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Abstract

In this paper, we propose a generative model, Temporal

Generative Adversarial Nets (TGAN), which can learn a se-

mantic representation of unlabeled videos, and is capable of

generating videos. Unlike existing Generative Adversarial

Nets (GAN)-based methods that generate videos with a sin-

gle generator consisting of 3D deconvolutional layers, our

model exploits two different types of generators: a temporal

generator and an image generator. The temporal generator

takes a single latent variable as input and outputs a set of

latent variables, each of which corresponds to an image

frame in a video. The image generator transforms a set of

such latent variables into a video. To deal with instability

in training of GAN with such advanced networks, we adopt

a recently proposed model, Wasserstein GAN, and propose

a novel method to train it stably in an end-to-end manner.

The experimental results demonstrate the effectiveness of our

methods.

1. Introduction

Unsupervised learning of feature representation from a

large dataset is one of the most significant problems in com-

puter vision. If good representation of data can be obtained

from an unlabeled dataset, it could be of benefit to a variety

of tasks such as classification, clustering, and generating new

data points.

There have been many studies regarding unsupervised

learning in the field of computer vision. Their targets are

roughly two-fold; images and videos. As for unsupervised

learning of images, Generative Adversarial Nets (GAN) [5]

have shown impressive results and succeeded to generate

plausible images with a dataset that contains plenty of natural

images [2, 49]. In contrast, unsupervised learning of videos

still has many difficulties compared to images. While recent

studies have achieved remarkable progress [35, 25, 15] in a

problem that predicts future frames from previous frames,

video generation without any clues of data is still a highly

challenging problem. Although the recent study tackled to
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address this problem by decomposing it into background

generation and foreground generation, this approach has

a drawback that it cannot generate a scene with dynamic

background due to the static background assumption [44].

To the best of our knowledge, there is no study that tackles

video generation without such assumption and generates

diversified videos like natural videos.

Although a simple approach is to use 3D convolutional

layers for representing the generating process of a video, it

implies that images along x-t plane and y-t plane besides

x-y plane are considered equally, where x and y denote

the spatial dimensions and t denotes the time dimension.

We believe that the nature of time dimension is essentially

different from the spatial dimensions in the case of videos

so that such approach has difficulty on the video generation

problem. The relevance of this assumption has been also

discussed in some recent studies [33, 24, 46] that have shown

good performance on the video recognition task.

Based on the above discussion, in this paper, we extend

an existing GAN model and propose Temporal Generative

Adversarial Net (TGAN) that is capable of learning repre-

sentation from an unlabeled video dataset and producing a

new video. Unlike the existing video generator that gen-

erates videos with 3D deconvolutional layers [44], in our

proposed model the generator consists of two sub networks

called a temporal generator and an image generator (Fig.1).

Specifically, the temporal generator first yields a set of latent

variables, each of which corresponds to a latent variable for

the image generator. Then, the image generator transforms

these latent variables into a video which has the same num-

ber of frames as the variables. The model comprised of the

temporal and image generators can not only enable to effi-

ciently capture the time series, but also be easily extended to

frame interpolation.

The typical problem that arises from such advanced net-

works is the instability of training of GANs. In this paper we

adopt a recently proposed Wasserstein GAN (WGAN) which

tackles the instability, however, we observed that our model

still has sensitivity to a hyperparameter of WGAN. There-

fore, to deal with this problem, we propose a novel method

to remove the sensitive hyperparameter from WGAN and
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Figure 1. Illustration of TGAN. The video generator consists of two generators, the temporal generator and the image generator. The

temporal generator G0 yields a set of latent variables zt1(t = 1, . . . , T ) from z0. The image generator G1 transforms those latent variables

zt1(t = 1, . . . , T ) and z0 into a video data which has T frames. The discriminator consists of three-dimensional convolutional layers,

and evaluates whether these frames are from the dataset or the video generator. The shape of a tensor in the discriminator is denoted as

“(channels)×(time)×(height)×(width)”.

stabilize the training further. The experiments show that our

method is more stable than the conventional methods, and

the model can be successfully trained even under the situa-

tion where the loss diverges with the conventional methods.

