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Abstract

In this paper, we propose a generative model, Temporal
Generative Adversarial Nets (TGAN), which can learn a se-
mantic representation of unlabeled videos, and is capable of
generating videos. Unlike existing Generative Adversarial
Nets (GAN)-based methods that generate videos with a sin-
gle generator consisting of 3D deconvolutional layers, our
model exploits two different types of generators: a temporal
generator and an image generator. The temporal generator
takes a single latent variable as input and outputs a set of
latent variables, each of which corresponds to an image
frame in a video. The image generator transforms a set of
such latent variables into a video. To deal with instability
in training of GAN with such advanced networks, we adopt
a recently proposed model, Wasserstein GAN, and propose
a novel method to train it stably in an end-to-end manner.
The experimental results demonstrate the effectiveness of our
methods.

1. Introduction

Unsupervised learning of feature representation from a
large dataset is one of the most significant problems in com-
puter vision. If good representation of data can be obtained
from an unlabeled dataset, it could be of benefit to a variety
of tasks such as classification, clustering, and generating new
data points.

There have been many studies regarding unsupervised
learning in the field of computer vision. Their targets are
roughly two-fold; images and videos. As for unsupervised
learning of images, Generative Adversarial Nets (GAN) [5]
have shown impressive results and succeeded to generate
plausible images with a dataset that contains plenty of natural
images [2, 49]. In contrast, unsupervised learning of videos
still has many difficulties compared to images. While recent
studies have achieved remarkable progress [35, 25, [5] ina
problem that predicts future frames from previous frames,
video generation without any clues of data is still a highly
challenging problem. Although the recent study tackled to
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address this problem by decomposing it into background
generation and foreground generation, this approach has
a drawback that it cannot generate a scene with dynamic
background due to the static background assumption [44].
To the best of our knowledge, there is no study that tackles
video generation without such assumption and generates
diversified videos like natural videos.

Although a simple approach is to use 3D convolutional
layers for representing the generating process of a video, it
implies that images along x-t plane and y-t plane besides
x-y plane are considered equally, where x and y denote
the spatial dimensions and t denotes the time dimension.
We believe that the nature of time dimension is essentially
different from the spatial dimensions in the case of videos
so that such approach has difficulty on the video generation
problem. The relevance of this assumption has been also
discussed in some recent studies [33, 24, 46] that have shown
good performance on the video recognition task.

Based on the above discussion, in this paper, we extend
an existing GAN model and propose Temporal Generative
Adversarial Net (TGAN) that is capable of learning repre-
sentation from an unlabeled video dataset and producing a
new video. Unlike the existing video generator that gen-
erates videos with 3D deconvolutional layers [44], in our
proposed model the generator consists of two sub networks
called a temporal generator and an image generator (Fig.1).
Specifically, the temporal generator first yields a set of latent
variables, each of which corresponds to a latent variable for
the image generator. Then, the image generator transforms
these latent variables into a video which has the same num-
ber of frames as the variables. The model comprised of the
temporal and image generators can not only enable to effi-
ciently capture the time series, but also be easily extended to
frame interpolation.

The typical problem that arises from such advanced net-
works is the instability of training of GANs. In this paper we
adopt a recently proposed Wasserstein GAN (WGAN) which
tackles the instability, however, we observed that our model
still has sensitivity to a hyperparameter of WGAN. There-
fore, to deal with this problem, we propose a novel method
to remove the sensitive hyperparameter from WGAN and
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Figure 1. Illustration of TGAN. The video generator consists of two generators, the temporal generator and the image generator. The
temporal generator G yields a set of latent variables z%(t = 1,...,T) from zo. The image generator G; transforms those latent variables
2i(t = 1,...,T) and 2o into a video data which has T frames. The discriminator consists of three-dimensional convolutional layers,
and evaluates whether these frames are from the dataset or the video generator. The shape of a tensor in the discriminator is denoted as

“(channels) x (time) x (height) x (width)”.

stabilize the training further. The experiments show that our
method is more stable than the conventional methods, and
the model can be successfully trained even under the situa-
tion where the loss diverges with the conventional methods.

