlike what hap-
pens in current approaches), thus boosting detection perfor-
mance; b) the linking of frame-level detections over time
is no longer a post processing step and can be (partially)
learned by the network. Obviously, at this stage we still
need to construct action tubes from 3D region proposals.
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Figure 2. (a) The 3D region proposals generated by our 3D-RPN
network span pairs of successive video frames f; and f; A at tem-
poral distance A. (b) Ground-truth action-micro-tubes generated
from different pairs of successive video frames.

We thus propose a radically new approach to action de-
tection based on (1) a novel deep learning architecture for
regressing and classifying two-frame micro-tubes’, illus-
trated in Figure 1, in combination with (2) an original strat-
egy for linking micro-tubes up into proper action tubes. At
test time, this new framework does not completely rely on
post-processing for assembling frame-level detections, but
makes use of the temporal encoding learned by the network.
We show that: i) such a network trained on pairs of suc-
cessive RGB video frames can learn the spatial and tem-
poral extents of action instances relatively better than those
trained on individual video frames, and ii) our model out-
performs the current state-of-the-art [6, 33, 22] in spatio-
temporal action detection by just exploiting appearance (the
RGB video frames), in opposition to the methods which
heavily exploit expensive optical flow maps.

Just to be clear, the aim of this paper is not to renounce to
optical flow cues, but to move from frame-level detections

2We call ‘micro-tubes’ the 3D video region proposals, spanning pairs
of successive frames, generated by the network at test time.

to whole tube regression. Indeed the method can be eas-
ily extended to incorporate motion at the micro-tube level
rather than frame level, allowing fusion of appearance and
motion at training time, unlike current methods [20, 22].

Overview of the approach. Our proposed network ar-

chitecture (see Figure 1) employs and adapts some of the
architectural components recently proposed in [21, 13].
At training time, the input to the model is a pair of suc-
cessive video frames (a) which are fed to two parallel
CNNs (b) (§ Section 3.1). The output feature maps of the
two CNNs are fused (c) and passed as input to a 3D re-
gion proposal network (3D-RPN) (d) (§ Section 3.2). The
3D-RPN network generates 3D region proposals and their
associated actionness> [2] scores, which are then sampled
as positive and negative training examples (f) by a proposal
sampler (e) (§ 3.3). A training mini-batch of 256 examples
are constructed from these positive and negative samples.
The mini-batch is firstly used to compute the actionness
classification and 3D proposal regression losses (g) (§ 4.1),
and secondly, to pool CNN features (for each 3D proposal)
using a bilinear interpolation layer (h) (§ 3.4).

In order to interface with the fully connected lay-
ers (j) (§ 3.5), bilinear interpolation is used to get a fixed-
size feature representation for each variably sized 3D region
proposal. As our 3D proposals consist of a pair of bound-
ing boxes, we apply bilinear feature pooling independently
on each bounding box in a pair, which gives rise to two
fixed-size pooled feature maps of size [512 x kh x kw],
where kh = kw = 7 for each 3D proposal. We then ap-
ply element-wise fusion (i) (§ 3.4) to these 2 feature maps.

3The term actionness [2] is used to denote the possibility of an action
being present within a 3D region proposal.
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Each pooled and then fused feature map (representing a 3D
proposal) is passed to two fully connected layers (FC6 and
FC7)) (j) (§ 3.5). The output of the FC7 layer is a fixed sized
feature vector of shape [4096 x 1]. These 4096 dimension
feature vectors are then used by a classification and a re-
gression layers (k) (§ 3.5) to output (1) B x C classification
scores and (2) B x C x 8 coordinate values where B is the
number of 3D proposals in a training mini-batch and C' is
the number of action categories in a given dataset.

At test time we select top 1000 predicted micro-tubes
by using non-maximum suppression, modified to work with
pairs of bounding boxes and pass these to an action-tube
generator (m) (§ 5) which links those micro-tubes in time.
At both training and test time, our model receives as in-
put successive video frames f;, fi1a. At training time we
generate training pairs using 2 different A values 1 and
2 (§ 6.1). At test time we fix A = 1. As we show in
the supplementary material, even consecutive frames (A =
1) carry significantly different information which affects
the overall video-mAP. Throughout this paper, “3D region
proposals” denotes the RPN-generated pairs of bounding
boxes regressed by the middle layer (Figure 1 (g)), whereas
“micro-tubes” refers to the 3D proposals regressed by the
end layer (Figure 1 (1)).