Our contributions are summarized as follows. (i) The

generative model that can efficiently capture the latent space

of the time dimension in videos. It also enables a natural

extension to an application such as frame interpolation. (ii)

The alternative parameter clipping method for WGAN that

significantly stabilizes the training of the networks that have

advanced structure.

2. Related work

2.1. Natural image generation

Supervised learning with Convolutional Neural Networks

(CNNs) has recently shown outstanding performance in

many tasks such as image classification [8, 9, 11] and action

recognition [14, 16, 33, 43], whereas unsupervised learning

with CNN has received relatively less attention. A com-

mon approach for generating images is the use of undirected

graphical models such as Boltzmann machines [31, 18, 4].

However, due to the difficulty of approximating gradients,

it has been empirically observed that such deep graphical

models frequently fail to find good representation of natural

images with sufficient diversity. Both Gregor et al. [7] and

Dosvotiskiy et al. [3] have proposed models that respectively

use recurrent and deconvolutional networks, and successfully

generated natural images. However, both models make use

of supervised learning and require additional information

such as labels.

The Generative Adversarial Network (GAN), which we

have mainly employed in this study, is a model for unsuper-

vised learning that finds a good representation of samples

by simultaneously training two different networks called the

generator and the discriminator. Recently, many extensions

for GANs have been proposed. Conditional GANs performs

modeling of object attributes [22, 12]. Pathak et al. [26]

adopted the adversarial network to generate the contents of

an image region conditioned on its surroundings. Li and

Wand [19] employed the GAN model in order to efficiently

synthesize texture. Denton et al. [2] proposed a Laplacian

GAN that outputs a high-resolution image by iteratively gen-

erating images in a coarse-to-fine manner. Arjovsky et al.

[1] transformed the training of GAN into the minimization

problem of Earth Mover’s distance, and proposed a more

robust method to train both the generator and the discrimina-

tor. Radford et al. [27] also proposed a simple yet powerful

model called Deep Convolutional GAN (DCGAN) for gen-

erating realistic images with a pair of convolutional and

deconvolutional networks. Based on these results, Wang et

al. [49] extended DCGAN by factorizing the image generat-

ing process into two paths, and proposed a new model called

a Style and Structure GAN (S2-GAN) that exploits two types

of generators.

2.2. Video recognition and unsupervised learning

As recognizing videos is a challenging task which has

received a lot of attention, many researchers have tackled this

problem in various ways. In supervised learning of videos,

while a common approach is to use dense trajectories [45,

30, 29], recent methods have employed CNN and achieved

state-of-the-art results [14, 16, 33, 43, 24, 46, 47]. Some

studies are focused on extracting spatio-temporal feature

vectors from a video in an unsupervised manner. Taylor et al.

[39] proposed a method that extracts invariant features with

Restricted Boltzmann Machines (RBMs). Temporal RBMs

have also been proposed to explicitly capture the temporal

correlations in videos [40, 38, 37]. Stavens and Thrun [36]

dealt with this problem by using an optical flow and low-

level features such as SIFT. Le et al. [17] use Independent

Subspace Analysis (ISA) to extract spatio-temporal semantic
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features. Deep neural networks have also been applied to

feature extraction from videos [51, 6, 48] in the same way

as supervised learning.

There also exist several studies focusing on predicting

video sequences from an input sequence with Recurrent

Neural Networks (RNNs) represented by Long Short-Term

Memory (LSTM) [10]. In particular, Ranzato et al. [28]

proposed a Recurrent Neural Network (RNN) model that can

learn both spatial and temporal correlations. Srivastava et al.

[35] also applied LSTMs and succeeded to predict the future

sequence of a simple video. Zhou and Berg [50] proposed

a network that creates depictions of objects at future times

with LSTMs and DCGAN. Kalchbrenner et al. [15] also

employed a convolutional LSTM model, and proposed Video

Pixel Networks that directly learn the joint distribution of

the raw pixel values. Oh et al. [25] proposed a deep auto-

encoder model conditioned on actions, and predicted next

sequences of Atari games from a single screen shot and an

action sent by a game pad. In order to deal with the problem

that generated sequences are “blurry” compared to natural

images, Mithieu et al. [21] replaced a standard mean squared

error loss and improved the quality of predicted images.

