
Constrained Convolutional Sparse Coding for Parametric Based Reconstruction

Of Line Drawings

Sara Shaheen, Lama Affara, and Bernard Ghanem

King Abdullah University of Science and Technology (KAUST), Saudi Arabia

sara.shaheen@kaust.edu.sa, lama.affara@kaust.edu.sa, beranrd.ghanem@kaust.edu.sa

Abstract

Convolutional sparse coding (CSC) plays an essential role

in many computer vision applications ranging from image

compression to deep learning. In this work, we spot the

light on a new application where CSC can effectively serve,

namely line drawing analysis. The process of drawing a line

drawing can be approximated as the sparse spatial localiza-

tion of a number of typical basic strokes, which in turn can

be cast as a non-standard CSC model that considers the line

drawing formation process from parametric curves. These

curves are learned to optimize the fit between the model and

a specific set of line drawings. Parametric representation of

sketches is vital in enabling automatic sketch analysis, syn-

thesis and manipulation. A couple of sketch manipulation

examples are demonstrated in this work. Consequently, our

novel method is expected to provide a reliable and automat-

ic method for parametric sketch description. Through ex-

periments, we empirically validate the convergence of our

method to a feasible solution.

1. Introduction

Sketch vectorization, which is defined as representing a s-

ketch as a number of connected parameterized curves, is

of great demand in the graphics community. It enables s-

ketch transformations that are invariant to scale and non-

rigid body transformations. It also fuels various applica-

tions related to sketch style manipulation, analysis and syn-

thesis [21]. Previous work on those topics tends to avoid

the non-trivial geometric solutions of sketch vectorization

[20] and replaces it with some manual interaction to access

strokes of sketches (strokes are the building blocks of a s-

ketch). This involves pre-processing steps such as build-

ing large libraries of strokes or digitally collecting sketches

using the Wacome device [10, 19]. As such, utilizing ex-

isting modern computing algorithms for automatic sketch

parametric representation is a valuable contribution to the

graphics research community.

In this work, we propose an extension to the formulation of

the well-known convolutional sparse coding (CSC) model,

such that it can better model the reconstruction process of

line drawings. This can be done by constraining the filters

in CSC to a pre-defined group of parametric curves. This

results in learned filters that, in their content, describe the

sketch geometrically as a set of curves. Such representation

can be utilized for sketch vectorization. We believe that our

work is the first to introduce geometry constraints to the

standard CSC formulation.

CSC represents an image by a sum of convolutional re-

sponses generated from image filters and sparse maps.

These filters constitute a CSC dictionary D = {d1, ..,dK},

and when convolved with their corresponding sparse map-

s Z = {z1, .., zK}, the image is reconstructed. Given an

input image x, the CSC optimization is described in Eq (1).

argmin
dk,zk ∀k

1

2
||x−

K
∑

k=1

dk ∗ zk||
2
2 + β

K
∑

k=1

||zk||1

s.t. ||dk||
2
2 ≤ 1 ∀k ∈ {1, ...,K}

(1)

CSC approximates how sketches are drawn. If the filters

in the dictionary are generated from actual parametric

strokes, then the summation of convolution responses

between these filters and the sparse maps specify where

in the image a stroke emerges and the set of filters reflect

what the response (stroke) will look like. We believe

that this model approximates how an artist would draw

a sketch; however, a more accurate depiction of this

process would be to replace the summation with a spatially

localized max operation (representing a union instead of a

sum). Unfortunately, this higher fidelity model makes the

optimization significantly harder to do, although it could

still be solved using standard fixed point (alternating) opti-

mization techniques popularly used for bi-convex problems.

To validate our choice of CSC for the task of line drawing

analysis, we conducted a user experiment. Using a Wacom

and a stylus pen, three artists are asked to freely draw a

given sketch. We parse the Wacom data files containing

the sketches and divide the sketches into square areas of
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Figure 1: Constrained Convolutional Sparse Coding (CSC) Model. An input image is represented by a sum of dictionary

elements belonging to set of parametric curves convolved with corresponding sparse maps and resulting in a reconstructed

image that is similar to the input image.