Contributions. In summary, the key contributions of
this work are: (1) on the methodological side, a key con-
ceptual step forward from action detection paradigms rely-
ing on frame-level region proposals towards networks able
to regress optimal solutions to the problem; (2) a novel, end-
to-end trainable deep network architecture which addresses
the spatiotemporal action localisation and classification task
jointly using a single round of optimisation; (3) at the core
of this architecture, a new design for a fully convolutional
action localisation network (3D-RPN) which generates 3D
video region proposals rather than frame-level ones; (4) a
simple but efficient regression technique for regressing such
3D proposals; (5) a new action-tube generation algorithm
suitable for connecting the micro-tubes so generated, which
exploits the temporal encoding learnt by the network.

Experimental results on the J-HMDB-21 and UCF-101
action detection datasets show that our model outperforms
state-of-the-art appearance-based models, while being com-
petitive with methods using parallel appearance and flow
streams. Finally, to the best of our knowledge, this is the
first work in action detection which uses bilinear interpo-
lation [8, 9] instead of the widely used Rol max-pooling
layer [4], thus allowing gradients to flow backwards for both
convolution features and coordinates of bounding boxes.

2. Related work

Deep learning architectures have been increasingly ap-
plied of late to action classification [12, 14, 24, 28], spa-
tial [6], temporal [23] and spatio-temporal [33, 22, 20] ac-

tion localisation. While many works concern either spa-
tial action localisation [18, 32, 10, 25] in trimmed videos
or temporal localisation [17, 3, 27, 19, 31, 23, 35, 34] in
untrimmed videos, only a handful number of methods have
been proposed to tackle both problems jointly. Spatial ac-
tion localisation has been mostly addressed using segmen-
tation [ 18, 25, 10] or by linking frame-level region proposal
[6, 33, 32]. Gkioxari and Malik [6], in particular, have built
on [5] and [24] to tackle spatial action localisation in tem-
porally trimmed videos, using Selective-Search [29] based
region proposals on each frame of the videos.

Most recently, supervised frame-level action proposal
generation and classification have been used by Saha er
al. [22] and Peng et al. [20], via a Faster R-CNN [21] object
detector, to generate frame level detections independently
for each frame and link them in time in a post-processing
step. Unlike [30, 6, 33], current methods [32, 22, 20] are
able to leverage on end-to-end trainable deep-models [21]
for frame level detection. However, tube construction is still
tackled separately from region proposal generation.

Our novel network architecture, generates micro-tubes
(the smallest possible video-level region proposals) which
span across frames, and are labelled using a single soft-max
score vector, in opposition to [0, 33, 20, 22] which gener-
ate frame-level region proposals. Unlike [6, 33, 20, 22],
our proposed model is end-to-end trainable and requires
a single step of optimisation per training iteration. To the
contrary, [0, 33] use a multi-stage training strategy mu-
tuated from R-CNN object detection [5] which requires
training two CNNs (appearance and optical-flow) indepen-
dently, plus a battery of SVMs. The two most recent pa-
pers [20, 22] extend this Faster R-CNN [2 1] framework and
train independently appearance and motion CNNs. Com-
pared to [6, 33, 20, 22], which heavily exploit expensive
optical flow maps, our model learns spatiotemporal feature
encoding directly from raw RGB video frames.

3. Network Architecture
All the stages of Figure 1 are described below in detail.

3.1. Convolutional Neural Network

The convolutional (conv) layers of our network follow
the VGG-16 architecture [24]. We use two parallel VGG-
16 networks (§ Figure 1 (b)) to apply convolution over a
pair of successive video frames. Each VGG-16 has 13 conv
layers intermixed with 5 max pooling layers. Each conv
layer has a 3 x 3 filter and 1 x 1 stride and padding. Each
max pooling layer has filter shape 2 x 2. We discard all the
VGG-16 layers after the last (13-th) conv layer.

Feature map fusion. Our network takes two successive
video frames f; and f;4 A as inputs. For a input video frame
of shape [3 x H x W], the last conv layer of each VGG-
16 outputs a feature map of shape [D x H' x W'| where
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Figure 3. 3D-RPN architecture.

D = 512, H = %, and W/ = %. We fuse the two
conv feature maps produced by the two parallel VGG-16
networks using element-wise sum fusion (§ Figure 1 (c)).
As a consequence, the fused feature map encodes both ap-
pearance and motion information (for frames f; and fia),
which we pass as input to our 3D-RPN network.

Our new 3D region proposal network (Figure 1 (d))
builds on the basic RPN structure [21] to propose a fully
convolutional network which can generate 3D region pro-

posals via a number of significant architectural changes.