However, the above studies cannot directly be applied to the

task of generating entire sequences from scratch since they

require an initial sequence as an input.

Vondrick et al. [44] recently proposed a generative model

that yields a video sequence from scratch with DCGAN

consisting of 3D deconvolutional layers. The main difference

between their model and ours is model representation; while

they simplified the video generation problem by assuming

that a background in a video sequence is always static and

generate the video with 3D deconvolutions, we do not use

such assumption and decompose the generating process of

video into the 1D and 2D deconvolutions.

3. Temporal Generative Adversarial Nets

3.1. Generative Adversarial Nets

Before we go into the details of TGAN, we briefly explain

the existing GAN [5] and the Wasserstein GAN [1]. A

GAN exploits two networks called the generator and the

discriminator. The generator G : RK → R
M is a function

that generates samples x ∈ R
M which looks similar to a

sample in the given dataset. The input is a latent variable z ∈
R

K , where z is randomly drawn from a given distribution

pG(z), e.g., a uniform distribution. The discriminator D :
R

M → [0, 1] is a classifier that discriminates whether a

given sample is from the dataset or generated by G.

The GAN simultaneously trains the two networks by

playing a non-cooperative game; the generator wins if it gen-

erates an image that the discriminator misclassifies, whereas

the discriminator wins if it correctly classifies the input sam-

ples. Such minimax game can be represented as

min
θG

max
θD

Ex∼pdata
[lnD(x)]

+ Ez∼pG
[ln(1−D(G(z)))], (1)

where θG and θD are the parameters of the generator and the

discriminator, respectively. pdata denotes the empirical data

distribution.

3.2. Wasserstein GAN

It is known that the GAN training is unstable and requires

careful adjustment of the parameters. To overcome such

instability of learning, Arjovsky et al. [1] focused on the

property that the GAN training can also be interpreted as the

minimization of the Jensen-Shannon (JS) divergence, and

proposed Wasserstein GAN (WGAN) that trains the gen-

erator and the discriminator to minimize an Earth Mover’s

distance (EMD, a.k.a. first Wasserstein distance) instead

of the JS divergence. Several experiments the authors con-

ducted reported that WGANs are more robust than ordinal

GANs, and tend to avoid mode dropping.

The significant property in the learning of WGAN is

“K-Lipschitz” constraint with regard to the discriminator.

Specifically, if the discriminator satisfies the K-Lipschitz

constraint, i.e., |D(x1) −D(x2)| ≤ K|x1 − x2| for all x1

and x2, the minimax game of WGAN can be represented as

min
θG

max
θD

Ex∼pdata
[D(x)]− Ez∼pG

[D(G(z))]. (2)

Note that unlike the original GAN, the return value of D in

Eq.(2) is an unbounded real value, i.e., D : RM → R. In

this study we use Eq.(2) for training instead of Eq.(1).

In order to make the discriminator be the K-Lipschitz,

the authors proposed a method that clamps all the weights

in the discriminator to a fixed box denoted as w ∈ [−c, c].
Although this weight clipping is a simple and assures the dis-

criminator satisfies the K-Lipschitz condition, it also implies

we cannot know the relation of the parameters between c

and K. As it is known that the objective of the discriminator

of Eq.(2) is a good approximate expression of EMD in the

case of K = 1, this could be a problem when we want to

find the approximate value of EMD.

3.3. Temporal GAN

Here we introduce the proposed model based on the above

discussion. Let T > 0 be the number of frames to be gen-

erated, and G0 : RK0 → R
T×K1 be the temporal generator

that gets another latent variable z0 ∈ R
K0 as an argument

and generates latent variables denoted as [z11 , . . . , z
T
1 ]. In our

model, z0 is randomly drawn from a distribution pG0
(z0).

