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Abstract

Vehicle re-identification is an important problem and
has many applications in video surveillance and intelligent
transportation. It gains increasing attention because of
the recent advances of person re-identification techniques.
However, unlike person re-identification, the visual differ-
ences between pairs of vehicle images are usually sub-
tle and even challenging for humans to distinguish. In-
corporating additional spatio-temporal information is vi-
tal for solving the challenging re-identification task. Exist-
ing vehicle re-identification methods ignored or used over-
simplified models for the spatio-temporal relations between
vehicle images. In this paper, we propose a two-stage
framework that incorporates complex spatio-temporal in-
formation for effectively regularizing the re-identification
results. Given a pair of vehicle images with their spatio-
temporal information, a candidate visual-spatio-temporal
path is first generated by a chain MRF model with a
deeply learned potential function, where each visual-spatio-
temporal state corresponds to an actual vehicle image with
its spatio-temporal information. A Siamese-CNN+Path-
LSTM model takes the candidate path as well as the pair-
wise queries to generate their similarity score. Extensive
experiments and analysis show the effectiveness of our pro-
posed method and individual components.

1. Introduction

Vehicle recognition is an active research field in com-
puter vision, which includes applications such as vehicle
classification [42, 35, 26], vehicle detection [31], and ve-
hicle segmentation [30]. Vehicle re-identification (re-ID),
which aims at determining whether two images are taken
from the same vehicle, has recently drawn increasing atten-
tion from the research community [10, 45, 27]. It has im-
portant applications in video surveillance, public security,
and intelligent transportation.

Derived from person re-identification algorithms[1, 3,
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Figure 1: Illustration of spatio-temporal path information
as important prior information for vehicle re-identification.
(a) For vehicles with the same ID at A and C, it has to be
observed at B. (b) If a vehicle with similar appearance and
proper time is not observed at B, vehicles at A and C are
unlikely to be the same vehicle.

12], most existing vehicle re-identification approaches [10,
45, 27] rely only on appearance information. Such a prob-
lem setting is particularly challenging, since different cars
could have very similar colors and shapes, especially for
those belonging to the same manufacturer. Subtle cues for
identification, such as license plates and special decora-
tions, might be unavailable due to non-frontal camera view-
points, low resolution, or poor illumination of the vehicle
images. Therefore, it is not practical to use only appearance
information for accurate vehicle re-identification.

To cope with such limitations, there are preliminary at-
tempts on incorporating spatio-temporal information of the
input images for more accurate vehicle re-identification. In
[28], Liu et al. utilized the time and geo-location informa-
tion for each vehicle image. A spatio-temporal affinity is
calculated between every pair of images. However, it favors
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pairs of images that are close to each other in both spatial
and temporal domains. Such a spatio-temporal regulariza-
tion is obviously over-simplified. More importantly, vital
spatio-temporal path information of the vehicles provided
by the dataset is ignored. The necessity of such spatio-
temporal path prior is illustrated in Figure 1. If a vehicle
is observed at both camera A and C, the same vehicle has
to appear at camera B as well. Therefore, given a pair of
vehicle images at location A and C, if an image with sim-
ilar appearance is never observed at camera B at a proper
time, their matching confidence should be very low.

In this paper, we propose to utilize such spatio-temporal
path information to solve the problem. The main contribu-
tion of our method is two-fold. (1) We propose a two-stage
framework for vehicle re-identification. It first proposes
a series of candidate visual-spatio-temporal paths with the
query images as the starting and ending states. In the sec-
ond stage, a Siamese-CNN+Path-LSTM network is utilized
to determine whether each query pair has the same vehi-
cle identity with the spatio-temporal regularization from the
candidate path. In this way, all the visual-spatio-temporal
states along the candidate path are effectively incorporated
to estimate the validness confidence of the path. Such
information is for the first time explored for vehicle re-
identification. (2) To effectively generate visual-spatio-
temporal path proposals, we model the paths by chain MRF,
which could be optimized efficiently by the max-sum algo-
rithm. A deep neural network is proposed to learn the pair-
wise visual-spatio-temporal potential function.