3.2. 3D region proposal network

3D region proposal generation. As we explained, un-
like a classical RPN [21] which generates region propos-
als (rectangular bounding boxes) per image, our 3D-RPN
network generates (video) region proposals spanning a pair
of video frames. A single proposal thus consists of a pair
of rectangular bounding boxes. The input to our 3D-RPN
is a fused VGG-16 feature map (§ Figure 1 (c)) of size
[512 x H' x W']. We generate anchor boxes in a similar
way as in [21]: namely, we project back each point in the
H' x W’ grid (of the input feature map) onto the original
image plane of size H x W. For each projected point we
generate k pairs of anchor boxes of different aspect ratios.

Let (%4, Ya;,Wa, hq;) denote the centroid, width and
height of the anchor boxes in a pair. We use the subscript ¢
to index the two boxes in a pair, i.e. ¢ = {1,2}. Similarly,
(€g:s Ygs» Wy, , hg, ) refer to the centroid, width and height of
the ground-truth pair. We can transform a pair of input an-
chor boxes into a predicted pair of ground-truth boxes via*:

Tg = Tq + ¢wwa

Wg = Wq exp(¢w)

Yg = Ya + stha
hg = ha eXp(¢h) (2)

where (¢g,, ¢y, ) specify a scale-invariant translation of the
center of the anchor boxes, and (¢, ¢r,) specify a log-
space translation of their width and height.

Both RPN and the micro-tube regression layer (Fig-
ure 1 (k)) predict the bounding box regression offsets
(b2i> Py » Qw,» Ph, ). Our anchor generation approach dif-
fers from that of [21], in the sense that we generate k pairs
of anchors instead of & anchors.

4We removed the subscript 7 in Eq. 2 for sake of simplicity.

Network architecture. The network architecture of our
3D-RPN is depicted in Figure 3. To encode the location in-
formation of each pair of anchors, we pass the fused VGG-
16 feature map through a 3 x 3 convolution (b), a rectified
linear nonlinearity (c), and two more 1 X 1 convolution ((e)
and (h)) layers. The first conv layer (b) consists of 256 con-
volution filters with 1 x 1 stride and padding, resulting in a
feature map of size [256 x H' x W’] (d). The second conv
layer (e) has 8 x k convolution filters with 1 x 1 stride and
does not have padding. It outputs a feature map of shape
[(8 x k) x H' x W] (f) which encodes the location in-
formation (8 coordinate values) of [k x H’ x W’ pairs of
anchor boxes (g). The third conv layer (h) is the same as (e).
The only difference is in the number of filters which is 2 x k
to encode the actionness score (i.e. probability of action or
no-action) (j) for each k pairs of anchors.

As RPN is a fully convolutional neural network, classifi-
cation and regression weights are learned directly from the
convolution features, whereas in the fully connected lay-
ers (§ 3.5) we apply linear transformation layers for clas-
sification and regression. In our 3D-RPN, the convolution
layer (e) is considered as the regression layer, as it outputs
the 8 regression offsets per pair of anchor boxes; the convo-
lution layer (h) is the classification layer.

3.3. 3D region proposal sampling

Processing all the resulting region proposals is very ex-
pensive. For example, with k¥ = 12 and a feature map of size
[512 x 38 x 50], we get 12 x 38 x 50 = 22800 pairs of an-
chor boxes. For this reason, we subsample them during both
training and testing following the approach of [21] (§ Fig-
ure 1 (e)). We only make a slight modification in the sam-
pling technique, as in our case one sample consists of a pair
of bounding boxes, rather than a single box.

Training time sampling. During training, we com-
pute the intersection over union (IoU) between a pair of
ground-truth boxes {Gi, Giya} and a pair of proposal
boxes {P;, Py}, so that, ¢y = IoU(Gy, Py) and ¢s =
I0U (G4, P2). We consider { Py, P2} as a positive exam-
pleifiyy; >= 0.5 and ), >= 0.5, that is both IoU values are
above 0.5. When enforcing this condition, there might be
cases in which we do not have any positive pairs. To avoid
such cases, we also consider as positive pairs those which
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have maximal mean IoU (1 +1)2)/2 with the ground-truth
pair. As negative examples we consider pairs for which both
IoU values are below 0.3.

