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Abstract

Dominant approaches to action detection can only pro-

vide sub-optimal solutions to the problem, as they rely on

seeking frame-level detections, to later compose them into

‘action tubes’ in a post-processing step. With this paper

we radically depart from current practice, and take a first

step towards the design and implementation of a deep net-

work architecture able to classify and regress whole video

subsets, so providing a truly optimal solution of the action

detection problem. In this work, in particular, we propose

a novel deep net framework able to regress and classify

3D region proposals spanning two successive video frames,

whose core is an evolution of classical region proposal net-

works (RPNs). As such, our 3D-RPN net is able to effec-

tively encode the temporal aspect of actions by purely ex-

ploiting appearance, as opposed to methods which heavily

rely on expensive flow maps. The proposed model is end-to-

end trainable and can be jointly optimised for action local-

isation and classification in a single step. At test time the

network predicts ‘micro-tubes’ encompassing two succes-

sive frames, which are linked up into complete action tubes

via a new algorithm which exploits the temporal encoding

learned by the network and cuts computation time by 50%.

Promising results on the J-HMDB-21 and UCF-101 action

detection datasets show that our model does outperform the

state-of-the-art when relying purely on appearance.

1. Introduction

In recent years most action detection frameworks [6,

33, 20, 22] employ deep convolutional neural network

(CNN) architectures, mainly based on region proposal al-

gorithms [29, 37, 21] and two-stream RGB and optical flow

CNNs [24, 6]. These methods first construct training hy-

potheses by generating region proposals (or ‘regions of in-

terest’, ROI1), using either Selective Search [29], Edge-

Boxes [37] or a region proposal network (RPN) [21]. ROIs

are then sampled as positive and negative training examples

as per the ground-truth. Subsequently, CNN features are ex-

1A ROI is a rectangular bounding box parameterized as 4 coordinates

in a 2D plane [x1 y1 x2 y2].

tracted from each region proposal. Finally, ROI pooled fea-

tures are fed to a softmax and a regression layer for action

classification and bounding box regression, respectively.

This dominant paradigm for action detection [6, 33, 20,

22], however, only provides a sub-optimal solution to the

problem. Indeed, rather than solving for

T ∗ .
= argmax

T⊂V
score(T ), (1)

where T is a subset of the input video of duration D as-

sociated with an instance of a known action class, they

seek partial solutions for each video frame R∗(t)
.
=

argmaxR⊂I(t) score(R), to later compose in a post-

processing step partial frame-level solutions into a so-

lution T̂ = [R∗(1), ..., R∗(D)] of the original prob-

lem (1), typically called action tubes [6]. By definition,

score(T̂ ) ≤score(T ∗) and such methods are bound to pro-

vide suboptimal solutions. The post-processing step is es-

sential as those CNNs do not learn the temporal associations

between region proposals belonging to successive video

frames. This way of training is mostly suitable for object

detection, but inadequate for action detection where both

spatial and temporal localisation are crucial. To compensate

for this and learn the temporal dynamics of human actions,

optical flow features are heavily exploited [6, 33, 20, 22].

With this paper we intend to initiate a research pro-

gramme leading, in the medium term, to a new deep net-

work architecture able to classify and regress whole video

subsets. In such a network, the concepts of (video) region

proposal and action tube will coincide.

In this work, in particular, we take a first step towards a truly

optimal solution of the action detection problem by consid-

ering video region proposals formed by a pair of bound-

ing boxes spanning two successive video frames at an ar-

bitrary temporal interval ∆ (see Figure 2). We call these

pairs of bounding boxes 3D region proposals. The advan-

tages of this approach are that a) appearance features can be

exploited to learn temporal dependencies (unlike what hap-

pens in current approaches), thus boosting detection perfor-

mance; b) the linking of frame-level detections over time

is no longer a post processing step and can be (partially)

learned by the network. Obviously, at this stage we still

need to construct action tubes from 3D region proposals.
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Figure 1. At train time, the input to the network is a pair of successive video frames (a) which are processed through two parallel VGG-

16 networks (b). The feature maps generated by the last convolution layers are fused (c) and the fused feature map is fed to a 3D-RPN

network (d). The RPN generates 3D region proposals and their associated actionness [2] scores which are then sampled as positive and

negative training examples (f) by a proposal sampler (e). The sampled proposals and their scores are used to compute the actionness and

3D proposal regression losses (g). Subsequently, a bilinear feature pooling (h) and an element-wise feature fusion (i) are used to obtain a

fixed sized feature representation for each sampled 3D proposal. Finally, the pooled and fused features are passed through fully connected

(FC6 & FC7) (j), classification and regression (k) layers to train for action classification and a micro-tube regression. At test time, the

predicted micro-tubes are linked in time by the action-tube generator (m).

3D proposal-1 3D proposal-2

{1,2} {2,3} {3,4}

{1,3} {4,6}

(a) (b)
action-micro-tubes: {1,2} {2,3} {3,4} {1,3} {4,6}

Figure 2. (a) The 3D region proposals generated by our 3D-RPN

network span pairs of successive video frames ft and ft+∆ at tem-

poral distance ∆. (b) Ground-truth action-micro-tubes generated

from different pairs of successive video frames.