30×30 pixels, where the whole image is of 300×300 pixel

resolution. For each square region, we count the average

number of times an artist passes his/her pen through this

area. This is done using the spatial and temporal informa-

tion generated from the Wacom device. We eliminate areas

that contain no strokes. According to this experiment, the

sparsity of strokes used in patches of a sketch reaches a

reasonable amount with only 1-pass with the stylus pen

over a squared region 60% of the times. This observation

validates the use of sparse response maps, thus, justifying

the overall use of CSC.

Contributions. In this paper, (1) we propose a new method

for automatic parametric sketch representation inspired by

the well known CSC model. (2) We reformulate the origi-

nal CSC function by adding a constraint on the learned fil-

ters to belong to a defined set of parametric curves. Figure

1 gives an illustrative example of how our proposed con-

strained CSC model is used for line drawing reconstruction

using filters that are learnt from a set of parametric curves.

We solve the resulting non-convex optimization using AD-

MM. While proof of convergence is left for future work,

our experiments show that our ADMM solver converges to

a good feasible solution.

2. Related Work

In this section, we highlight different applications and

previous computational advances of the CSC model along

with related work on sketch vectorization, synthesis and

manipulation techniques, which our work is related to.

CSC Applications and Advancements. Recently, research

on CSC has taken two main directions. The first direction

focuses on applying CSC to a wide range of computer vi-

sion problems such as image processing [8, 2, 7, 24, 11],

designing new deep learning architectures [17], computa-

tional imaging [13], tracking [25] and structure for motion

[27]. The other CSC research direction focuses on finding

an efficient solution to the CSC problem. This direction is

driven by the high computational demands of minimizing

the non-convex CSC objective. Moreover, CSC sparse dic-

tionary learning algorithms are special as they enable for di-

verse translation-invariant image patches through using the

convolution operator in its image representation. Conse-

quently, the literature witnessed seminal advances in CSC

as found in [5, 16, 12]. Due to the diagonalization proper-

ty of circulant matrices in the Fourier domain, speeding up

the CSC solution has seen much progress. In fact, Bristow

et al. [5] propose to model the optimization as two convex

subproblems that are solved iteratively in a fixed point strat-

egy. Each subproblem is solved in the Fourier domain using

the Alternating Direction Method of Multipliers (ADMM)

[26]. Following that, Bristow et al. [6] provide a thorough

discussion on a number of optimization methods for solv-

ing convolution problems and their applications. To further

improve efficiency, Kong et al. [16] describe an optimiza-

tion approach that exploits the separability of convolutions

across bands in the Fourier domain in order to make dictio-

nary learning more efficient.

Despite all of the mentioned advancements, the problem is

still computationally heavy due to the high cost of solving

large linear systems. Motivated by that, Heide et al. [12]

propose a new objective function which transforms the o-

riginal constrained problem into an unconstrained problem

by encoding the constraints in the objective using some in-

dicator functions. Their proposed objective is further split

to a set of convex functions that are easier to optimize sep-

arately. Moreover, they propose a diagonal mask matrix to

the objective to handle boundary artifacts that materialize in

the Fourier domain. In addition, Vorsel et al. [22] propose

a non-iterative method in the Fourier domain for computing

the inversion of the convolutional operator using the matrix
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inversion lemma. Finally, a recent work of Bibi et al. [4]

propose a new formulation of CSC that can handle an ar-

bitrary order tensor of data. This, in return, is important to

learning multidimensional dictionaries and sparse codes for

the reconstruction of multi-dimensional data.

In this work, we propose a novel constrained patch learn-

ing CSC model, which learns parametric filters for line

drawings reconstruction. To the best of our knowledge,

we are the first to introduce a constrained parametric

model for CSC. Inspired by [12], we solve the constrained

problem using the fixed point strategy, which leads to two

subproblems that can be solved in the Fourier domain. Each

subproblem is approached using ADMM. As mentioned

earlier, our constrained model is expected to facilitate

sketch vectorization, synthesis and manipulation which are

vital for sketch based computer graphics applications.