Our contributions are summarized as follows. (i) The
generative model that can efficiently capture the latent space
of the time dimension in videos. It also enables a natural
extension to an application such as frame interpolation. (ii)
The alternative parameter clipping method for WGAN that
significantly stabilizes the training of the networks that have
advanced structure.

2. Related work
2.1. Natural image generation

Supervised learning with Convolutional Neural Networks
(CNNs) has recently shown outstanding performance in
many tasks such as image classification [8, 9, 1 1] and action
recognition [ 14, 16, 33, 43], whereas unsupervised learning
with CNN has received relatively less attention. A com-
mon approach for generating images is the use of undirected
graphical models such as Boltzmann machines [31, 18, 4].
However, due to the difficulty of approximating gradients,
it has been empirically observed that such deep graphical
models frequently fail to find good representation of natural
images with sufficient diversity. Both Gregor et al. [7] and
Dosvotiskiy et al. [3] have proposed models that respectively
use recurrent and deconvolutional networks, and successfully
generated natural images. However, both models make use
of supervised learning and require additional information
such as labels.

The Generative Adversarial Network (GAN), which we
have mainly employed in this study, is a model for unsuper-
vised learning that finds a good representation of samples
by simultaneously training two different networks called the
generator and the discriminator. Recently, many extensions

for GANs have been proposed. Conditional GANs performs
modeling of object attributes [22, 12]. Pathak et al. [26]
adopted the adversarial network to generate the contents of
an image region conditioned on its surroundings. Li and
Wand [19] employed the GAN model in order to efficiently
synthesize texture. Denton et al. [2] proposed a Laplacian
GAN that outputs a high-resolution image by iteratively gen-
erating images in a coarse-to-fine manner. Arjovsky et al.
[1] transformed the training of GAN into the minimization
problem of Earth Mover’s distance, and proposed a more
robust method to train both the generator and the discrimina-
tor. Radford er al. [27] also proposed a simple yet powerful
model called Deep Convolutional GAN (DCGAN) for gen-
erating realistic images with a pair of convolutional and
deconvolutional networks. Based on these results, Wang et
al. [49] extended DCGAN by factorizing the image generat-
ing process into two paths, and proposed a new model called
a Style and Structure GAN (S2-GAN) that exploits two types
of generators.

2.2. Video recognition and unsupervised learning

As recognizing videos is a challenging task which has
received a lot of attention, many researchers have tackled this
problem in various ways. In supervised learning of videos,
while a common approach is to use dense trajectories [45,

, 291, recent methods have employed CNN and achieved
state-of-the-art results [14, 16, 33, 43, 24, 46, 47]. Some
studies are focused on extracting spatio-temporal feature
vectors from a video in an unsupervised manner. Taylor ef al.
[39] proposed a method that extracts invariant features with
Restricted Boltzmann Machines (RBMs). Temporal RBMs
have also been proposed to explicitly capture the temporal
correlations in videos [40, 38, 37]. Stavens and Thrun [36]
dealt with this problem by using an optical flow and low-
level features such as SIFT. Le ef al. [17] use Independent
Subspace Analysis (ISA) to extract spatio-temporal semantic
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features. Deep neural networks have also been applied to
feature extraction from videos [51, 6, 48] in the same way
as supervised learning.

There also exist several studies focusing on predicting
video sequences from an input sequence with Recurrent
Neural Networks (RNNs) represented by Long Short-Term
Memory (LSTM) [10]. In particular, Ranzato et al. [28]
proposed a Recurrent Neural Network (RNN) model that can
learn both spatial and temporal correlations. Srivastava et al.
[35] also applied LSTMs and succeeded to predict the future
sequence of a simple video. Zhou and Berg [50] proposed
a network that creates depictions of objects at future times
with LSTMs and DCGAN. Kalchbrenner et al. [15] also
employed a convolutional LSTM model, and proposed Video
Pixel Networks that directly learn the joint distribution of
the raw pixel values. Oh et al. [25] proposed a deep auto-
encoder model conditioned on actions, and predicted next
sequences of Atari games from a single screen shot and an
action sent by a game pad. In order to deal with the problem
that generated sequences are “blurry” compared to natural
images, Mithieu et al. [2 1] replaced a standard mean squared
error loss and improved the quality of predicted images.
However, the above studies cannot directly be applied to the
task of generating entire sequences from scratch since they
require an initial sequence as an input.