We thus propose a radically new approach to action de-

tection based on (1) a novel deep learning architecture for

regressing and classifying two-frame micro-tubes2, illus-

trated in Figure 1, in combination with (2) an original strat-

egy for linking micro-tubes up into proper action tubes. At

test time, this new framework does not completely rely on

post-processing for assembling frame-level detections, but

makes use of the temporal encoding learned by the network.

We show that: i) such a network trained on pairs of suc-

cessive RGB video frames can learn the spatial and tem-

poral extents of action instances relatively better than those

trained on individual video frames, and ii) our model out-

performs the current state-of-the-art [6, 33, 22] in spatio-

temporal action detection by just exploiting appearance (the

RGB video frames), in opposition to the methods which

heavily exploit expensive optical flow maps.

Just to be clear, the aim of this paper is not to renounce to

optical flow cues, but to move from frame-level detections

2We call ‘micro-tubes’ the 3D video region proposals, spanning pairs

of successive frames, generated by the network at test time.

to whole tube regression. Indeed the method can be eas-

ily extended to incorporate motion at the micro-tube level

rather than frame level, allowing fusion of appearance and

motion at training time, unlike current methods [20, 22].

Overview of the approach. Our proposed network ar-

chitecture (see Figure 1) employs and adapts some of the

architectural components recently proposed in [21, 13].

At training time, the input to the model is a pair of suc-

cessive video frames (a) which are fed to two parallel

CNNs (b) (§ Section 3.1). The output feature maps of the

two CNNs are fused (c) and passed as input to a 3D re-

gion proposal network (3D-RPN) (d) (§ Section 3.2). The

3D-RPN network generates 3D region proposals and their

associated actionness3 [2] scores, which are then sampled

as positive and negative training examples (f) by a proposal

sampler (e) (§ 3.3). A training mini-batch of 256 examples

are constructed from these positive and negative samples.

The mini-batch is firstly used to compute the actionness

classification and 3D proposal regression losses (g) (§ 4.1),

and secondly, to pool CNN features (for each 3D proposal)

using a bilinear interpolation layer (h) (§ 3.4).

In order to interface with the fully connected lay-

ers (j) (§ 3.5), bilinear interpolation is used to get a fixed-

size feature representation for each variably sized 3D region

proposal. As our 3D proposals consist of a pair of bound-

ing boxes, we apply bilinear feature pooling independently

on each bounding box in a pair, which gives rise to two

fixed-size pooled feature maps of size [512 × kh × kw],
where kh = kw = 7 for each 3D proposal. We then ap-

ply element-wise fusion (i) (§ 3.4) to these 2 feature maps.

3The term actionness [2] is used to denote the possibility of an action

being present within a 3D region proposal.
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Each pooled and then fused feature map (representing a 3D

proposal) is passed to two fully connected layers (FC6 and

FC7)) (j) (§ 3.5). The output of the FC7 layer is a fixed sized

feature vector of shape [4096 × 1]. These 4096 dimension

feature vectors are then used by a classification and a re-

gression layers (k) (§ 3.5) to output (1) B×C classification

scores and (2) B ×C × 8 coordinate values where B is the

number of 3D proposals in a training mini-batch and C is

the number of action categories in a given dataset.

At test time we select top 1000 predicted micro-tubes

by using non-maximum suppression, modified to work with

pairs of bounding boxes and pass these to an action-tube

generator (m) (§ 5) which links those micro-tubes in time.

At both training and test time, our model receives as in-

put successive video frames ft, ft+∆. At training time we

generate training pairs using 2 different ∆ values 1 and

2 (§ 6.1). At test time we fix ∆ = 1. As we show in

the supplementary material, even consecutive frames (∆ =
1) carry significantly different information which affects

the overall video-mAP. Throughout this paper, “3D region

proposals” denotes the RPN-generated pairs of bounding

boxes regressed by the middle layer (Figure 1 (g)), whereas

“micro-tubes” refers to the 3D proposals regressed by the

end layer (Figure 1 (l)).

Contributions. In summary, the key contributions of

this work are: (1) on the methodological side, a key con-

ceptual step forward from action detection paradigms rely-

ing on frame-level region proposals towards networks able

to regress optimal solutions to the problem; (2) a novel, end-

to-end trainable deep network architecture which addresses

the spatiotemporal action localisation and classification task

jointly using a single round of optimisation; (3) at the core

of this architecture, a new design for a fully convolutional

action localisation network (3D-RPN) which generates 3D

video region proposals rather than frame-level ones; (4) a

simple but efficient regression technique for regressing such

3D proposals; (5) a new action-tube generation algorithm

suitable for connecting the micro-tubes so generated, which

exploits the temporal encoding learnt by the network.

Experimental results on the J-HMDB-21 and UCF-101

action detection datasets show that our model outperforms

state-of-the-art appearance-based models, while being com-

petitive with methods using parallel appearance and flow

streams. Finally, to the best of our knowledge, this is the

first work in action detection which uses bilinear interpo-

lation [8, 9] instead of the widely used RoI max-pooling

layer [4], thus allowing gradients to flow backwards for both

convolution features and coordinates of bounding boxes.