Next, we introduce image generator G1 : RK0 ×R
K1 →

R
M that yields a video from these latent variables. Note

that G1 takes both the latent variables generated from G0
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Temporal generator Image generator

z0 ∈ R
1×100 z0 ∈ R

1×100 zt1 ∈ R
100

deconv (1, 512, 0, 1) linear (256 · 42) linear (256 · 42)

deconv (4, 256, 1, 2) concat + deconv (4, 256, 1, 2)

deconv (4, 128, 1, 2) deconv (4, 128, 1, 2)

deconv (4, 128, 1, 2) deconv (4, 64, 1, 2)

deconv (4, 100, 1, 2) deconv (4, 32, 1, 2)

tanh deconv (3, 3, 1, 1) + tanh

Table 1. Network configuration of the generator. The second row

represents the input variables. “linear (·)” is the number of output

units in the linear layer. The parameters in the convolutional and

the deconvolutional layer are denoted as “conv/deconv ((kernel

size), (output channels), (padding), (strides)).”

as well as original latent variable z0 as arguments. While

z1 varies with time, z0 is invariable regardless of the time,

and we empirically observed that it has a significant role in

suppressing a sudden change of the action of the generated

video. That is, in our representation, the generated video is

represented as [G1(z0, z
1
1), . . . , G1(z0, z

T
1 )].

Using these notations, Eq.(2) can be rewritten as

min
θG0

,θG1

max
θD

E[x1,...,xT ]∼pdata
[D([x1, . . . , xT ])]

− Ez0∼pG0
[D([G1(z0, z

1
1), . . . , G1(z0, z

T
1 )])]

)

, (3)

where xt is the t-th frame of a video in a dataset, and zt1 is

the latent variable corresponding to t-th frame generated by

G0(z0). θD, θG0
, and θG1

represent the parameter of D, G0,

and G1, respectively.

3.4. Network configuration

This subsection describes the configuration of our three

networks: the temporal generator, the image generator, and

the discriminator. Table 1 shows a typical network setting.

Temporal generator Unlike typical CNNs that perform

two-dimensional convolutions in the spatial direction, the

deconvolutional layers in the temporal generator perform

a one-dimensional deconvolution in the temporal direction.

For convenience of computation, we first regard z0 ∈ R
K0

as a one-dimensional activation map of z0 ∈ R
1×K0 , where

the length and the number of channels are one and K0, re-

spectively. A uniform distribution is used to sample z0.

Next, applying the deconvolutional layers we expand its

length while reducing the number of channels. The set-

tings for the deconvolutional layers are the same as those

of the image generator except for the number of channels

and one-dimensional deconvolution. Like the original image

generator we insert a Batch Normalization (BN) layer [13]

after deconvolution and use Rectified Linear Units (ReLU)

[23] as activation functions.

Image generator The image generator takes two latent

variables as arguments. After performing a linear transfor-

mation on each variable, we reshape them into the form

shown in Table 1, concatenate them and perform five decon-

volutions. These settings are almost the same as the existing

DCGAN, i.e., we used ReLU [23] and Batch Normalization

layer [13]. The kernel size, stride, and padding are respec-

tively 4, 2, and 2 except for the last deconvolutional layer.

Note that the number of output channels of the last deconvo-

lutional layer depends on whether the dataset contains color

information or not.

Discriminator We employ spatio-temporal 3D convolu-

tional layers to model the discriminator. The layer settings

are similar to the image generator. Specifically, we use four

convolutional layers with 4× 4× 4 kernel and a stride of 2.

The number of output channels is 64 in the initial convolu-

tional layer, and set to double when the layer goes deeper. As

with the DCGAN, we used LeakyReLU [20] with a = 0.2
and Batch Normalization layer [13] after these convolutions.

Note that we do not insert the batch normalization after the

initial convolution. Finally, we use a fully-connected layer

and summarize all of the units in a single scalar. Each shape

of the tensor used in the discriminator is shown in Fig.1.

4. Singular Value Clipping

As we described before, WGAN requires the discrimina-

tor to fulfill the K-Lipschitz constraint, and the authors em-

ployed a parameter clipping method that clamps the weights

in the discriminator to [−c, c]. However, we empirically ob-

served that the tuning of hyper parameter c is severe, and it

frequently fails in learning under a different situation like

our proposed model. We assumed this problem would be

caused by a property that the K-Lipschitz constraint widely

varies depending the value of c, and propose an alternative

method that can explicitly adjust the value of K.