Vondrick et al. [44] recently proposed a generative model
that yields a video sequence from scratch with DCGAN
consisting of 3D deconvolutional layers. The main difference
between their model and ours is model representation; while
they simplified the video generation problem by assuming
that a background in a video sequence is always static and
generate the video with 3D deconvolutions, we do not use
such assumption and decompose the generating process of
video into the 1D and 2D deconvolutions.

3. Temporal Generative Adversarial Nets
3.1. Generative Adversarial Nets

Before we go into the details of TGAN, we briefly explain
the existing GAN [5] and the Wasserstein GAN [1]. A
GAN exploits two networks called the generator and the
discriminator. The generator G’ : RX — R is a function
that generates samples # € RM which looks similar to a
sample in the given dataset. The input is a latent variable z €
RX, where z is randomly drawn from a given distribution
pc(z), e.g., a uniform distribution. The discriminator D :
RM — [0,1] is a classifier that discriminates whether a
given sample is from the dataset or generated by G.

The GAN simultaneously trains the two networks by
playing a non-cooperative game; the generator wins if it gen-
erates an image that the discriminator misclassifies, whereas
the discriminator wins if it correctly classifies the input sam-

ples. Such minimax game can be represented as

[In D()]

minmax E
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+ Eonpe[In(1 = D(G(2)))], (D)

where 6 and 6 are the parameters of the generator and the
discriminator, respectively. pgata denotes the empirical data
distribution.

3.2. Wasserstein GAN

It is known that the GAN training is unstable and requires
careful adjustment of the parameters. To overcome such
instability of learning, Arjovsky et al. [1] focused on the
property that the GAN training can also be interpreted as the
minimization of the Jensen-Shannon (JS) divergence, and
proposed Wasserstein GAN (WGAN) that trains the gen-
erator and the discriminator to minimize an Earth Mover’s
distance (EMD, a.k.a. first Wasserstein distance) instead
of the JS divergence. Several experiments the authors con-
ducted reported that WGANSs are more robust than ordinal
GAN:Ss, and tend to avoid mode dropping.

The significant property in the learning of WGAN is
“K-Lipschitz” constraint with regard to the discriminator.
Specifically, if the discriminator satisfies the K-Lipschitz
constraint, i.e., |D(x1) — D(x2)| < K|z — 25| for all 24
and 2, the minimax game of WGAN can be represented as

minmax Eyep,,, [D(@)] ~ Eonpo [DG()]. )
0c Op

Note that unlike the original GAN, the return value of D in
Eq.(2) is an unbounded real value, i.e., D : RM™ 5 R. In
this study we use Eq.(2) for training instead of Eq.(1).

In order to make the discriminator be the K -Lipschitz,
the authors proposed a method that clamps all the weights
in the discriminator to a fixed box denoted as w € [—c¢, ¢].
Although this weight clipping is a simple and assures the dis-
criminator satisfies the K -Lipschitz condition, it also implies
we cannot know the relation of the parameters between c
and K. As it is known that the objective of the discriminator
of Eq.(2) is a good approximate expression of EMD in the
case of K = 1, this could be a problem when we want to
find the approximate value of EMD.

3.3. Temporal GAN

Here we introduce the proposed model based on the above
discussion. Let 7" > 0 be the number of frames to be gen-
erated, and G : RE0 — RT*K1 be the temporal generator
that gets another latent variable zy € R%° as an argument
and generates latent variables denoted as [2], . .., 27 ]. In our
model, zq is randomly drawn from a distribution pg, (20).