2. Related work

Deep learning architectures have been increasingly ap-

plied of late to action classification [12, 14, 24, 28], spa-

tial [6], temporal [23] and spatio-temporal [33, 22, 20] ac-

tion localisation. While many works concern either spa-

tial action localisation [18, 32, 10, 25] in trimmed videos

or temporal localisation [17, 3, 27, 19, 31, 23, 35, 34] in

untrimmed videos, only a handful number of methods have

been proposed to tackle both problems jointly. Spatial ac-

tion localisation has been mostly addressed using segmen-

tation [18, 25, 10] or by linking frame-level region proposal

[6, 33, 32]. Gkioxari and Malik [6], in particular, have built

on [5] and [24] to tackle spatial action localisation in tem-

porally trimmed videos, using Selective-Search [29] based

region proposals on each frame of the videos.

Most recently, supervised frame-level action proposal

generation and classification have been used by Saha et

al. [22] and Peng et al. [20], via a Faster R-CNN [21] object

detector, to generate frame level detections independently

for each frame and link them in time in a post-processing

step. Unlike [30, 6, 33], current methods [32, 22, 20] are

able to leverage on end-to-end trainable deep-models [21]

for frame level detection. However, tube construction is still

tackled separately from region proposal generation.

Our novel network architecture, generates micro-tubes

(the smallest possible video-level region proposals) which

span across frames, and are labelled using a single soft-max

score vector, in opposition to [6, 33, 20, 22] which gener-

ate frame-level region proposals. Unlike [6, 33, 20, 22],

our proposed model is end-to-end trainable and requires

a single step of optimisation per training iteration. To the

contrary, [6, 33] use a multi-stage training strategy mu-

tuated from R-CNN object detection [5] which requires

training two CNNs (appearance and optical-flow) indepen-

dently, plus a battery of SVMs. The two most recent pa-

pers [20, 22] extend this Faster R-CNN [21] framework and

train independently appearance and motion CNNs. Com-

pared to [6, 33, 20, 22], which heavily exploit expensive

optical flow maps, our model learns spatiotemporal feature

encoding directly from raw RGB video frames.

3. Network Architecture

All the stages of Figure 1 are described below in detail.

3.1. Convolutional Neural Network

The convolutional (conv) layers of our network follow

the VGG-16 architecture [24]. We use two parallel VGG-

16 networks (§ Figure 1 (b)) to apply convolution over a

pair of successive video frames. Each VGG-16 has 13 conv

layers intermixed with 5 max pooling layers. Each conv

layer has a 3 × 3 filter and 1 × 1 stride and padding. Each

max pooling layer has filter shape 2× 2. We discard all the

VGG-16 layers after the last (13-th) conv layer.

Feature map fusion. Our network takes two successive

video frames ft and ft+∆ as inputs. For a input video frame

of shape [3 × H ×W ], the last conv layer of each VGG-

16 outputs a feature map of shape [D × H ′ ×W ′] where
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Figure 3. 3D-RPN architecture.

D = 512, H ′ = H
16 , and W ′ = W

16 . We fuse the two

conv feature maps produced by the two parallel VGG-16

networks using element-wise sum fusion (§ Figure 1 (c)).

As a consequence, the fused feature map encodes both ap-

pearance and motion information (for frames ft and ft+∆),

which we pass as input to our 3D-RPN network.

Our new 3D region proposal network (Figure 1 (d))

builds on the basic RPN structure [21] to propose a fully

convolutional network which can generate 3D region pro-

posals via a number of significant architectural changes.

3.2. 3D region proposal network

3D region proposal generation. As we explained, un-

like a classical RPN [21] which generates region propos-

als (rectangular bounding boxes) per image, our 3D-RPN

network generates (video) region proposals spanning a pair

of video frames. A single proposal thus consists of a pair

of rectangular bounding boxes. The input to our 3D-RPN

is a fused VGG-16 feature map (§ Figure 1 (c)) of size

[512 × H ′ ×W ′]. We generate anchor boxes in a similar

way as in [21]: namely, we project back each point in the

H ′ ×W ′ grid (of the input feature map) onto the original

image plane of size H ×W . For each projected point we

generate k pairs of anchor boxes of different aspect ratios.

Let (xai
,yai

,wai
,hai

) denote the centroid, width and

height of the anchor boxes in a pair. We use the subscript i
to index the two boxes in a pair, i.e. i = {1, 2}. Similarly,

(xgi , ygi , wgi , hgi) refer to the centroid, width and height of

the ground-truth pair. We can transform a pair of input an-

chor boxes into a predicted pair of ground-truth boxes via4:

xg = xa + φxwa yg = ya + φyha

wg = wa exp(φw) hg = ha exp(φh) (2)

where (φxi
, φyi

) specify a scale-invariant translation of the

center of the anchor boxes, and (φwi
, φhi

) specify a log-

space translation of their width and height.

Both RPN and the micro-tube regression layer (Fig-

ure 1 (k)) predict the bounding box regression offsets

(φxi
, φyi

, φwi
, φhi

). Our anchor generation approach dif-

fers from that of [21], in the sense that we generate k pairs

of anchors instead of k anchors.

4We removed the subscript i in Eq. 2 for sake of simplicity.