Suppose that D(x) is a composite function consisting of

N primitive functions, and each function fn is Lipschitz

continuous with Kn. In this case D can be represented as

D = fN ◦ fN−1 ◦ · · · f1, and D is also Lipschitz continu-

ous with K =
∏

n Kn. That is, what is important in our

approach is to add constraints to all the functions such that

fn satisfies the condition of given Kn. Although in principle

our method can derive operations that satisfy arbitrary K, in

the case of K = 1 these operations are invariant regardless

of the number of layers constituting the discriminator. For

simplicity we focus on the case of K = 1.

To satisfy 1-Lipschitz constraint, we add a constraint to

all linear layers in the discriminator that satisfies the spectral

norm of weight parameter W is equal or less than one. This

means that the singular values of weight matrix are all one or

less. To this end, we perform singular value decomposition

(SVD) after parameter update, replace all the singular values
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Layer Condition Method

Linear ‖W‖ ≤ 1 SVC

Convolution ‖Ŵ‖ ≤ 1 SVC

Batch normalization 0 < γ ≤
√

σ2
B + ǫ Clipping γ

LeakyReLU a ≤ 1 Do nothing

Table 2. Proposed methods to satisfy the 1-Lipschitz constraint.

‖ · ‖ denotes a spectral norm. a represents a fixed parameter of

the LeakyReLU layer. γ and σB are a scaling parameter after the

batch normalization and a running mean of a standard deviation of

a batch, respectively.

0 10000 20000 30000 40000 50000 60000
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0 10000 20000 30000 40000 50000 60000
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Figure 2. The difference of training curves in UCF-101 (see Sec-

tion 6.1 for details). The upper row shows the loss of the generator

per iteration in conventional clipping method, while the lower row

shows the loss in our clipping method, Singular Value Clipping.

larger than one with one, and reconstruct the parameters with

them. We also apply the same operation to convolutional

layers by interpreting a higher order tensor in weight param-

eter as a matrix Ŵ . We call these operations Singular Value

Clipping (SVC).

As with the linear and the convolutional layer, we clamp

the value of γ which represents a scaling parameter of the

batch normalization layer in the same way. We summarize

a clipping method of each layer in Table 2. Note that we

do not perform any operations on ReLU and LeakyReLU

layers because they always satisfy the condition unless a in

the LeakyReLU is lower than 1.

The clear advantage of our alternative clipping method

is that it does not require the careful tuning of hyperparam-

eter c. Another advantage we have empirically observed is

to stabilize the training of WGAN; in our experiments, our

method can successfully train an advanced model even under

the situation where the behavior of loss function becomes un-

stable with the conventional clipping. We show an example

of such differences in Fig.2.

Although the problem of SVC is an increased computa-

tional cost, it can be mitigated by decreasing the frequency

of performing the SVC. We show the summary of the al-

gorithm of WGAN with the SVC in Algorithm 1. In our

experiments, the computational time of SVD is almost the

same as that of the forward-backward computation, but we

Algorithm 1 WGAN using Singular Value Clipping

Require: α: the learning rate. T : the number of iterations.

nD: the number of iterations of the discriminator per

generator’s iteration. nclip: the number of intervals of the

clipping.

for t = 1 to T do

for n = 1 to nD do

Compute gradient of discriminator gD
θD ← θD + α · RMSProp(θD, gD)

end for

Compute gradient of generator gG
θG ← θG − α · RMSProp(θG, gG)
if t mod nclip = 1 then

θD ← SingularValueClipping(θD)
end if

end for

observed the frequency of clipping is sufficient once every

five iterations, i.e., nclip = 5.

5. Applications

5.1. Frame interpolation

One of the advantages of our model is to be able to gen-

erate an intermediate frame between two adjacent frames.

Since the video generation in our model is formulated as

generating a trajectory in the latent image space represented

by z0 and zt1, our generator can easily yield long sequences

by just interpolating the trajectory. Specifically, we add

a bilinear filter to the last layer of the temporal generator,

and interpolate the trajectory in the latent image space (see

Section 3.4).

5.2. Conditional TGAN

In some cases, videos in a dataset contain some la-

bels which correspond to a category of the video such as

“IceDancing” or “Baseball”. In order to exploit them and im-

prove the quality of videos by the generator, we also develop

a Conditional TGAN (CTGAN), in which the generator can

take both label l and latent variable z0.