Sketch Synthesis and Stroke Manipulation. To start

any sketch manipulation process, a method to describe a

sketch in terms of its stroke segments is the first stage in the

pipeline. An example of an automatic sketch vectorization

method is by Noris et al. [20]. They propose an automated

method to vectorize clean line drawings as connected

Bézier curve paths. Their approach is based on extracting

strokes centerlines as indicated from the image gradient

along a stroke segment. This problem is not trivial to solve

geometrically because even when input drawings are com-

prised of clean and high-contrast lines, inherent ambiguities

make vectorization difficult. Consequently, researchers

tend to rely on off-the-shelf commercial products, as what

is found in Adobe illustrator [1]. Other approaches are

based on collecting sketches digitally using the Wacom

device, which makes accessing per stroke information

and expressing it geometrically a straight forward process

[19, 3]. Our proposed work can be viewed as an addition

to this rich literature. It provides a fully automated model

to represent a sketch geometrically and to provide an

automatic mapping to where strokes should be placed in

the sketch utilizing the unique formulation of CSC. This

will enable more efficient and reliable sketch style analysis,

synthesis and manipulation.

Automatic stroke manipulation and regeneration has been

researched for a few decades. Thus, it is impossible to cov-

er every related work. For a more detailed representation

of the literature landscape, we refer the reader to two sur-

vey papers [18, 14]. They are concerned with artistic sketch

regeneration and stylization techniques using 2D input im-

ages or videos of non-photo realistic rendering (NPR).

3. Constrained Parametric CSC Optimization

In this section, we give a brief overview of the standard C-

SC model. Then, we reformulate the problem to include

our proposed parametric projection constraint. In our work,

we consider the CSC problem with circular boundary con-

ditions as discussed in the work of Brisow et al. [5].

3.1. Standard CSC Model

The CSC problem is generally expressed in Eq (1), where

dk ∈ R
M are the vectorized 2D patches representing K

dictionary elements, and zk ∈ R
D are the vectorized sparse

maps corresponding to each of the dictionary elements. The

data term represents the image x ∈ R
D as the sum of

2D convolutions of the dictionary elements with the sparse

maps, and the ℓ1 term is added to enforce sparsity onto the

feature maps with β controlling the level of sparsity. The

CSC objective function can be easily extended to multiple

training images, where K sparse maps are learned for each

image and all images share the same K dictionary elements.

The objective in Eq (1) is not convex, yet it is bi-convex.

So, solving it for one variable while keeping the other fixed

leads to two convex subproblems: the coding subproblem

and the dictionary learning subproblem.

Learning Subproblem. The learning subproblem is shown

in Eq (2). It learns the dictionary elements for a set of sparse

feature maps.

argmin
d

1

2
‖x− Zd‖22 s.t. ‖dk‖

2
2 ≤ 1 ∀k (2)

Here, Z = [Z1 . . .ZK ] is a concatenation of Toeplitz

convolution matrices of the sparse maps, and d =
[dT

1 . . .dT
K ]T is a concatenation of all the dictionary ele-

ments.

Coding Subproblem. The coding subproblem is detailed

in Eq (3). It computes optimal sparse maps for a set of

dictionary elements.

argmin
z

1

2
‖x−Dz‖22 + β‖z‖1 (3)

Similar to above, D = [D1 . . .DK ] is a concatenation of

Toeplitz convolution matrices of the dictionary elements,

and z = [zT1 . . . zTK ]T is a concatenation of the vectorized

sparse maps.

One approach to solve each of the above subproblems is

to cast it in an ADMM framework. Also, it can be solved

efficiently in the Fourier domain. For more details about

the CSC model and for a discussion on various methods to

solve it, we refer the reader to the work of Bristow et al. [6].

3.2. Constrained Parametric CSC

In this section, we describe the variations we make on the

standard CSC model to solve for a constrained parametric

CSC (i.e. to allow for filters to be constrained to a set of

parametric curves). This reformulation enforces geometri-

cal properties on the filters during the training step. As we
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Figure 2: The work flow of parametric curve projection for each filter patch: (1) given an input filter patch T ;(2) extract the

largest set of connected pixels with intensity values above a threshold and then extract its centerline; (3) apply cubic Bézier

curve fitting; (4) copy the intensity values of pixels where the fitted curve located at T to the generated curve patch; (5) apply

quadratic projection to the curve patch.

explain the model, it will become obvious how such refor-

mulation enables a parametric curve representation of the

reconstructed line drawings. We reformulate the CSC prob-

lem by adding a parametric constraint as follows:

argmin
dk,zk ∀k

1

2
‖x−

K
∑

k=1

dk ∗ zk‖
2
2 + β

K
∑

k=1

‖zk‖1

s.t. dk ∈ Sb; ∀k ∈ {1, ...,K}

(4)