Network architecture. The network architecture of our

3D-RPN is depicted in Figure 3. To encode the location in-

formation of each pair of anchors, we pass the fused VGG-

16 feature map through a 3 × 3 convolution (b), a rectified

linear nonlinearity (c), and two more 1× 1 convolution ((e)

and (h)) layers. The first conv layer (b) consists of 256 con-

volution filters with 1× 1 stride and padding, resulting in a

feature map of size [256×H ′ ×W ′] (d). The second conv

layer (e) has 8× k convolution filters with 1× 1 stride and

does not have padding. It outputs a feature map of shape

[(8 × k) × H ′ × W ′] (f) which encodes the location in-

formation (8 coordinate values) of [k × H ′ ×W ′] pairs of

anchor boxes (g). The third conv layer (h) is the same as (e).

The only difference is in the number of filters which is 2×k
to encode the actionness score (i.e. probability of action or

no-action) (j) for each k pairs of anchors.

As RPN is a fully convolutional neural network, classifi-

cation and regression weights are learned directly from the

convolution features, whereas in the fully connected lay-

ers (§ 3.5) we apply linear transformation layers for clas-

sification and regression. In our 3D-RPN, the convolution

layer (e) is considered as the regression layer, as it outputs

the 8 regression offsets per pair of anchor boxes; the convo-

lution layer (h) is the classification layer.

3.3. 3D region proposal sampling

Processing all the resulting region proposals is very ex-

pensive. For example, with k = 12 and a feature map of size

[512× 38× 50], we get 12× 38× 50 = 22800 pairs of an-

chor boxes. For this reason, we subsample them during both

training and testing following the approach of [21] (§ Fig-

ure 1 (e)). We only make a slight modification in the sam-

pling technique, as in our case one sample consists of a pair

of bounding boxes, rather than a single box.

Training time sampling. During training, we com-

pute the intersection over union (IoU) between a pair of

ground-truth boxes {Gt, Gt+∆} and a pair of proposal

boxes {P1, P2}, so that, ψ1 = IoU(Gt, P1) and ψ2 =
IoU(Gt+∆, P2). We consider {P1, P2} as a positive exam-

ple ifψ1 >= 0.5 andψ2 >= 0.5, that is both IoU values are

above 0.5. When enforcing this condition, there might be

cases in which we do not have any positive pairs. To avoid

such cases, we also consider as positive pairs those which
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have maximal mean IoU (ψ1+ψ2)/2 with the ground-truth

pair. As negative examples we consider pairs for which both

IoU values are below 0.3.

We construct a minibatch of size B in which we can

have at most Bp = B/2 positive and BN = B − BP

negative training samples. We set B = 256. Note that

the ground-truth boxes {Gt, Gt+∆} in a pair belong to a

same action instance but come from two different video

frames {ft, ft+∆}. As there may be multiple action in-

stances present, during sampling one needs to make sure

that a pair of ground-truth boxes belongs to the same in-

stance. To this purpose, we use the ground-truth tube-id

provided in the datasets to keep track of instances.

Test time sampling. During testing, we use non-

maximum suppression (NMS) to select the top B = 1000
proposal pairs. We made changes to the NMS algorithm to

select the topB pairs of boxes based on their confidence. In

NMS, one first selects the box with the highest confidence,

to then compute the IoU between the selected box and the

rest. In our modified version (i) we first select the pair of

detection boxes with the highest confidence; (ii) we then

compute the mean IoU between the selected pair and the

remaining pairs, and finally (iii) remove from the detection

list pairs whose IoU is above an overlap threshold thnms.

3.4. Bilinear Interpolation

The sampled 3D region proposals are of different sizes

and aspect ratios. We use bilinear interpolation [8, 9] to

provide a fixed-size feature representation for them, neces-

sary to pass the feature map of each 3D region proposal to

the fully connected layer fc6 of VGG-16 (§ Figure 1 (j)),

which indeed requires a fixed-size feature map as input.

Whereas recent action detection methods [20, 22] use

max-pooling of region of interest (RoI) features which only

backpropagates the gradients w.r.t. convolutional features,

bilinear interpolation allows us to backpropagate gradients

with respect to both (a) convolutional features and (b) 3D

RoI coordinates. Further, whereas [20, 22] train appearance

and motion streams independently, and perform fusion at

test time, our model requires one-time training, and feature

fusion is done at training time.

Feature fusion of 3D region proposals. As a 3D pro-

posal consists of a pair of bounding boxes, we apply bilinear

feature pooling independently to each bounding box in the

pair. This yields two fixed-size pooled feature maps of size

[D×kh×kw] for each 3D proposal. We then apply element-

wise sum fusion (§ Figure 1 (i)) to these 2 feature maps, pro-

ducing an output feature map of size [D × kh× kw]. Each

fused feature map encodes the appearance and motion in-

formation of (the portion of) an action instance which may

be present within the corresponding 3D region proposal. In

this work, we use D = 512, kh = kw = 7.

3.5. Fully connected layers

Our network employs two fully connected layers FC6

and FC7 (Figure 1 (j)), followed by an action classification

layer and a micro-tube regression layer (Figure 1 (k)).

The fused feature maps (§ Section 3.4) for each 3D proposal

are flattened into a vector and passed through FC6 and FC7.