2. Related Works

Vehicle re-identification. Because of the quick ad-
vances of person re-identification approaches, vehicle re-
identification started to gain attentions in recent years. Feris
et al. [10] proposed an approach on attribute-based search
of vehicles in surveillance scenes. The vehicles are classi-
fied by different attributes such as car types and colors. The
retrieval is then conducted by searching vehicles with simi-
lar attributes in the database. Dominik et al. [45] utilized 3D
bounding boxes for rectifying car images and then concate-
nated color histogram features of pairs of vehicle images.
A binary linear SVM is trained to verify whether the pair
of images have the same identity or not. Liu et al. [27, 28]
proposed a vehicle re-identification dataset VeRi-776 with
a large number of cars captured by 20 cameras in a road
network. Vehicle appearances, spatio-temporal information
and license plates are independently used to learn the sim-
ilarity scores between pairs of images. For the appearance
cues, a deep neural network is used to estimate the visual
similarities between vehicle images. Other vehicle recog-
nition algorithms mainly focused on fine-grained car model
classification [35, 26, 42] instead of identifying the vehicles
with the same or different identities.

Deep neural networks. In recent years, convolutional
deep neuron networks have shown their effectiveness in
large-scale image classification [22], object detection [23]
and visual relationship detection [25]. For sequential data,

the family of Recurrent Neural Networks including Long-
Short Term Memory Network(LSTM) [14] and Gated Re-
current Neural Network [4] have achieved great success
for tasks including image captioning [18], speech recogni-
tion [11], visual question answering [2], person search [24],
immediacy prediction [5], video classification [44] and
video detection [17]. These works show that RNN is able
to capture the temporal information in the sequential data
and learn effective temporal feature representations, which
inspires us to use LSTM network for learning feature repre-
sentations for classifying visual-spatio-temporal paths.

Person re-identification. Person re-identification is
a challenging problem that draws increasing attention in
recent years [1, 3, 12, 37]. State-of-the-art person re-
identification methods adopted deep learning techniques.
Ahmed et al. [1] designed a pairwise verification CNN
model for person re-identification with a pair of cropped
pedestrian images as input and employed a binary verifica-
tion loss function for training. Xiao et al. [40, 41] trained
CNN with classification loss to learn the deep feature of per-
son. Ding et al. [8] and Cheng et al. [3] trained CNN with
triplet samples and minimized feature distances between the
same person and maximize the distances between different
people. Besides the feature learning, a large number of met-
ric learning methods for person re-identification were also
proposed [34, 32, 21, 38, 43]. For person re-identification
in multi-camera system, Hamdoun et al. [12] proposed an
approach that matches signatures based on interest-points
descriptors collected on short video sequences for person
re-identification scheme in multi-camera surveillance sys-
tems.

Spatio-temporal relations. Spatio-temporal relations
are widely exploited for objects association in multi-camera
systems [12, 39, 7, 19, 16, 9, 33], Ellis et al. [9] presented
a method to learn both the topological and temporal tran-
sitions from trajectory data which are obtained indepen-
dently from single view target tracking in a multi-camera
network. Neumann et al. [33] presented an approach that
combines the structure and motion estimation in a unified
framework to recover an accurate 3D spatio-temporal de-
scription of an object. Loy et al. [29] proposed an approach
for multi-camera activity correlation analysis which esti-
mates the spatial and temporal topology of the camera net-
work.

3. Approach

For vehicle re-identification with computer vision, cam-
eras in a road network are needed to capture images of
passing-by vehicles. Due to factors including inappropri-
ate camera viewpoints, low resolution of the images and
motion blurs of vehicles, car plate information might not
always be available for solving the task. Given a pair of
vehicle images with their spatio-temporal information, the
similarity score between the two vehicle images is needed
to determine whether the two images have the same iden-
tity. Each image is associated with three types of informa-
tion, i.e., visual appearance, the timestamp, and the geo-
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Figure 2: Illustration of the overall framework. Given a pair of vehicle images, the visual-spatio-temporal path proposal is
generated by optimizing a chain MRF model with a deeply learned potential function. The path proposal is further validated
by the Path-LSTM and regularizes the similarity score by Siamese-CNN to achieve robust re-identification performance.

locatoin of the camera. We call such information the visual-
spatio-temporal state of the vehicle images. Our proposed
approach takes two visual-spatio-temporal states as input
and outputs their similarity score with a two-stage frame-
work, which is illustrated in Figure 2. In stage 1, instead of
just considering the simple pairwise relations between two
queries, our proposed approach first generates a candidate
visual-spatio-temporal path with the two queries as starting
and ending states. In stage 2, the candidate visual-spatio-
temporal path acts as regularization priors and a Siamese-
CNN+path-LSTM network is utilized to determine whether
the queries have the same identity.