This constraint is added to the learning subproblem so that

the learned dictionary patches are geometrically constrained

to belong to a set of parametric curves Sb. We define the set

of parametric curves as follows:

Sb =
{

a : ‖a‖22 ≤ 1 s.t. support of a ∈ f(t)
}

, (5)

where the support of a denotes the set of pixel indices with

non-zero intensity in a and f(t) is the cubic Bézier curve

function in Eq (6).

f(t) =

3
∑

i=0

piB
3
i (t), t ∈ [0, 1] , (6)

where pi is the ith control point of the 2D curve,

and B3
i (t) is the cubic Bernstein polynomial (i.e.

(1 − t)3, 3t(1 − t)2, 3t2(1 − t), t3) [23]. By ma-

nipulating the control points of a Bézier curve, it can be

intuitively deformed. Cubic Bézier curves are enough to

model various curve shapes and only four control points

{pi}
3
i=0 are needed as shown in Figure 3. Unlike normal

functions, parametric Bézier curves do not define a y

coordinate in terms of an x coordinate. Instead, they link

the values to control variables. If we vary the value of t,

then with every change we get two new values, which we

can use as (x, y) coordinates in the curve plot. The variable

t can be viewed as the variable which we sample the curve

along as its value changes over a defined range [9]. We

choose cubic Bézier curves to represent underlying strokes

in line drawings, since they are widely used in computer

graphics and geometric modeling applications that focus

Figure 3: Examples of cubic Bézier curves. Four control

points are enough to represent the curve.

on smooth curves [23, 9].

Learning Subproblem. Changes on the standard CSC are

only reflected in the dictionary learning subproblem. The

learning subproblem corresponding the constrained para-

metric CSC is shown in Eq (7). The inequality constraint on

the dictionary elements shown in Eq (1) is now embedded

as part of the parametric projection proximal of the set Sb as

defined earlier in Eq (5). To be able to solve this subprob-

lem using ADMM, we add the second equality constraint

and introduce an auxiliary variable u as follows:

argmin
d,u

1

2
‖x− Zd‖22 s.t.

{

uk ∈ Sb

uk = dk

∀k (7)

Using an indicator I for the constraint, we can move it into

the objective yielding the following objective with one con-

straint, which constitutes our proposed constrained para-

metric CSC:

argmin
d,u

1

2
||x− Zd||22 +

K
∑

k=1

I{uk∈Sb}

s.t. dk = uk; ∀k ∈ {1, ...,K}

(8)

To apply ADMM to Eq (8), we define the augmented La-
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gragian function L as follows:

L (d,u,λ) :=
1

2
||x− Zd||22 +

K
∑

k=1

I{uk∈Sb}

+ λ
T (u− d) +

ρ

2
||u− d||22

(9)

where λ is the Lagrangian dual variable of the constrain-

t. The iterative ADMM steps to minimize Eq (9) w.r.t. the

primal variables (d,u) are described in Algorithm1. AD-

MM updates are performed by optimizing for the variables

d and u one at a time, while keeping the other. Then, the

dual variable λ is updated using gradient ascent. Now, we

list the optimization solutions to update the primal variables

in the ADMM algorithm.

Algorithm 1 ADMM for learning subproblem

1: Set ADMM optimization parameter ρ > 0
2: Initialize variables d, u, λ

3: while not converged do

4: dt+1 = argmind
1

2
||x−Zd||22−λ

Td)+ ρ
2
||u−d||22

5: ut+1 = prox f
ρ

(

dt+1 + λ
t

ρ

)

where f(u) =
∑K

k=1
I{uk∈Sb}

6:

7: λ
t+1 = λ

t + ρ
(

ut+1 − dt+1
)

8: ρ = ρ+ c

9: Output solution variables

Update dt+1: At the tth iteration, the update of this variable

is a simple least squares problem, which has the following

solution: dt+1 =
(

ZTZ+ ρI
)−1 (

ZTx+ λ
t + ut

)

. We

initialize d as randomly generated parametric curves.