Both layers use rectified linear units and dropout regular-

isation [13]. For each 3D region proposal, the FC7 layer

outputs a 4096 dimension feature vector which encodes the

appearance and motion features associated with the pair of

bounding boxes. Finally, these 4096-dimensional feature

vectors are passed to the classification and regression layers.

The latter output [B × C] softmax scores and [B × C × 8]
bounding box regression offsets (§ 3.2), respectively, for B
predicted micro-tubes and C action classes.

4. Network training

4.1. Multi­task loss function

As can be observed in Figures 1 and 3, our network con-

tains two distinct classification layers.

The mid classification layer (§ Figure 3 (h)) predicts the

probability pm of a 3D proposal containing an action, pm =
(pm0 , p

m
1 ) over two classes (action vs. no action). We denote

the associated loss by Lm
cls. The end classification layer

(§ Figure 1 (k)) outputs a discrete probability distribution

(per 3D proposal), pe = (pe0, ..., p
e
C), over C+1 action cat-

egories. We denote the associated loss as Le
cls.

In the same way, the network has a mid (Figure 3 (e)) and an

end (§ Figure 1 (k)) regression layer – the associated losses

are denoted by Lm
loc and Le

loc, respectively. Both regression

layers output a pair of bounding box offsets φm and φe (cfr.

Eq. 2). We adopt the parameterization of φ (§ 3.2) given

in [5].

Now, each training 3D proposal is labelled with a

ground-truth action class ce and a ground-truth micro-

tube (§ 1) regression target ge. We can then use the multi-

task loss [21]:

L(pe, ce, φe, ge, pm, cm, φm, gm) =

λeclsL
e
cls(p

e, ce) + λeloc[c ≥ 1]Le
loc(φ

e, ge)+

λmclsL
m
cls(p

m, cm) + λmloc[c = 1]Lm
loc(φ

m, gm)

(3)

on each labelled 3D proposal to jointly train for (i) action

classification (pe), (ii) micro-tube regression (φe), (iii) ac-

tionness classification (pm), and (iv) 3D proposal regression

(φm). Here, Le
cls(p

e, ce) and Lm
cls(p

m, cm) are the cross-

entropy losses for the true classes ce and cm respectively,

where cm is 1 if the 3D proposal is positive and 0 if it is

negative, and ce = {1, ..., C}.

The second term Le
loc(φ

e, ge) is defined over an 8-dim
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tuple of ground-truth micro-tube regression target coordi-

nates: ge =
(

{gex1
, gey1

, gew1
, geh1

}, {gex2
, gey2

, gew2
, geh2

}
)

and the corresponding predicted micro-tube tuple: φe =
(

{φex1
, φey1

, φew1
, φeh1

}, {φex2
, φey2

, φew2
, φeh2

}
)

. The fourth

term Lm
loc(φ

m, gm) is similarly defined over a tuple gm of

ground-truth 3D proposal regression target coordinates and

the associated predicted tuple φm. The Iverson bracket in-

dicator function [c ≥ 1] in (3) returns 1 when ce ≥ 1 and 0
otherwise; [c = 1] returns 1 when cm = 1 and 0 otherwise.

For both regression layers we use a smooth L1 loss in

transformed coordinate space as suggested by [21]. The

hyper-parameters λecls, λeloc, λmcls and λmloc, in Eq. 3 weigh

the relative importance of the four loss terms. In the follow-

ing we set to 1 all four hyper-parameters.

4.2. Optimisation

We follow the end-to-end training strategy of [13] to

train the entire network in a single optimisation step. We

use stochastic gradient descent (SGD) to update the weights

of the two VGG-16 convolutional networks, with a momen-

tum of 0.9. To update the weights of other layers of the

network, we use the Adam [15] optimiser, with parameter

values β1 = 0.9, β2 = 0.99 and a learning rate of 1×10−6.

During the 1st training epoch, we freeze the weights of the

convolution networks and update only the weights of the

rest of the network. We start fine-tuning the layers of the

two parallel CNNs after completion of 1st epoch. The first

four layers of both CNNs are not fine-tuned for sake of effi-

ciency. The VGG-16 pretrained ImageNet weights are used

to initialise the convolutional nets. The rest of the network’s

weights are initialised using a Gaussian with σ = 0.01.

5. Action-tube generation

: predicted micro-tube(a) (b) (c) (d)

Figure 4. (a) The temporal associations learned by our network;

(b) Our micro-tube linking algorithm requires (T/2− 1) connec-

tions; (c) the T − 1 connections required by [22]’s approach.

Once the predicted micro-tubes are regressed at test time,

they need to be linked up to create complete action tubes

associated with an action instance. To do this we intro-

duce here a new action tube generation algorithm which is

an evolution of that presented in [22]. There, temporally

untrimmed action paths are first generated in a first pass of

dynamic programming. In a second pass, paths are tempo-

rally trimmed to detect their start and end time. Here we

modify the first pass of [22] and build action paths using

the temporal associations learned by our network. We use

the second pass without any modification.