We construct a minibatch of size B in which we can
have at most B, = B/2 positive and By = B — Bp
negative training samples. We set B = 256. Note that
the ground-truth boxes {G¢, Gi4a} in a pair belong to a
same action instance but come from two different video
frames {f;, fixa}. As there may be multiple action in-
stances present, during sampling one needs to make sure
that a pair of ground-truth boxes belongs to the same in-
stance. To this purpose, we use the ground-truth tube-id
provided in the datasets to keep track of instances.

Test time sampling. During testing, we use non-
maximum suppression (NMS) to select the top B = 1000
proposal pairs. We made changes to the NMS algorithm to
select the top B pairs of boxes based on their confidence. In
NMS, one first selects the box with the highest confidence,
to then compute the IoU between the selected box and the
rest. In our modified version (i) we first select the pair of
detection boxes with the highest confidence; (ii) we then
compute the mean IoU between the selected pair and the
remaining pairs, and finally (iii) remove from the detection
list pairs whose IoU is above an overlap threshold ¢/, .

3.4. Bilinear Interpolation

The sampled 3D region proposals are of different sizes
and aspect ratios. We use bilinear interpolation [8, 9] to
provide a fixed-size feature representation for them, neces-
sary to pass the feature map of each 3D region proposal to
the fully connected layer fc6 of VGG-16 (§ Figure 1 (j)),
which indeed requires a fixed-size feature map as input.

Whereas recent action detection methods [20, 22] use
max-pooling of region of interest (Rol) features which only
backpropagates the gradients w.r.t. convolutional features,
bilinear interpolation allows us to backpropagate gradients
with respect to both (a) convolutional features and (b) 3D
Rol coordinates. Further, whereas [20, 22] train appearance
and motion streams independently, and perform fusion at
test time, our model requires one-time training, and feature
fusion is done at training time.

Feature fusion of 3D region proposals. As a 3D pro-
posal consists of a pair of bounding boxes, we apply bilinear
feature pooling independently to each bounding box in the
pair. This yields two fixed-size pooled feature maps of size
[D x khx kw] for each 3D proposal. We then apply element-
wise sum fusion (§ Figure 1 (i)) to these 2 feature maps, pro-
ducing an output feature map of size [D x kh x kw]. Each
fused feature map encodes the appearance and motion in-
formation of (the portion of) an action instance which may
be present within the corresponding 3D region proposal. In
this work, we use D = 512, kh = kw = 7.

3.5. Fully connected layers

Our network employs two fully connected layers FC6

and FC7 (Figure 1 (j)), followed by an action classification
layer and a micro-tube regression layer (Figure 1 (k)).
The fused feature maps (§ Section 3.4) for each 3D proposal
are flattened into a vector and passed through FC6 and FC7.
Both layers use rectified linear units and dropout regular-
isation [13]. For each 3D region proposal, the FC7 layer
outputs a 4096 dimension feature vector which encodes the
appearance and motion features associated with the pair of
bounding boxes. Finally, these 4096-dimensional feature
vectors are passed to the classification and regression layers.
The latter output [B x C] softmax scores and [B x C' X §]
bounding box regression offsets (§ 3.2), respectively, for B
predicted micro-tubes and C' action classes.

4. Network training
4.1. Multi-task loss function

As can be observed in Figures | and 3, our network con-
tains two distinct classification layers.

The mid classification layer (§ Figure 3 (h)) predicts the
probability p™ of a 3D proposal containing an action, p”* =
(pg*, pi*) over two classes (action vs. no action). We denote
the associated loss by L7}.. The end classification layer
(§ Figure 1 (k)) outputs a discrete probability distribution
(per 3D proposal), p® = (p§, ..., p&), over C' + 1 action cat-
egories. We denote the associated loss as L¢, .

In the same way, the network has a mid (Figure 3 (e)) and an
end (§ Figure 1 (k)) regression layer — the associated losses
are denoted by L, and L, respectively. Both regression
layers output a pair of bounding box offsets ¢™* and ¢° (cfr.
Eq. 2). We adopt the parameterization of ¢ (§ 3.2) given
in [5].

Now, each training 3D proposal is labelled with a
ground-truth action class ¢® and a ground-truth micro-
tube (§ 1) regression target g°. We can then use the multi-
task loss [21]:

L(p®,c ¢% g% p™, ", 0™, 9™) =
asLas (P, €) + Alpele = 1 Lioe (6, 9°)+
ctsLets (0™ ™) + Mgele = 1] Lig. (6™, 9™)
(€)

on each labelled 3D proposal to jointly train for (i) action
classification (p®), (ii) micro-tube regression (¢°), (iii) ac-
tionness classification (p™), and (iv) 3D proposal regression
(¢™). Here, L% (p°, c°) and L, (p™,c™) are the cross-
entropy losses for the true classes c¢® and c¢™ respectively,
where ¢™ is 1 if the 3D proposal is positive and 0 if it is
negative, and ¢® = {1, ...,C}.