Update ut+1: Updating this variable is done through the

proximal operator g(.) for the indicator function of set Sb.

Mathematically, the underlying optimization is:

g(T) = argmin
u

ρ

2
‖u−T‖22 +

K
∑

k=1

I{uk∈Sb}

where T = dt+1 + λ
t

ρ
. Consequently, the goal of our

parametric projection proximal operator g(.) is to find

the best cubic Bézier curve, which defines the support

of an image patch closest in intensity to T. In this way,

we are geometrically guiding the indices of the non-zero

elements of the learned filters to form a proper Bézier

curve. To achieve that, we develop a method to perform

this parametric projection to a Bézier curve, as illustrated

in Figure 2. First, we extract the largest set of connected

pixels with intensities above the average intensity of T. We

then apply morphological skeletonization [15] to extract the

centerline of those high intensity pixels. This will generate

a skeleton representation of the extracted pixels. Next, we

fit a cubic Bézier curve on the extracted skeleton using Eq

(6) and then copy the intensity values at these pixels from

T. Lastly, we project the resulting image patch onto the

unit ball to enforce that ‖uk‖
2
2 ≤ 1; ∀k ∈ {1, ...,K}. This

ensures that the solution vector is of the proper scale. It is

important to mention that the set Sb is a non-convex set,

thus, the parametric projection is not necessarily globally

optimal. However, our experiments, as we demonstrate

later, show that our multi-stage technique to define the

proximal operator g(.) converges to feasible solutions.

Coding Subproblem. The coding subproblem of the con-

strained parametric CSC is the same as in the standard CSC

discussed in Section 3.1. It is solved by applying ADM-

M where the update steps involve solving a linear system

and a proximal operator for the ℓ1 norm. The linear sys-

tem is solved efficiently in the Fourier doamin making use

of the circulant structure of the convolution matrices. The

proximal operator, on the other hand, is solved using soft-

thresholding. We refer the reader to the work of Heide et al.

[12] for details on how to solve the coding subproblem and

for overall complexity analysis.

4. Results

In this section, we provide an assessment and a discussion

of the proposed constrained parametric CSC. We start with

an overview of the implementation details and the param-

eters selected throughout our experiments. Then, we dis-

cuss the convergence of our technique and provide visual

evaluation of the learned parametric filters, as compared to

standard CSC, along with image reconstruction quality. To-

wards the end of this section, we present some qualitative

examples of sketch synthesis and manipulation using our

parametric model.

4.1. Implementation Details

The line drawings used in our experiments are from the

free style line drawings dataset of Shaheen et al. [21]. It

comprises 70 clean line drawings of multiple experienced

artists. Before learning the dictionary elements, we ap-

ply contrast normalization to the sketch images to generate

normalized gray-scale images with black background and

white sketch drawings in the foreground. All these images

of 300 × 300 spatial resolution. It is important to mention

that the quality of sketches used to learn the dictionary el-

ements is crucial. The technique performs best when using

high resolution images of line drawings to learn the dictio-

nary.

The number of dictionary elements is chosen to be K =
100, where each element has a spatial size of 31×31 pixels.

We found that this size of individual dictionary elements is
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representative enough of the different curves in a line draw-

ing, thus, allows for a various collection of Bézier curves

to be fit to the learned image filters. Smaller dictionary el-

ements, on the other hand, lead to non-significant details

per dictionary patch while larger filter sizes carry lots of de-

tails such that it is impossible to fit a single Bézier curve

per dictionary patch. We initialize each dictionary element

as a normalized image with black background and a white

foreground with a support that traces a randomly generated

Bézier curve.

Similar to unconstrained CSC, the sparsity coefficient β

controls the level of sparsity in the coding sub-problem.

High sparsity (i.e. large β) ensures that only a sparse num-

ber of strokes (dictionary elements) are placed in the re-

constructed sketch. In training, this leads to a better geo-

metrical representation of the sketch; however, the sketch

reconstruction quality suffers. On the other hand, low spar-

sity (i.e. small β) leads to less geometrically representative

strokes but better reconstruction quality. Through cross-

validation, we find β = 0.6 strikes a reasonable trade-off

between representative parametric curves and reconstruc-

tion quality. Moreover, for the ADMM learning steps we

start with a value of ρ = 0.1 which increases by 2% at ev-

ery iteration.