Linking up micro tubes (§ Figure 4) is not the same as

linking up frame-level detections as in [22]. In the Viterbi

forward pass of [22], the edge scores between bounding

boxes belonging to consecutive video frames (i.e., frame

ft and ft+1) are first computed. Subsequently, a DP (dy-

namic programming) matrix is constructed to keep track of

the box indices with maximum edge scores. In the Viterbi

backward pass, all consecutive pairs of frames, i.e, frames

{1, 2}, {2, 3}, . . . are traversed to join detections in time.

Our linking algorithm saves 50% of the computing time,

by generating edge scores between micro-tubes (which only

needs T/2− 1 iterations, cfr. Figure 4) rather than between

boxes from consecutive frames (which, in the forward pass,

needs T −1 iterations). In the backward pass, the algorithm

connects the micro-tubes as per the max edge scores.

Recall that a predicted micro-tube consists of a pair of

bounding boxes (§ Figure 4), so that m = {b1, b2}. In

the first pass action-specific paths pc = {mt, t ∈ I =
{2, 4, ..., T − 2}}, spanning the entire video length are ob-

tained by maximising via dynamic programming [6]:

E(pc) =
∑

t∈I

sc(mt) + λo
∑

t∈I

ψo

(

b2mt
, b1mt+2

)

, (4)

where sc(mt) denotes the softmax score (§ 3.5) of the pre-

dicted micro-tube m at time step t, the overlap potential

ψo(b
2
mt
, b1mt+2

) is the IoU between the second detection

box b2mt
which forms micro-tube mt and the first detec-

tion box b1mt+2
of micro-tube mt+2. Finally, λo is a scalar

parameter weighting the relative importance of the pairwise

term. By recursively removing the detection micro-tubes

associated with the current optimal path and maximising (4)

for the remaining micro-tubes we can account for multiple

co-occurring instances of the same action class.

6. Experiments

6.1. Experimental setting

Datasets. All the experiments are conducted using the

following two widely used action detection datasets: a) J-

HMDB-21 [11] and b) UCF-101 24-class [26].

J-HMDB-21 is a subset of the relatively larger action

classification dataset HMDB-51 [16], and is specifically de-

signed for spatial action detection. It consists of 928 video

sequences and 21 different action categories. All video se-

quences are temporally trimmed as per the action’s dura-

tion, and each sequence contains only one action instance.

Video duration varies from 15 to 40 frames. Ground-truth

bounding boxes for human silhouettes are provided for all

21 classes, and the dataset is divided into 3 train and test

4419



splits. For evaluation on J-HMDB-21 we average our re-

sults over the 3 splits.

The UCF-101 24-class action detection dataset is a sub-

set of the larger UCF-101 action classification dataset, and

comprises 24 action categories and 3207 videos for which

spatiotemporal ground-truth annotations are provided. We

conduct all our experiments using the first split. Compared

to J-HMDB-21, the UCF-101 videos are relatively longer

and temporally untrimmed, i.e., action detection is to be

performed in both space and time. Video duration ranges

between 100 and 1000 video frames.

Note that the THUMOS [7] and ActivityNet [1] datasets

are not suitable for spatiotemporal localisation, as they lack

bounding box annotation.

Evaluation metrics. As evaluation metrics we use both:

(1) frame-AP (the average precision of detections at the

frame level) as in [6, 20]; (2) video-AP (the average pre-

cision of detection at video level) as in [6, 33, 22, 20]. We

select an IoU threshold (δ) range [0.1:0.1:0.5] for J-HMDB-

21 and [0.1,0.2,0.3] for UCF-101 when computing video-

mAP. For frame-mAP evaluation we set δ = 0.5.

Training data sampling strategy. As the input to our

model is a pair of successive video frames and their asso-

ciated ground-truth micro-tubes, training data needs to be

passed in a different way than in the frame-level training

approach [6, 33, 20, 22], where inputs are individual video

frames. In our experiments, we use 3 different sampling

schemes to construct training examples using different com-

binations of successive video frames (§ Figure 2 (b)): (1)

scheme-11 generates training examples from the pairs of

frames {t=1,t=2}, {t=2,t=3} . . . ; scheme-21 uses the (non-

overlapping) pairs {1,2}, {3,4} . . . ; scheme-32 constructs

training samples from the pairs {1,3}, {4,6} . . .

In the supplementary material we explain all implemen-

tation details including data preprocessing, training/testing

time requirements, training batch construction.

6.2. Model evaluation

We first show how a proper positive IoU threshold is es-

sential during the sampling of 3D region proposals at train-

ing time (§ 3.3). Secondly, we assess whether our proposed

network architecture, coupled with the new data sampling

strategies (Sec. 6.1), improves detection performance. We

then show that our model outperforms the appearance-based

model of [22]. Finally, we compare the performance of the

overall detection framework with the state-of-the-art.

Effect of different positive IoU thresholds on detec-

tion performance. We train our model on UCF-101 using

two positive IoU thresholds: 0.7 and 0.5 (§ 3.3). The detec-

tion results (video-mAP) of these two models ( Model-0-7

& -0-5) are shown in Table 1. Whereas [21] recommends

an IoU threshold of 0.7 to subsample positive region pro-

posals during training, in our case we observe that an IoU

Table 1. Effect of different positive IoU thresholds on detection

performance (video-mAP).