Next, we introduce image generator G : R¥o x RE1 —
RM that yields a video from these latent variables. Note
that GG; takes both the latent variables generated from Gy
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Image generator ‘
20 € RIX100 e R100
linear (256 - 4%) | linear (256 - 4%)
concat + deconv (4, 256, 1, 2)
deconv (4, 128, 1, 2)

] Temporal generator |

20 € RIX100
deconv (1, 512,0, 1)
deconv (4, 256, 1, 2)
deconv (4, 128, 1, 2)
deconv (4, 128, 1, 2) deconv (4, 64, 1, 2)
deconv (4, 100, 1, 2) deconv (4, 32, 1, 2)

tanh deconv (3, 3, 1, 1) + tanh

Table 1. Network configuration of the generator. The second row
represents the input variables. “linear (-)” is the number of output
units in the linear layer. The parameters in the convolutional and
the deconvolutional layer are denoted as “conv/deconv ((kernel
size), (output channels), (padding), (strides)).”

as well as original latent variable zy as arguments. While
z1 varies with time, zq is invariable regardless of the time,
and we empirically observed that it has a significant role in
suppressing a sudden change of the action of the generated
video. That is, in our representation, the generated video is
represented as [G1(zo, 21), . . ., G1(20, 21 )].

Using these notations, Eq.(2) can be rewritten as

, min max EW,_”’IT}NP(}M[D([:L‘l, ozt
Go.0c, Op

- EZUNPGD [D([Gl(ZO’ Z%)a ) Gl(z()v ZIT)])])’ 3)

where ! is the ¢-th frame of a video in a dataset, and 2! is
the latent variable corresponding to ¢-th frame generated by
Go(20). 0p, O, and ¢, represent the parameter of D, Gy,
and G, respectively.

3.4. Network configuration

This subsection describes the configuration of our three
networks: the temporal generator, the image generator, and
the discriminator. Table 1 shows a typical network setting.

Temporal generator Unlike typical CNNs that perform
two-dimensional convolutions in the spatial direction, the
deconvolutional layers in the temporal generator perform
a one-dimensional deconvolution in the temporal direction.
For convenience of computation, we first regard 2o € R¥°
as a one-dimensional activation map of zy € R'*%0, where
the length and the number of channels are one and K, re-
spectively. A uniform distribution is used to sample z.
Next, applying the deconvolutional layers we expand its
length while reducing the number of channels. The set-
tings for the deconvolutional layers are the same as those
of the image generator except for the number of channels
and one-dimensional deconvolution. Like the original image
generator we insert a Batch Normalization (BN) layer [13]
after deconvolution and use Rectified Linear Units (ReLU)
[23] as activation functions.

Image generator The image generator takes two latent
variables as arguments. After performing a linear transfor-
mation on each variable, we reshape them into the form
shown in Table 1, concatenate them and perform five decon-
volutions. These settings are almost the same as the existing
DCGAN, i.e., we used ReLU [23] and Batch Normalization
layer [13]. The kernel size, stride, and padding are respec-
tively 4, 2, and 2 except for the last deconvolutional layer.
Note that the number of output channels of the last deconvo-
lutional layer depends on whether the dataset contains color
information or not.

Discriminator We employ spatio-temporal 3D convolu-
tional layers to model the discriminator. The layer settings
are similar to the image generator. Specifically, we use four
convolutional layers with 4 x 4 x 4 kernel and a stride of 2.
The number of output channels is 64 in the initial convolu-
tional layer, and set to double when the layer goes deeper. As
with the DCGAN, we used LeakyReLLU [20] with a = 0.2
and Batch Normalization layer [ 3] after these convolutions.
Note that we do not insert the batch normalization after the
initial convolution. Finally, we use a fully-connected layer
and summarize all of the units in a single scalar. Each shape
of the tensor used in the discriminator is shown in Fig.1.

4. Singular Value Clipping

As we described before, WGAN requires the discrimina-
tor to fulfill the K -Lipschitz constraint, and the authors em-
ployed a parameter clipping method that clamps the weights
in the discriminator to [—c¢, c¢|. However, we empirically ob-
served that the tuning of hyper parameter c is severe, and it
frequently fails in learning under a different situation like
our proposed model. We assumed this problem would be
caused by a property that the K-Lipschitz constraint widely
varies depending the value of ¢, and propose an alternative
method that can explicitly adjust the value of K.