The second term Lf (¢°, ¢°) is defined over an 8-dim
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tuple of ground-truth micro-tube regression target coordi-

¢ = ({gil,g;,gfm,gﬁl},{9227952,932,922})
and the corresponding predicted micro-tube tuple: ¢°¢ =

(465,65, 66, 08,3, {65, 6. 65, 65, } ) The fourth

term L” (¢™,¢™) is similarly defined over a tuple g™ of
ground-truth 3D proposal regression target coordinates and
the associated predicted tuple ¢". The Iverson bracket in-
dicator function [¢ > 1] in (3) returns 1 when ¢® > 1 and 0
otherwise; [c = 1] returns 1 when ¢™ = 1 and 0 otherwise.

For both regression layers we use a smooth L1 loss in
transformed coordinate space as suggested by [21]. The
hyper-parameters A\, Aj,.. Ao, and A\, in Eq. 3 weigh
the relative importance of the four loss terms. In the follow-

ing we set to 1 all four hyper-parameters.

nates: ¢

4.2. Optimisation

We follow the end-to-end training strategy of [13] to
train the entire network in a single optimisation step. We
use stochastic gradient descent (SGD) to update the weights
of the two VGG-16 convolutional networks, with a momen-
tum of 0.9. To update the weights of other layers of the
network, we use the Adam [15] optimiser, with parameter
values 81 = 0.9, B2 = 0.99 and a learning rate of 1 x 1076,
During the Ist training epoch, we freeze the weights of the
convolution networks and update only the weights of the
rest of the network. We start fine-tuning the layers of the
two parallel CNNs after completion of 1st epoch. The first
four layers of both CNNs are not fine-tuned for sake of effi-
ciency. The VGG-16 pretrained ImageNet weights are used
to initialise the convolutional nets. The rest of the network’s
weights are initialised using a Gaussian with o = 0.01.

5. Action-tube generation

<~ N~
mo my me T=6
(Q)——e (b)e—oe (c) L (d) 1M4: predicted micro-tube

Figure 4. (a) The temporal associations learned by our network;
(b) Our micro-tube linking algorithm requires (T /2 — 1) connec-
tions; (c) the T' — 1 connections required by [22]’s approach.
Once the predicted micro-tubes are regressed at test time,
they need to be linked up to create complete action tubes
associated with an action instance. To do this we intro-
duce here a new action tube generation algorithm which is
an evolution of that presented in [22]. There, temporally
untrimmed action paths are first generated in a first pass of
dynamic programming. In a second pass, paths are tempo-
rally trimmed to detect their start and end time. Here we

modify the first pass of [22] and build action paths using
the temporal associations learned by our network. We use
the second pass without any modification.

Linking up micro tubes (§ Figure 4) is not the same as
linking up frame-level detections as in [22]. In the Viterbi
forward pass of [22], the edge scores between bounding
boxes belonging to consecutive video frames (i.e., frame
ft and fi11) are first computed. Subsequently, a DP (dy-
namic programming) matrix is constructed to keep track of
the box indices with maximum edge scores. In the Viterbi
backward pass, all consecutive pairs of frames, i.e, frames
{1,2},{2,3},... are traversed to join detections in time.
Our linking algorithm saves 50% of the computing time,
by generating edge scores between micro-tubes (which only
needs 7'/2 — 1 iterations, cfr. Figure 4) rather than between
boxes from consecutive frames (which, in the forward pass,
needs 7' — 1 iterations). In the backward pass, the algorithm
connects the micro-tubes as per the max edge scores.

Recall that a predicted micro-tube consists of a pair of
bounding boxes (§ Figure 4), so that m = {b',b?}. In
the first pass action-specific paths p. = {m:,t € I =
{2,4,...,T — 2}}, spanning the entire video length are ob-
tained by maximising via dynamic programming [6]:

E(pe) =Y se(mi) + Ao o (P blimen) s )

tel tel

where s.(m;) denotes the softmax score (§ 3.5) of the pre-
dicted micro-tube m at time step ¢, the overlap potential
Yo(b?m,, b m,,,) is the IoU between the second detection
box b?%,,, which forms micro-tube m; and the first detec-
tion box blmt+2 of micro-tube my.o. Finally, A, is a scalar
parameter weighting the relative importance of the pairwise
term. By recursively removing the detection micro-tubes
associated with the current optimal path and maximising (4)
for the remaining micro-tubes we can account for multiple
co-occurring instances of the same action class.