The structure of CTGAN is similar with that of the origi-

nal Conditional GAN. In temporal generator, after transform-

ing l into one-hot vector vl, we concatenate both this vector

and z0, and regard it as a new latent variable. That is, the

temporal generator of the CTGAN is denoted as G0(z0, vl).
The image generator of the CTGAN also takes the one-hot

label vector as arguments, i.e., G1(z0, z
t
1, vl). As with the

original image generator, we first perform linear transfor-

mation on each variable, reshape them, and operate five

deconvolutions.

In the discriminator, we first broadcast the one-hot label

vector to a voxel whose resolution is the same as that of

the video. Thus, if the number of elements of vl is V , the
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number of channels of the voxel is equal to V . Next, we

concatenate both the voxel and the input video, and send it

into the convolutional layers.

6. Experiments

6.1. Datasets

We performed experiments with the following datasets.

Moving MNIST To investigate the properties of our mod-

els, we trained the models on the moving MNIST dataset

[35], in which there are 10,000 clips each of which has 20

frames and consists of two digits moving inside a 64 × 64
patch. In these clips, two digits move linearly and the direc-

tion and magnitude of motion vectors are randomly chosen.

If a digit approaches one of the edges in the patch, it bounces

off the edge and its direction is changed while maintaining

the speed. In our experiments, we randomly extracted 16
frames from these clips and used them as a training dataset.

UCF-101 UCF-101 is a commonly used video dataset that

consists of 13,320 videos belonging to 101 different cate-

gories such as IceDancing and Baseball Pitch [34]. Since

the resolution of videos in the dataset is too large for the gen-

erative models, we resized all the videos to 85× 64 pixels,

randomly extracted 16 frames, and cropped a center square

with 64 pixels.

Golf scene dataset Golf scene dataset is a large-scale

video dataset made by Vondrick et al. [44], and contains

20,268 golf videos with 128 × 128 resolution. Since each

video includes 29 short clips on average, it contains 583,508

short video clips in total. As with the UCF-101, we resized

all the video clips with 64 × 64 pixels. To satisfy the as-

sumption that the background is always fixed, they stabilized

all of the videos with SIFT and RANSAC algorithms. As

such assumption is not included in our method, this dataset

is considered to be advantageous for existing methods.

6.2. Training configuration

All the parameters used in the optimizer are the same as

those of the original WGAN. Specifically, we used the RM-

SProp optimizer [41] with the learning rate of 0.00005. All

the weights in the temporal generator and the discriminator

are initialized with HeNormal [8], and the weights in the

image generator are initialized with the uniform distribution

within a range of [−0.01, 0.01]. Chainer [42] was used to

implement all models and for experiments.

For comparison, we employed the conventional clipping

method and the SVC to train models with the WGAN. In

the conventional clipping method, we carefully searched

clipping parameter c and confirmed that the best value is

c = 0.01. We set nD to 1 for the both methods.

Frame 1 Frame 16 Frame 1 Frame 16

(a) 3D model (GAN) (b) 3D model (WGAN w/ SVC)

(c) TGAN (SVC, G1(z
t

1)) (d) TGAN (SVC, G1(z0, z
t

1))

Figure 3. Generated videos with four different models: (a) 3D

model trained with the normal GAN, (b) 3D model trained with the

WGAN and the SVC, (c) TGAN in which G1 only uses z1, and (d)

TGAN in which G1 uses both z0 and z1. Although these models

generate 16 frames, for brevity we extract six frames from them at

even intervals.

6.3. Comparative methods

For comparison, we implemented two models: (i) a sim-

ple model in which the generator has one linear layer and

four 3D deconvolutional layers and the discriminator has

five 3D convolutional layers, and (ii) a Video GAN proposed

by [44]. We call the former “3D model”. In the generator of

the 3D model, all the deconvolutional layers have 4× 4× 4
kernel and the stride of 2. The number of channels in the

initial deconvolutional layer is 512 and set to half when the

layer goes deeper. We also used ReLU and batch normal-

ization layers. The settings of the discriminator are exactly

the same as those of our model. In the settings of the video

GAN, we simply followed the settings in the original paper.