Suppose that D(z) is a composite function consisting of
N primitive functions, and each function f,, is Lipschitz
continuous with K. In this case D can be represented as
D = fyofy_10---f1,and D is also Lipschitz continu-
ous with K = Hn K,,. That is, what is important in our
approach is to add constraints to all the functions such that
fn satisfies the condition of given K,,. Although in principle
our method can derive operations that satisfy arbitrary K, in
the case of ' = 1 these operations are invariant regardless
of the number of layers constituting the discriminator. For
simplicity we focus on the case of K = 1.

To satisfy 1-Lipschitz constraint, we add a constraint to
all linear layers in the discriminator that satisfies the spectral
norm of weight parameter W is equal or less than one. This
means that the singular values of weight matrix are all one or
less. To this end, we perform singular value decomposition
(SVD) after parameter update, replace all the singular values
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Layer \ Condition \ Method Algorithm 1 WGAN using Singular Value Clipping
Linear W] <1 SVC Require: «: the learning rate. 7": the number of iterations.
Convolution ”WH <1 SVC np: the number of iterations of the discriminator per
Batc}i‘ nl(irrlr{lallizljltion 0<nry< Aﬁ glippitflll%’ ~ gleig;riit;r s iteration. nlip: the number of intervals of the
cakyre 4= o nothing fort =1toT do

Table 2. Proposed methods to satisfy the 1-Lipschitz constraint.
| - || denotes a spectral norm. a represents a fixed parameter of
the LeakyReLU layer. v and o are a scaling parameter after the
batch normalization and a running mean of a standard deviation of
a batch, respectively.
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Figure 2. The difference of training curves in UCF-101 (see Sec-
tion 6.1 for details). The upper row shows the loss of the generator
per iteration in conventional clipping method, while the lower row
shows the loss in our clipping method, Singular Value Clipping.

larger than one with one, and reconstruct the parameters with
them. We also apply the same operation to convolutional
layers by interpreting a higher order tensor in weight param-
eter as a matrix . We call these operations Singular Value
Clipping (SVC).

As with the linear and the convolutional layer, we clamp
the value of v which represents a scaling parameter of the
batch normalization layer in the same way. We summarize
a clipping method of each layer in Table 2. Note that we
do not perform any operations on ReLU and LeakyReLU
layers because they always satisfy the condition unless a in
the LeakyReLU is lower than 1.

The clear advantage of our alternative clipping method
is that it does not require the careful tuning of hyperparam-
eter c. Another advantage we have empirically observed is
to stabilize the training of WGAN; in our experiments, our
method can successfully train an advanced model even under
the situation where the behavior of loss function becomes un-
stable with the conventional clipping. We show an example
of such differences in Fig.2.

Although the problem of SVC is an increased computa-
tional cost, it can be mitigated by decreasing the frequency
of performing the SVC. We show the summary of the al-
gorithm of WGAN with the SVC in Algorithm 1. In our
experiments, the computational time of SVD is almost the
same as that of the forward-backward computation, but we

forn =1tonp do
Compute gradient of discriminator gp
0p < 0p + a- RMSProp(fp,gp)
end for
Compute gradient of generator g
0c «+ 0 — - RMSProp(fg, 9¢)
if £ mod ncip, = 1 then
0p <« SingularValueClipping(6p)
end if
end for

observed the frequency of clipping is sufficient once every
five iterations, i.e., Nclip = 9.

5. Applications
5.1. Frame interpolation

One of the advantages of our model is to be able to gen-
erate an intermediate frame between two adjacent frames.
Since the video generation in our model is formulated as
generating a trajectory in the latent image space represented
by 2o and 2!, our generator can easily yield long sequences
by just interpolating the trajectory. Specifically, we add
a bilinear filter to the last layer of the temporal generator,
and interpolate the trajectory in the latent image space (see
Section 3.4).

5.2. Conditional TGAN

In some cases, videos in a dataset contain some la-
bels which correspond to a category of the video such as
“IceDancing” or “Baseball”. In order to exploit them and im-
prove the quality of videos by the generator, we also develop
a Conditional TGAN (CTGAN), in which the generator can
take both label [ and latent variable z.