6. Experiments
6.1. Experimental setting

Datasets. All the experiments are conducted using the
following two widely used action detection datasets: a) J-
HMDB-21 [11] and b) UCF-101 24-class [26].

J-HMDB-21 is a subset of the relatively larger action
classification dataset HMDB-51 [16], and is specifically de-
signed for spatial action detection. It consists of 928 video
sequences and 21 different action categories. All video se-
quences are temporally trimmed as per the action’s dura-
tion, and each sequence contains only one action instance.
Video duration varies from 15 to 40 frames. Ground-truth
bounding boxes for human silhouettes are provided for all
21 classes, and the dataset is divided into 3 train and test
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splits. For evaluation on J-HMDB-21 we average our re-
sults over the 3 splits.

The UCF-101 24-class action detection dataset is a sub-
set of the larger UCF-101 action classification dataset, and
comprises 24 action categories and 3207 videos for which
spatiotemporal ground-truth annotations are provided. We
conduct all our experiments using the first split. Compared
to J-HMDB-21, the UCF-101 videos are relatively longer
and temporally untrimmed, i.e., action detection is to be
performed in both space and time. Video duration ranges
between 100 and 1000 video frames.

Note that the THUMOS [7] and ActivityNet [ ] datasets
are not suitable for spatiotemporal localisation, as they lack
bounding box annotation.

Evaluation metrics. As evaluation metrics we use both:
(1) frame-AP (the average precision of detections at the
frame level) as in [0, 20]; (2) video-AP (the average pre-
cision of detection at video level) as in [6, 33, 22, 20]. We
select an IoU threshold (§) range [0.1:0.1:0.5] for -HMDB-
21 and [0.1,0.2,0.3] for UCF-101 when computing video-
mAP. For frame-mAP evaluation we set § = 0.5.

Training data sampling strategy. As the input to our
model is a pair of successive video frames and their asso-
ciated ground-truth micro-tubes, training data needs to be
passed in a different way than in the frame-level training
approach [0, 33, 20, 22], where inputs are individual video
frames. In our experiments, we use 3 different sampling
schemes to construct training examples using different com-
binations of successive video frames (§ Figure 2 (b)): (1)
scheme-11 generates training examples from the pairs of
frames {t=1,t=2}, {t=2,t=3} ...; scheme-21 uses the (non-
overlapping) pairs {1,2}, {3,4} ...; scheme-32 constructs
training samples from the pairs {1,3}, {4,6} ...

In the supplementary material we explain all implemen-
tation details including data preprocessing, training/testing
time requirements, training batch construction.

6.2. Model evaluation

We first show how a proper positive IoU threshold is es-
sential during the sampling of 3D region proposals at train-
ing time (§ 3.3). Secondly, we assess whether our proposed
network architecture, coupled with the new data sampling
strategies (Sec. 6.1), improves detection performance. We
then show that our model outperforms the appearance-based
model of [22]. Finally, we compare the performance of the
overall detection framework with the state-of-the-art.

Effect of different positive IoU thresholds on detec-
tion performance. We train our model on UCF-101 using
two positive IoU thresholds: 0.7 and 0.5 (§ 3.3). The detec-
tion results (video-mAP) of these two models ( Model-0-7
& -0-5) are shown in Table 1. Whereas [21] recommends
an IoU threshold of 0.7 to subsample positive region pro-
posals during training, in our case we observe that an IoU

Table 1. Effect of different positive IoU thresholds on detection
performance (video-mAP).

ToU threshold & 0.1 0.2 0.3
Model-0-7 64.04 54.83  44.664
Model-0-5 68.85 60.06 49.78

threshold of 0.5 works better with our model. Indeed, dur-
ing sampling we compute IoUs between pairs of bounding
boxes and then take the mean IoU to subsample (§ 3.3). As
the ground-truth boxes (micro-tubes) are connected in time
and span different frames, it is harder to get enough positive
examples with a higher threshold like 0.7. Therefore, in the
remainder we use an IoU of 0.5 for evaluation.

Effect of our training data sampling strategy on de-
tection performance. JHMDB-21 frame-mAP. We first
generate a J-HMDB-21 training set using the scheme-
11 (§ 6.1) and train our model. We then generate an-
other training set using scheme-32, and train our model
on the combined training set (set-11+32). Table 2 shows
the per class frame-AP obtained using these two models.
We can observe that out of 21 JHMDB action classes, the
frame-APs of 15 classes actually improve when training the
model on the new combined trainset (set-11+32). Over-
all performance increases by 1.64%, indicating that the net-
work learns temporal association more efficiently when it
is trained on pairs generated from different combinations of
successive video frames.