When we tried to train the 3D model and the video GAN

model with the normal GAN loss, we observed that the dis-

criminator easily wins against the generator and the training

cannot proceed. To avoid this, we added Gaussian noise

(σ = 0.2) to all layers of discriminators. In this case, all the

scale parameters γ after the Batch Normalization layer are

not used. Note that this noise addition is not used when we

use the WGAN.

6.4. Qualitative evaluation

We trained our proposed model on the above datasets and

visually confirmed the quality of the results. Fig.3 shows

examples of generated videos by the generator trained on the

moving MNIST dataset. It can be seen that the generated

frames are quite different from those of the existing model

proposed by Srivastava et al. [35]. While the predicted

frames by the existing model tend to be blurry, our model is

capable of producing consistent frames in which each image

is sharp, clear and easy to discriminate two digits. We also

observed that although our method can generate the frames
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(e) 3D model (Normal GAN) (f) 3D model (SVC)

(g) Video GAN (SVC) (h) TGAN (SVC)

Figure 4. A comparison between four models: (e) 3D model trained

with the normal GAN, (f) 3D model trained with the WGAN and

the SVC, (g) Video GAN trained with the WGAN and the SVC,

and (h) TGAN trained with the WGAN and the SVC. Only the first

frame is shown.

in which each digit continues to move in a straight line, its

shape sometimes slightly changes by time. Note that the

existing models such as [35, 15] seem to generate frames in

which each digit does not change, however, these methods

can not be directly compared with our method because the

qualitative results the authors have shown are for “video

prediction” that predicts future frames from initial inputs,

whereas our method generates them without such priors.

Fig.3 also shows that as for the quality of the generated

videos, the 3D model using the normal GAN is the worst

compared with the other methods. We considered that it is

due to the high degree of freedom in the model caused by

three-dimensional convolution, and explicitly dividing the

spatio-temporal space could contribute to the improvement

of the quality. We also confirmed that it is not the effect of

selecting the normal GAN; although the quality of samples

generated by the 3D model with the SVC outperforms that

of the 3D model with the normal GAN, it is still lower

than our proposed model (model (d) in Fig.3). In order to

illustrate the effectiveness of z0 in G1, we further conducted

the experiment with the TGAN in which G1 does not take z0
as an argument (model (c)). In this experiment, we observed

that in the model (c) the problem of mode collapse tends to

occur compared to our model.

We also compared the performance of our method with

other existing methods when using practical data sets such

as UCF-101. The qualitative experimental results are shown

Figure 5. Example of videos generated by the TGAN with WGAN

and SVC. The golf scene dataset was used.

Figure 6. Examples of frame interpolation with our method. The red

columns represent the adjacent frames generated by the temporal

generator. The remaining columns show the intermediate frames.
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Figure 7. Generated videos by the conditional TGAN. The leftmost

column shows the category in UCF-101 dataset, and the second

and third columns show the generated samples given the category.

in Fig.4. We observed that the videos generated by the 3D

model have the most artifacts compared with other models.

The video GAN tends to avoid these artifacts because the

background is relatively fixed in the UCF-101, however, the

probability of generating unidentified videos is higher than

that of the proposed model. We inferred that this problem

is mainly due to the weakness of the existing method is

vulnerable to videos with background movement.

Finally, in order to indicate that the quality of our model

is comparable with that of the video GAN (these results can

be seen in their project page), we conducted the experiment

with the golf scene dataset. As we described before, it is con-

sidered that this dataset, in which the background is always

fixed, is advantageous for the video GAN that exploits this

assumption. Even under such unfavorable conditions, the

quality of the videos generated by our model is almost the

same as the existing method; both create a figure that seems

likes a person’s shadow, and it changes with time.

6.4.1 Applications

We performed the following experiments to illustrate the

effectiveness of the applications described in Section 5.
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Model A Model B GAM score Winner

TGAN 3D model (GAN) 1.70 TGAN

TGAN 3D model (SVC) 1.27 TGAN

TGAN TGAN (G1(z
t
1)) 1.03 TGAN

Table 3. GAM scores for models of moving MNIST. “TGAN” de-

notes the model trained with the WGAN and the SVC. In “TGAN

(G1(z
t

1))”, G1 has z1 only (the SVC was used for training). “3D

model (GAN)” and “3D model (SVC)” were trained with the nor-

mal GAN and the SVC, respectively.