Figure 4: An example of reconstructing a circle using our

constrained parametric CSC. Filters in the last iteration have

deformed to a new set of curves that are clearly represent-

ing the reconstructed image and describe it geometrically.

Furthermore, the reconstructed image quality is preserved

when compared with the input image.

4.2. Simple Reconstruction Example

In Figure 4, we present an example for constructing a sim-

ple primitive shape (a circle) using K = 4 dictionary el-

ements using our constrained parametric CSC model. S-

tarting with initial dictionary patches that are almost linear

Bézier curves, it is obvious how the dictionary patches in

the last iteration have changed to represent a new set of

curves that are of better representation power for the end

shape (a circle). Using this simple example, we demon-

strate how our constrained parametric CSC model works in

general. The learned parametric filters can now be used to

describe the reconstructed image geometrically.

4.3. Evaluation of Constrained Parametric CSC

Multiple intuitive questions arise while discussing our pro-

posed parametric CSC, which we address in this section.

First, we study the reconstruction quality of the parametric

CSC and show how the dictionary elements look like upon

convergence. As illustrated in the first 2 columns of Figure

5, learned dictionary elements (strokes) change significant-

ly when compared against the initial random curves. Such

change yields to dictionary elements that represent the im-

age geometrically through the parametrically defined filters.

Also, we see that the reconstruction quality is good with a

Peak Signal-to-Noise Ratio (PSNR) of 29dB.

We also compare our parametric model with standard C-

SC. Dictionary elements learned on the standard model are

illustrated in Figure 5. It is obvious that they do not car-

ry clear geometric information evident in line drawings and

they cannot be used for parametric representation of sketch-

es. However, the reconstruction quality of the standard C-

SC is higher than our parametric CSC with PSNR=40dB.

This is expected, since standard CSC ideally offers a lower

bound objective to that of our constrained parametric CSC.

It is important to mention that all experiments are conducted

at the same sparsity level (of 60%) for the sparse codes.

To evaluate the need for applying the proximal operator g(.)
within the ADMM framework, we apply this operator to fit

cubic Bézier curves to the filters learned by standard CSC.

As shown in Figure 5, these learned filters are not represen-

tative of the content of the line drawing, since it is hard to

fit one curve to each filter generated through standard CSC.

Projecting these learned filters onto Sb generates subpar re-

sults that are not reflective of the strokes drawn by the artist.

In addition, the reconstruction quality using these projected

filters is 18dB lower than our constrained parametric CSC.

Therefore, we conclude that our method is capable of gener-

ating high reconstruction quality line drawings, while con-

straining its filters to be parametric Bézier curves.

4.4. Convergence

Our constrained parametric CSC optimization is non-

convex in general. This is because the set Sb in Eq (7) is

4429



Learned dic�onary elements in the last 

itera�on Original CSC 

Learned dic�onary elements in the last 

itera�on Original CSC after fit�ng 

Input Images
Reconstructed Images 

Constrained Parametric CSC, PSNR=29 dB

Reconstructed Images

Standard CSC ,PSNR=40 dB

Reconstructed Images

Original CSC After Fit�ng, PSNR=11 dB

Ini�al randomly generated 

dic�onary elements K=100

Learned dic�onary elements in the last 

itera�on of Constrained Parametric CSC

Figure 5: A comparison of the the dictionary learning elements and the quality of the reconstructed images between (1) the

constrained parametric CSC, (2) the standard CSC and (3) the standard CSC with curves fitting in the last iteration.

non-convex, i.e. the convex combination of any two patches

with cubic Bézier curve support does necessarily generate

a patch whose support is a cubic Bézier curve. Despite this

non-convexity, our experiments show that the ADMM itera-

tions do empirically converge (refer to Figure 6). The plots

in Figure 6 are generated when constructing multiple line

drawings with 300×300 pixel resolution and with K = 100
dictionary elements of resolution 31× 31 pixels, similar to

Figure 5. The first plot on top shows how the overall ob-

jective value of parametric CSC decreases as the fixed point

(or alternative optimization) iterations progress, refer to Eq

(4). The second plot is an evidence of convergence for a

single learning subproblem that uses ADMM, Eq (8). The

learning objective eventually decreases and then saturates

after a certain number of iterations. The early increase in

this plot is due to the fact that the current solution is not

feasible, i.e. the variables d and u are far away from each

other. This is clear from the bottom plot, which measures

how the primary variables d and u are getting closer as the

ADMM iterations progress for the learning subproblem. As

this distance measure reaches zero, the resulting variables

are guaranteed to be the same, thus, reaching a feasible so-

lution to the original constrained problem in Eq (7).