JHMDB-21 video-mAP. The two above trained models
are denoted by Model-11 and Model-11+32 in Table 4,
where the video-mAPs at different IoU threshold for these
two models are shown. Although the first training strategy
scheme-11 already makes use of all the video frames present
in J-HMDB-21 training splits, when training our model us-
ing the combined trainset we observe an improvement in the
video-mAP of 1.04% at § = 0.5.

Effect of exploiting appearance features. Further,
we show that our model exploits appearance features (raw
RGB frames) efficiently, contributing to an improvement of
video-mAP by 3.2% over [22]. We generate a training set
for UCF-101 split 1 using the training scheme-21 and com-
pare our model’s performance with that of the appearance-
based model (*A) of [22]. We show the comparison in Ta-
ble 3.

Note that, among the 24 UCF-101 action classes, our
model exhibits better video-APs for 14 classes, with an
overall gain of 3.2%. We can observe that, although trained
on appearance features only, our model improves the video-
APs significantly for action classes which exhibit a large
variability in appearance and motion. Also, our model
achieves relatively better spatiotemporal detection on ac-
tion classes associated with video sequences which are sig-
nificantly temporally untrimmed, such as BasketballDunk,
GolfSwing, Diving with relative video-AP improvements of
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Table 2. Effect of our training data sampling strategy on per class frame-AP at IoU threshold § = 0.5, JHMDB-21 (averaged over 3 splits).

frame-AP(%) | brushHair catch  clap ~ climbStairs ~ golf ~ jump  kickBall ~pick pour pullip push run  shootBall ~shootBow shootGun  sit  stand  swingBaseball throw —walk — wave | mAP
ours (*) 46.4 407 319 62.3 91.0 43 17.3 295 862 827 66.9 355 339 78.2 49.7 1.7 138 57.1 213 278 271 43.6
ours (**) 43.7 43.6  33.0 61.5 91.8 5.6 23.8 315 918 84.1 73.1 323 333 81.4 55.1 12.4 14.7 56.3 222 24.7 29.4 45.0
Improvement 226 29 1.0 -0.8 0.7 12 6.4 19 55 14 61 32 -0.6 32 54 0.6 0.8 -0.8 0.8 3.1 23 14
[6] 65.2 183 38.1 39.0 79.4 73 9.4 252 802 82.8 33.6 11.6 5.6 66.8 27.0 32.1 342 33.6 155 34.0 219 36.2
[32] 60.1 342 564 38.9 83.1 10.8 24.5 385 715 675 213 198 11.6 78.0 50.6 109 430 489 265 252 158 39.9
[33] 73.3 340 408 56.8 939 59 13.8 385 881 894 605 211 23.9 85.6 37.8 349 492 36.7 16.8 405 205 | 458
[20] 75.8 384 622 62.4 99.6 127 35.1 57.8 968 973 79.6 381 52.8 90.8 62.7 336 489 62.2 256 597 371 58.5
video-AP(%) |
ours (*) 53.9 544 398 68.2 96.1  5.69 39.6 349 971 93.5 84.1 537 43.6 93.2 64.5 209 228 72.1 232 394 378 | 5427
ours (**) 51.9 545 412 66.6 948 18 48.7 337 976 925 87.6  49.0 374 92.7 75.8 216 271 733 243 377 447 | 5531
Improvement -1.9 0.01 14 -1.6 -1.2 2.1 9.1 -1.2 0.4 -1.0 34 -4.7 -6.2 -0.5 11.2 0.6 4.2 1.1 1.1 -1.6 6.8 1.04
[61 79.1 334 539 60.3 99.3 184 26.2 420 928 981 29.6 246 13.7 92.9 423 672 57.6 66.5 279 589 358 | 533
[32] 76.4 49.7 80.3 43.0 92.5 242 57.7 705 787 77.2 317 357 27.0 88.8 76.9 29.8 68.6 72.8 315 44.4 26.2 56.4
*Model-11 **Model-11+32