To show our model can be applied to frame interpolation,

we generated intermediate frames by interpolating two ad-

jacent latent variables of the image space. These results are

shown in Fig.6. It can be seen that the frame is not gener-

ated by a simple interpolation algorithm like dissolve, but

semantically interpolating the adjacent frames.

We also experimentally confirmed that the proposed

model is also extensible to the conditional GAN. These

results are shown in Fig.7. We observed that the quality of

the video generated by the conditional TGAN is significantly

higher than that of the unsupervised ones. It is considered

that adding semantic information of labels to the model con-

tributed to the improvement of quality.

6.5. Quantitative evaluation

We performed the quantitative experiment to confirm the

effectiveness of our method. As indicators of the quantitative

evaluation, we adopted a Generative Adversarial Metric

(GAM) [12] that compares adversarial models against each

other, and an inception score [32] that has been commonly

used to measure the quality of the generator.

For the comparison of two generative models, we used

GAM scores in the moving MNIST dataset. Unlike the

normal GAN in which the discriminator uses the binary cross

entropy loss, the discriminator of the WGAN is learned to

keep the fake samples and the real samples away, and we

cannot choose zero as a threshold for discriminating real

and fake samples. Therefore, we first generate a sufficient

number of fake samples, and set a score that can classify

fake and real samples well as the threshold.

Table 3 shows the results. In the GAM, a score higher than

one means that the model A generates better fake samples

that can fool the discriminator in the model B. It can be seen

that our model can generate better samples that can deceive

other existing methods. It can be seen that the TGAN beats

the 3D models easily, but wins against the TGAN in which

G1 has zt1 only. These results are the same as the results

obtained by the aforementioned qualitative evaluation.

In order to compute the inception score, a dataset having

label information and a good classifier for identifying the

label are required. Thus, we used the UCF-101 dataset that

has 101 action categories, and a pre-trained model of C3D

[43], which was trained on Sports-1M dataset [16] and fine-

tuned for the UCF-101, was employed as a classifier. We also

Method Inception score

3D model (Weight clipping) 4.32± .01
3D model (SVC) 4.78± .02
Video GAN [44] (Normal GAN) 8.18± .05
Video GAN (SVC) 8.31± .09
TGAN (Normal GAN) 9.18± .11
TGAN (Weight clipping) 11.77± .11
TGAN (SVC) 11.85 ± .07

Conditional TGAN (SVC) 15.83 ± .18

UCF-101 dataset 34.49± .03

Table 4. Inception scores for models of UCF-101.

calculated the inception scores by sampling 10,000 times

from the latent random variable, and derived rough standard

deviation by repeating this procedure four times. To compute

the inception score when using the conditional TGAN, we

added the prior distribution for the category to the generator,

and transformed the conditional generator into the generator

representing the model distribution. We also computed the

inception score when using a real dataset to see an upper

bound.

Table 4 shows quantitative results. It can be seen that in

the 3D model, the quality of the generated videos is worse

than the video GAN and our proposed model. Although we

observed that using the SVC slightly improves the inception

score, its value is a little and still lower than that of the video

GAN. We also confirmed that the SVC is effective in the case

of the video GAN, however, its value is lower than our mod-

els. On the other hand, our models achieve the best scores

compared with other existing methods. In addition to the

video GAN, the TGAN using the SVC slightly outperformed

the TGAN using the conventional weight clipping method.

Although the quality of the SVC is almost indistinguishable

compared with existing methods, we had to carefully change

the value of c to achieve such quality. We believe that our

clipping method is not a tool for dramatically improving the

quality of the generator, but a convenient method to reduce

the trouble of adjusting hyper parameters and significantly

stabilize the training of the models.

7. Summary

We proposed a generative model that learns semantic

representation of videos and can generate image sequences.

We formulated the generating process of videos as a series of

(i) a function that generates a set of latent variables, and (ii)

a function that converts them into an image sequence. Using

this representation, our model can generate videos with better

quality and naturally achieves frame interpolation. We also

proposed a novel parameter clipping method, Singular Value

Clipping (SVC), that stabilizes the training of WGAN.
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