IoU threshold δ 0.1 0.2 0.3

Model-0-7 64.04 54.83 44.664

Model-0-5 68.85 60.06 49.78

threshold of 0.5 works better with our model. Indeed, dur-

ing sampling we compute IoUs between pairs of bounding

boxes and then take the mean IoU to subsample (§ 3.3). As

the ground-truth boxes (micro-tubes) are connected in time

and span different frames, it is harder to get enough positive

examples with a higher threshold like 0.7. Therefore, in the

remainder we use an IoU of 0.5 for evaluation.

Effect of our training data sampling strategy on de-

tection performance. JHMDB-21 frame-mAP. We first

generate a J-HMDB-21 training set using the scheme-

11 (§ 6.1) and train our model. We then generate an-

other training set using scheme-32, and train our model

on the combined training set (set-11+32). Table 2 shows

the per class frame-AP obtained using these two models.

We can observe that out of 21 JHMDB action classes, the

frame-APs of 15 classes actually improve when training the

model on the new combined trainset (set-11+32). Over-

all performance increases by 1.64%, indicating that the net-

work learns temporal association more efficiently when it

is trained on pairs generated from different combinations of

successive video frames.

JHMDB-21 video-mAP. The two above trained models

are denoted by Model-11 and Model-11+32 in Table 4,

where the video-mAPs at different IoU threshold for these

two models are shown. Although the first training strategy

scheme-11 already makes use of all the video frames present

in J-HMDB-21 training splits, when training our model us-

ing the combined trainset we observe an improvement in the

video-mAP of 1.04% at δ = 0.5.

Effect of exploiting appearance features. Further,

we show that our model exploits appearance features (raw

RGB frames) efficiently, contributing to an improvement of

video-mAP by 3.2% over [22]. We generate a training set

for UCF-101 split 1 using the training scheme-21 and com-

pare our model’s performance with that of the appearance-

based model (*A) of [22]. We show the comparison in Ta-

ble 3.

Note that, among the 24 UCF-101 action classes, our

model exhibits better video-APs for 14 classes, with an

overall gain of 3.2%. We can observe that, although trained

on appearance features only, our model improves the video-

APs significantly for action classes which exhibit a large

variability in appearance and motion. Also, our model

achieves relatively better spatiotemporal detection on ac-

tion classes associated with video sequences which are sig-

nificantly temporally untrimmed, such as BasketballDunk,

GolfSwing, Diving with relative video-AP improvements of
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Table 2. Effect of our training data sampling strategy on per class frame-AP at IoU threshold δ = 0.5, JHMDB-21 (averaged over 3 splits).

frame-AP(%) brushHair catch clap climbStairs golf jump kickBall pick pour pullup push run shootBall shootBow shootGun sit stand swingBaseball throw walk wave mAP

ours (*) 46.4 40.7 31.9 62.3 91.0 4.3 17.3 29.5 86.2 82.7 66.9 35.5 33.9 78.2 49.7 11.7 13.8 57.1 21.3 27.8 27.1 43.6

ours (**) 43.7 43.6 33.0 61.5 91.8 5.6 23.8 31.5 91.8 84.1 73.1 32.3 33.3 81.4 55.1 12.4 14.7 56.3 22.2 24.7 29.4 45.0

Improvement -2.6 2.9 1.0 -0.8 0.7 1.2 6.4 1.9 5.5 1.4 6.1 -3.2 -0.6 3.2 5.4 0.6 0.8 -0.8 0.8 -3.1 2.3 1.4

[6] 65.2 18.3 38.1 39.0 79.4 7.3 9.4 25.2 80.2 82.8 33.6 11.6 5.6 66.8 27.0 32.1 34.2 33.6 15.5 34.0 21.9 36.2

[32] 60.1 34.2 56.4 38.9 83.1 10.8 24.5 38.5 71.5 67.5 21.3 19.8 11.6 78.0 50.6 10.9 43.0 48.9 26.5 25.2 15.8 39.9

[33] 73.3 34.0 40.8 56.8 93.9 5.9 13.8 38.5 88.1 89.4 60.5 21.1 23.9 85.6 37.8 34.9 49.2 36.7 16.8 40.5 20.5 45.8

[20] 75.8 38.4 62.2 62.4 99.6 12.7 35.1 57.8 96.8 97.3 79.6 38.1 52.8 90.8 62.7 33.6 48.9 62.2 25.6 59.7 37.1 58.5

video-AP(%)

ours (*) 53.9 54.4 39.8 68.2 96.1 5.69 39.6 34.9 97.1 93.5 84.1 53.7 43.6 93.2 64.5 20.9 22.8 72.1 23.2 39.4 37.8 54.27

ours (**) 51.9 54.5 41.2 66.6 94.8 7.8 48.7 33.7 97.6 92.5 87.6 49.0 37.4 92.7 75.8 21.6 27.1 73.3 24.3 37.7 44.7 55.31

Improvement -1.9 0.01 1.4 -1.6 -1.2 2.1 9.1 -1.2 0.4 -1.0 3.4 -4.7 -6.2 -0.5 11.2 0.6 4.2 1.1 1.1 -1.6 6.8 1.04