The structure of CTGAN is similar with that of the origi-
nal Conditional GAN. In temporal generator, after transform-
ing [ into one-hot vector v;, we concatenate both this vector
and zg, and regard it as a new latent variable. That is, the
temporal generator of the CTGAN is denoted as Go(zo, ;).
The image generator of the CTGAN also takes the one-hot
label vector as arguments, i.e., G1(20, 2}, v;). As with the
original image generator, we first perform linear transfor-
mation on each variable, reshape them, and operate five
deconvolutions.

In the discriminator, we first broadcast the one-hot label
vector to a voxel whose resolution is the same as that of
the video. Thus, if the number of elements of v; is V, the
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number of channels of the voxel is equal to V. Next, we
concatenate both the voxel and the input video, and send it
into the convolutional layers.

6. Experiments
6.1. Datasets

We performed experiments with the following datasets.

Moving MNIST To investigate the properties of our mod-
els, we trained the models on the moving MNIST dataset
[35], in which there are 10,000 clips each of which has 20
frames and consists of two digits moving inside a 64 x 64
patch. In these clips, two digits move linearly and the direc-
tion and magnitude of motion vectors are randomly chosen.
If a digit approaches one of the edges in the patch, it bounces
off the edge and its direction is changed while maintaining
the speed. In our experiments, we randomly extracted 16
frames from these clips and used them as a training dataset.

UCF-101 UCF-101 is a commonly used video dataset that
consists of 13,320 videos belonging to 101 different cate-
gories such as IceDancing and Baseball Pitch [34]. Since
the resolution of videos in the dataset is too large for the gen-
erative models, we resized all the videos to 85 x 64 pixels,
randomly extracted 16 frames, and cropped a center square
with 64 pixels.

Golf scene dataset Golf scene dataset is a large-scale
video dataset made by Vondrick ez al. [44], and contains
20,268 golf videos with 128 x 128 resolution. Since each
video includes 29 short clips on average, it contains 583,508
short video clips in total. As with the UCF-101, we resized
all the video clips with 64 x 64 pixels. To satisfy the as-
sumption that the background is always fixed, they stabilized
all of the videos with SIFT and RANSAC algorithms. As
such assumption is not included in our method, this dataset
is considered to be advantageous for existing methods.

6.2. Training configuration

All the parameters used in the optimizer are the same as
those of the original WGAN. Specifically, we used the RM-
SProp optimizer [4 1] with the learning rate of 0.00005. All
the weights in the temporal generator and the discriminator
are initialized with HeNormal [8], and the weights in the
image generator are initialized with the uniform distribution
within a range of [—0.01,0.01]. Chainer [42] was used to
implement all models and for experiments.

For comparison, we employed the conventional clipping
method and the SVC to train models with the WGAN. In
the conventional clipping method, we carefully searched
clipping parameter ¢ and confirmed that the best value is
c = 0.01. We set np to 1 for the both methods.

Frame 1 Frame 16 Frame 1 Frame 16
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Figure 3. Generated videos with four different models: (a) 3D
model trained with the normal GAN, (b) 3D model trained with the
WGAN and the SVC, (c) TGAN in which G only uses z1, and (d)
TGAN in which G uses both zg and z;. Although these models

generate 16 frames, for brevity we extract six frames from them at
even intervals.

6.3. Comparative methods

For comparison, we implemented two models: (i) a sim-
ple model in which the generator has one linear layer and
four 3D deconvolutional layers and the discriminator has
five 3D convolutional layers, and (ii) a Video GAN proposed
by [44]. We call the former “3D model”. In the generator of
the 3D model, all the deconvolutional layers have 4 x 4 x 4
kernel and the stride of 2. The number of channels in the
initial deconvolutional layer is 512 and set to half when the
layer goes deeper. We also used ReLU and batch normal-
ization layers. The settings of the discriminator are exactly
the same as those of our model. In the settings of the video
GAN, we simply followed the settings in the original paper.

When we tried to train the 3D model and the video GAN
model with the normal GAN loss, we observed that the dis-
criminator easily wins against the generator and the training
cannot proceed. To avoid this, we added Gaussian noise
(o = 0.2) to all layers of discriminators. In this case, all the
scale parameters -y after the Batch Normalization layer are
not used. Note that this noise addition is not used when we
use the WGAN.