As in any non-convex optimization problem, initialization

of the optimization variables is an important element to

solve the problem so it converges to a feasible solution. Our

parametric optimization, on the other hand, is not signifi-

cantly sensitive to initialization. This is evident on how our

optimization is able to converge and generate promising re-

sults when using randomly generated cubic Bézier curves

images as its initial dictionary elements. However, the clos-

er the initialized parametric filters to the actual stroke of

the drawings, the faster the convergence and the higher the

overall reconstruction quality. Lastly, we leave the proof

of convergence of ADMM on this non-convex problem to

future work.

4.5. Qualitative Sketch Manipulation Results

As mentioned earlier in Section 1, parametric representation

of sketches is vital to enable for automatic sketch synthesis

and manipulation. Here we demonstrate a couple of line

drawing stylization examples (i.e. embedding a new style

into a line drawing) on one drawing as shown in Figure 7.

Given the parametric filters learned by our constrained para-

metric CSC model, as in Figure 5, we can now directly ap-

ply various geometric transformations to those parametric

curves. This will generate a set of new dictionary elements

which we use to reconstruct the same line drawing using

the same sparse feature maps inferred from the constrained

parametric CSC model. Consequently, this will embed a

new style to the strokes of the line drawing.

The first stylization example we include in this work aims to

increase the thickness of strokes in the sketched line draw-

ing. This is simply achieved by increasing the thickness of
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Figure 6: Convergence experiments. The first plot shows

how the objective function value decreases over alternat-

ing optimization iterations. The second plot shows how the

ADMM subproblem objective value decreases over the dic-

tionary learning iterations and then saturated. The third plot

shows how the primary variables u and d are getting closer

to each other until the difference between them is almost 0.

the parametric curve in each patch by generating the same

curve and take two copies of it and place them one pixel

above and one pixel below the original curve. The process

of shifting and copying the curve can be repeated as many

times as needed around the original parametric curve until

getting the desired thickness. Then we replace the paramet-

ric learned filters with the modified ones and reconstruct the

line drawings using the earlier inferred feature maps to em-

bed this new style. Thickness stylization result is shown on

the image labeled as Stylized Image 1 of Figure 7. The

second example is generated by replacing each parametric

curve with a sine wave over the curve path. This can simply

be accomplished by replacing each parametric curve f(t) in

Eq (6) with f(t)+sin(t). Similarly, this will generate a new

set of dictionary elements which are used to reconstruct the

line drawing to embed the new style. This example is shown

on the image labeled as Stylized Image 2 of Figure 7.

Input Image Reconstructed Image

Stylized Image 1 Stylized Image 2

Figure 7: Examples demonstrating how sketch stylization

and manipulation is enabled upon having parametric repre-

sentation of sketches.

5. Conclusion and Future Work

In this work, we present an automatic method for represent-

ing a sketch geometrically as a set of parametric curves. It is

based on utilizing the well known convolutional sparse cod-

ing (CSC) model. This is based on our observation that CSC

is closely related to the line drawing process. The ith map

zi can be viewed as a sparse score map, which scores each

pixel based on whether the filter or stroke di is localized

there or not. This scenario resembles how one would draw

a sketch, i.e. making the decision what stroke to draw and

where to place it. To fit for the task of line drawing, we re-

formulate the standard CSC model such that the dictionary

elements are constrained to belong to a set of images, whose

support is a parametric cubic Bézier curve. As such, sketch-

es are represented geometrically through the learned CSC

filters. Such reformulation leads to a non-convex learning

subproblem of the CSC, which we solve using ADMM. Al-

though convergence is not theoretically guaranteed in this

non-convex case, experiments show that our algorithm con-

verges to a good solution.

For future work, we aim to utilize the learned parametric

dictionary elements to help design fully automated tech-

niques for sketch synthesis and style transfer.
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