[6] 79.1 33.4 53.9 60.3 99.3 18.4 26.2 42.0 92.8 98.1 29.6 24.6 13.7 92.9 42.3 67.2 57.6 66.5 27.9 58.9 35.8 53.3

[32] 76.4 49.7 80.3 43.0 92.5 24.2 57.7 70.5 78.7 77.2 31.7 35.7 27.0 88.8 76.9 29.8 68.6 72.8 31.5 44.4 26.2 56.4

*Model-11 **Model-11+32

Table 3. Per class video-AP comparison at IoU threshold δ = 0.2, UCF-101.

video-AP(%) BasketballDunk Biking Diving Fencing FloorGymnastics GolfSwing IceDancing LongJump PoleVault RopeClimbing Skiing Skijet SoccerJuggling WalkingWithDog mAP

[22] (*A) 22.7 56.1 89.7 86.9 93.8 59.9 59.2 41.5 48.9 77.8 68.4 88 34.6 73.3 56.86

ours 39.6 59.5 91.2 88.5 94.1 70.7 70.4 49.8 71.0 97.2 74.0 92.9 80.2 73.6 60.06

Improvement 16.9 3.4 1.5 1.6 0.3 10.8 11.2 8.3 22.1 19.4 5.6 4.9 45.6 0.3 3.2

*A: appearance model

Table 4. Effect of our training data sampling strategy on video-

mAP, JHMDB-21 (averaged over 3 splits).

IoU threshold δ 0.1 0.2 0.3 0.4 0.5

Model-11 57.73 57.70 57.60 56.81 54.27

Model-11+32 57.79 57.76 57.68 56.79 55.31

Table 5. Spatio-temporal action detection performance (video-

mAP) comparison with the state-of-the-art on J-HMDB-21.

IoU threshold δ 0.1 0.2 0.3 0.4 0.5

Gkioxari and Malik [6] – – – – 53.30

Wang et al. [32] – – – – 56.40

Weinzaepfel et al. [33] – 63.1 – – 60.70

Saha et al. [22] (Spatial Model) 52.99 52.94 52.57 52.22 51.34

Peng and Schmid [20] – 74.3 – – 73.1

Ours 57.79 57.76 57.68 56.79 55.31

Table 6. Spatio-temporal action detection performance (video-

mAP) comparison with the state-of-the-art on UCF-101.

IoU threshold δ 0.1 0.2 0.3 0.5 0.75 0.5:0.95

Yu et al. [36] 42.8 26.50 14.6 – – –

Weinzaepfel et al. [33] 51.7 46.8 37.8 – – –

Peng and Schmid [20] 77.31 72.86 65.70 30.87 01.01 07.11

Saha et al. [22] (*A) 65.45 56.55 48.52 – – –

Saha et al. [22] (full) 76.12 66.36 54.93 – – –

Ours −ML 68.85 60.06 49.78 – – –

Ours −ML− (∗) 70.71 61.36 50.44 32.01 0.4 9.68

Ours − 2PDP − (∗) 71.3 63.06 51.57 33.06 0.52 10.72

(*) cross validated alphas as in [22]; 2PDP - tube generation algorithm [22]

ML - our micro-tube linking algorithm.

16.9%, 10.8% and 1.5% respectively. We report significant

gains in absolute video-AP for action categories SoccerJug-

gling, PoleVault, RopeClimbing, BasketballDunk, IceDanc-

ing, GolfSwing and LongJump of 45.6%, 22.1%, 19.4%,

16.9%, 11.2% 10.8% and 8.3%, respectively.

Detection performance comparison with the state-of-

the-art. Table 5 reports action detection results, averaged

over the three splits of J-HMDB-21, and compares them

with those to our closest competitors. Note that, although

our model only trained using the appearance features (RGB

images), it outperforms [6] which was trained using both

appearance and optical flow features. Also, our model out-

performs [22]’s spatial detection network.

Table 6 compares the action detection performance of

our model on the UCF-101 dataset to that of current state

of the art approaches. We can observe that our model out-

performs [36, 33, 22] by a large margin. In particular, our

appearance-based model outperforms [33] which exploits

both appearance and flow features. Also notice, our method

works better than that of [20] at higher IoU threshold, which

is more useful in real-world applications.

7. Conclusions

In this work we departed from current practice in action

detection to take a step towards deep network architectures

able to classify and regress whole video subsets. In particu-

lar, we propose a novel deep net framework able to regress

and classify 3D region proposals spanning two successive

video frames, effectively encoding the temporal aspect of

actions using just raw RBG values. The proposed model is

end-to-end trainable and can be jointly optimised for action

localisation and classification using a single step of opti-

misation. At test time the network predicts ‘micro-tubes’

spanning two frames, which are linked up into complete ac-

tion tubes via a new algorithm of our design. Promising

results confirm that our model does indeed outperform the

state-of-the-art when relying purely on appearance.

Much work will need to follow. It remains to be tested

whether optical flow can be integrated in this framework

and further boost performance. As the search space of 3D

proposals is twice the dimension of that for 2D proposals,

efficient parallelisation and search are crucial to fully ex-

ploit the potential of this approach. Further down the road

we wish to extend the idea of micro-tubes to longer time

intervals, posing severe challenges in terms of efficient re-

gression in higher-dimensional spaces.
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