6.4. Qualitative evaluation

We trained our proposed model on the above datasets and
visually confirmed the quality of the results. Fig.3 shows
examples of generated videos by the generator trained on the
moving MNIST dataset. It can be seen that the generated
frames are quite different from those of the existing model
proposed by Srivastava et al. [35]. While the predicted
frames by the existing model tend to be blurry, our model is
capable of producing consistent frames in which each image
is sharp, clear and easy to discriminate two digits. We also
observed that although our method can generate the frames
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(g) Video GAN (SVC)
Figure 4. A comparison between four models: (e) 3D model trained
with the normal GAN, (f) 3D model trained with the WGAN and
the SVC, (g) Video GAN trained with the WGAN and the SVC,
and (h) TGAN trained with the WGAN and the SVC. Only the first
frame is shown.

(h) TGAN (SVC)

in which each digit continues to move in a straight line, its
shape sometimes slightly changes by time. Note that the
existing models such as [35, 15] seem to generate frames in
which each digit does not change, however, these methods
can not be directly compared with our method because the
qualitative results the authors have shown are for “video
prediction” that predicts future frames from initial inputs,
whereas our method generates them without such priors.

Fig.3 also shows that as for the quality of the generated
videos, the 3D model using the normal GAN is the worst
compared with the other methods. We considered that it is
due to the high degree of freedom in the model caused by
three-dimensional convolution, and explicitly dividing the
spatio-temporal space could contribute to the improvement
of the quality. We also confirmed that it is not the effect of
selecting the normal GAN; although the quality of samples
generated by the 3D model with the SVC outperforms that
of the 3D model with the normal GAN, it is still lower
than our proposed model (model (d) in Fig.3). In order to
illustrate the effectiveness of zg in G1, we further conducted
the experiment with the TGAN in which GG does not take zg
as an argument (model (c)). In this experiment, we observed
that in the model (c) the problem of mode collapse tends to
occur compared to our model.

We also compared the performance of our method with
other existing methods when using practical data sets such
as UCF-101. The qualitative experimental results are shown

iﬂiﬁﬁh E ‘Eﬁ

Figure 5. Example of videos generated by the TGAN with WGAN
and SVC. The golf scene dataset was used.

Figure 6. Examples of frame interpolation with our method. The red
columns represent the adjacent frames generated by the temporal
generator. The remaining columns show the intermediate frames.

I BaseballPitch IceDa

-ll EEEEEE
Figure 7. Generated v1deos by the condltlonal TGAN. The leftmost

column shows the category in UCF-101 dataset, and the second
and third columns show the generated samples given the category.

in Fig.4. We observed that the videos generated by the 3D
model have the most artifacts compared with other models.
The video GAN tends to avoid these artifacts because the
background is relatively fixed in the UCF-101, however, the
probability of generating unidentified videos is higher than
that of the proposed model. We inferred that this problem
is mainly due to the weakness of the existing method is
vulnerable to videos with background movement.

Finally, in order to indicate that the quality of our model
is comparable with that of the video GAN (these results can
be seen in their project page), we conducted the experiment
with the golf scene dataset. As we described before, it is con-
sidered that this dataset, in which the background is always
fixed, is advantageous for the video GAN that exploits this
assumption. Even under such unfavorable conditions, the
quality of the videos generated by our model is almost the
same as the existing method; both create a figure that seems
likes a person’s shadow, and it changes with time.

6.4.1 Applications

We performed the following experiments to illustrate the
effectiveness of the applications described in Section 5.
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Model A Model B GAM score  Winner
TGAN 3D model (GAN) 1.70 TGAN
TGAN 3D model (SVC) 1.27 TGAN
TGAN  TGAN (Gy(#%)) 1.03 TGAN

Table 3. GAM scores for models of moving MNIST. “TGAN” de-
notes the model trained with the WGAN and the SVC. In “TGAN
(G1(24))”, G1 has z1 only (the SVC was used for training). “3D
model (GAN)” and “3D model (SVC)” were trained with the nor-
mal GAN and the SVC, respectively.