Table 3. Per class video-AP comparison at IoU threshold § = 0.2, UCF-101.
video-AP(%) ‘ BasketballDunk  Biking  Diving  Fencing  FloorGymnastics ~ GolfSwing  IceDancing  LongJump  PoleVault ~ RopeClimbing  Skiing  Skijet ~ SoccerJuggling ~ WalkingWithDog ‘ mAP
[221 (*A) 22.7 56.1 89.7 86.9 93.8 59.9 59.2 415 489 77.8 68.4 88 34.6 73.3 56.86
ours 39.6 59.5 91.2 88.5 94.1 70.7 704 49.8 71.0 97.2 74.0 92.9 80.2 73.6 60.06
Improvement 16.9 34 15 L6 0.3 10.8 112 8.3 221 194 5.6 4.9 45.6 0.3 32

*A: appearance model

Table 4. Effect of our training data sampling strategy on video-
mAP, JHMDB-21 (averaged over 3 splits).

ToU threshold & 0.1 0.2 0.3 0.4 0.5
Model-11 57.73 57770 57.60 56.81 54.27
Model-11+32 5779 5776 57.68 56.79 55.31

Table 5. Spatio-temporal action detection performance (video-
mAP) comparison with the state-of-the-art on J-HMDB-21.

ToU threshold & 0.1 0.2 0.3 0.4 0.5

Gkioxari and Malik [6] - - - - 53.30
Wang et al. [32] - - - - 56.40
Weinzaepfel et al. [33] - 63.1 - - 60.70
Saha et al. [22] (Spatial Model) ~ 52.99 5294 5257 5222 5134
Peng and Schmid [20] - 74.3 - - 73.1
Ours 5779 5776  57.68  56.79 5531

Table 6. Spatio-temporal action detection performance (video-
mAP) comparison with the state-of-the-art on UCF-101.

ToU threshold § 0.1 0.2 03 0.5 0.75  0.5:0.95
Yu et al. [36] 428  26.50 14.6 - - -
Weinzaepfel et al. [33] 51.7 46.8 37.8 - - -
Peng and Schmid [20] ~ 77.31  72.86 65.70 30.87 01.01 07.11
Saha et al. [22] (*A) 6545 56.55 48.52 - - -
Saha et al. [22] (full) 76.12 6636 5493 - - -
Ours — ML 68.85 60.06 49.78 - - -
Ours — ML — () 70.71 6136 5044  32.01 0.4 9.68
Ours — 2PDP — () 71.3  63.06 51.57 33.06 0.52 10.72

(*) cross validated alphas as in [22]; 2PDP - tube generation algorithm [22]
ML - our micro-tube linking algorithm.

16.9%, 10.8% and 1.5% respectively. We report significant
gains in absolute video-AP for action categories SoccerJug-
gling, PoleVault, RopeClimbing, BasketballDunk, IceDanc-
ing, GolfSwing and LongJump of 45.6%, 22.1%, 19.4%,
16.9%, 11.2% 10.8% and 8.3%, respectively.

Detection performance comparison with the state-of-
the-art. Table 5 reports action detection results, averaged
over the three splits of J-HMDB-21, and compares them
with those to our closest competitors. Note that, although
our model only trained using the appearance features (RGB
images), it outperforms [6] which was trained using both

appearance and optical flow features. Also, our model out-
performs [22]’s spatial detection network.

Table 6 compares the action detection performance of
our model on the UCF-101 dataset to that of current state
of the art approaches. We can observe that our model out-
performs [36, 33, 22] by a large margin. In particular, our
appearance-based model outperforms [33] which exploits
both appearance and flow features. Also notice, our method
works better than that of [20] at higher IoU threshold, which
is more useful in real-world applications.

7. Conclusions

In this work we departed from current practice in action
detection to take a step towards deep network architectures
able to classify and regress whole video subsets. In particu-
lar, we propose a novel deep net framework able to regress
and classify 3D region proposals spanning two successive
video frames, effectively encoding the temporal aspect of
actions using just raw RBG values. The proposed model is
end-to-end trainable and can be jointly optimised for action
localisation and classification using a single step of opti-
misation. At test time the network predicts ‘micro-tubes’
spanning two frames, which are linked up into complete ac-
tion tubes via a new algorithm of our design. Promising
results confirm that our model does indeed outperform the
state-of-the-art when relying purely on appearance.

Much work will need to follow. It remains to be tested
whether optical flow can be integrated in this framework
and further boost performance. As the search space of 3D
proposals is twice the dimension of that for 2D proposals,
efficient parallelisation and search are crucial to fully ex-
ploit the potential of this approach. Further down the road
we wish to extend the idea of micro-tubes to longer time
intervals, posing severe challenges in terms of efficient re-
gression in higher-dimensional spaces.
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