To show our model can be applied to frame interpolation,
we generated intermediate frames by interpolating two ad-
jacent latent variables of the image space. These results are
shown in Fig.6. It can be seen that the frame is not gener-
ated by a simple interpolation algorithm like dissolve, but
semantically interpolating the adjacent frames.

We also experimentally confirmed that the proposed
model is also extensible to the conditional GAN. These
results are shown in Fig.7. We observed that the quality of
the video generated by the conditional TGAN is significantly
higher than that of the unsupervised ones. It is considered
that adding semantic information of labels to the model con-
tributed to the improvement of quality.

6.5. Quantitative evaluation

We performed the quantitative experiment to confirm the
effectiveness of our method. As indicators of the quantitative
evaluation, we adopted a Generative Adversarial Metric
(GAM) [12] that compares adversarial models against each
other, and an inception score [32] that has been commonly
used to measure the quality of the generator.

For the comparison of two generative models, we used
GAM scores in the moving MNIST dataset. Unlike the
normal GAN in which the discriminator uses the binary cross
entropy loss, the discriminator of the WGAN is learned to
keep the fake samples and the real samples away, and we
cannot choose zero as a threshold for discriminating real
and fake samples. Therefore, we first generate a sufficient
number of fake samples, and set a score that can classify
fake and real samples well as the threshold.

Table 3 shows the results. In the GAM, a score higher than
one means that the model A generates better fake samples
that can fool the discriminator in the model B. It can be seen
that our model can generate better samples that can deceive
other existing methods. It can be seen that the TGAN beats
the 3D models easily, but wins against the TGAN in which
G4 has 2! only. These results are the same as the results
obtained by the aforementioned qualitative evaluation.

In order to compute the inception score, a dataset having
label information and a good classifier for identifying the
label are required. Thus, we used the UCF-101 dataset that
has 101 action categories, and a pre-trained model of C3D
[43], which was trained on Sports-1M dataset [16] and fine-
tuned for the UCF-101, was employed as a classifier. We also

Method Inception score
3D model (Weight clipping) 4.32+ .01

3D model (SVC) 4.78 £.02
Video GAN [44] (Normal GAN) 8.18 .05
Video GAN (SVC) 8.31+.09
TGAN (Normal GAN) 9.18 + .11
TGAN (Weight clipping) 11.77 £ 11
TGAN (SVC) 11.85 £+ .07
Conditional TGAN (SVC) 15.83 &+ .18
UCF-101 dataset 34.49 + .03

Table 4. Inception scores for models of UCF-101.

calculated the inception scores by sampling 10,000 times
from the latent random variable, and derived rough standard
deviation by repeating this procedure four times. To compute
the inception score when using the conditional TGAN, we
added the prior distribution for the category to the generator,
and transformed the conditional generator into the generator
representing the model distribution. We also computed the
inception score when using a real dataset to see an upper
bound.

Table 4 shows quantitative results. It can be seen that in
the 3D model, the quality of the generated videos is worse
than the video GAN and our proposed model. Although we
observed that using the SVC slightly improves the inception
score, its value is a little and still lower than that of the video
GAN. We also confirmed that the SVC is effective in the case
of the video GAN, however, its value is lower than our mod-
els. On the other hand, our models achieve the best scores
compared with other existing methods. In addition to the
video GAN, the TGAN using the SVC slightly outperformed
the TGAN using the conventional weight clipping method.
Although the quality of the SVC is almost indistinguishable
compared with existing methods, we had to carefully change
the value of ¢ to achieve such quality. We believe that our
clipping method is not a tool for dramatically improving the
quality of the generator, but a convenient method to reduce
the trouble of adjusting hyper parameters and significantly
stabilize the training of the models.

7. Summary

We proposed a generative model that learns semantic
representation of videos and can generate image sequences.
We formulated the generating process of videos as a series of
(i) a function that generates a set of latent variables, and (ii)
a function that converts them into an image sequence. Using
this representation, our model can generate videos with better
quality and naturally achieves frame interpolation. We also
proposed a novel parameter clipping method, Singular Value
Clipping (SVC), that stabilizes the training of WGAN.
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