3.1. Visualspatiotemporal path proposals

Given a pair of queries, existing vehicle or person re-
identification algorithms mainly considers the pairwise re-
lations between the queries, e.g., the compatibility of the
visual appearances and spatio-temporal states of the two
queries. As illustrated in Figure 1, such pairwise relations
are usually over-simplified and cannot effectively distin-
guish difficult cases in practice. The visual-spatio-temporal
path information could provide vital information for achiev-
ing more robust re-identification. The problem of iden-
tifying candidate visual-spatio-temporal paths is modeled
as chain Markov Random Fields (MRF). Given a pair of
queries, candidate spatial paths are first identified with the
their geo-locations as starting and ending locations. The
visual-spatio-temporal states along the spatial paths are then
optimized with the deeply learned pairwise potential func-
tion to generate candidate visual-spatio-temporal paths.

To obtain candidate spatial paths for a pair of starting and
ending locations, all possible spatial paths that the same ve-
hicle has passed by are collected from the training set. For
a large road network, the multiple candidate spatial paths
between every pair of locations could be pre-collected.

3.1.1 Chain MRF model for visual-spatio-temporal
path proposal

From the set of candidate spatial paths, our approach pro-
poses one candidate visual-spatio-temporal path for regu-
larizing the vehicle re-identification result. The problem of
identifying visual and temporal states along the candidate
spatial paths is modeled as optimizing chain MRF models.

Let N denote the number of cameras on a candidate spa-
tial path, where each of the N cameras is associated with
one of the random variables X = {X1, X2, · · · , XN} on
a chain MRF model. For the i-th random variable (cam-
era) Xi, its domain is the set of all k visual-spatio-temporal
states (all k images with their spatio-temporal informa-
tion) at this camera, Si = {si,1, · · · , si,k}, where si,j=
{Ii,j , ti,j , li} is a triplet of the jth visual image at the ith
camera, its timestamp ti,j , and the camera location li.

Let p and q represent the visual-spatio-temporal states
of the two queries. Obtaining the optimal visual-spatio-
temporal path based on a candidate spatial path can be
achieved by maximizing the following distribution,

p(x|x1 = p, xN = q) =

1

Z
ψ(p, x2)ψ(xN−1, q)

N−2
∏

i=2

ψ(xi, xi+1), (1)

where ψ(xi, xi+1) is the pairwise potential function of xi
and xi+1 being of the same car. Ideally, if xi and xi+1 de-
note the states with the same vehicle identity, a proper po-
tential function would have a large value, while small oth-
erwise. The ψ function is learned as a deep neural network
and is introduced in details in the next subsection.

The above probability needs to be maximized with
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proper time constraints,

x
∗ = argmax

x

p(x|x1 = p, xN = q), (2)

subject to ti,k∗

i
≤ ti+1,k∗

i+1
∀i ∈ {1, · · · , N − 1}, (3)

where k∗i and k∗i+1 represent the indices of the optimal
visual-spatio-temporal states for xi and xi+1, respectively.
The above constraints state that the obtained visual-spatio-
temporal path must be feasible in time, i.e., the timestamps
of vehicle images must be keep increasing along the path.

The distribution can be efficiently optimized by the max-
sum algorithm, which is equivalent to dynamic program-
ming for chain models [6]. The maximum of the probability
can be written as,

max
x

p(x|x1 = p, xN = q) (4)

=
1

Z
ψ(p, x2)ψ(xN−1, q)max

x2

· · ·max
xN−1

N−1
∏

i=2

ψ(xi, xi+1)

(5)

=
1

Z
max
x2

[

ψ(p, x2)ψ(x2, x3)

[

· · ·max
xN−1

ψ(xN−1, xq)

]

· · ·

]

(6)

After obtaining the optimal state for each random vari-
able (camera) on the candidate spatial path, the candidate
visual-spatio-temporal path is generated.

For a pair of queries, multiple candidate visual-spatial-
temporal paths are obtained. we define an empirical aver-
aged potential for the optimed solution of each candidate
path,

S(x∗) =
1

N − 1

(

ψ(p, 2) +

N−2
∑

i=2

ψ(x∗i , x
∗

i+1) + ψ(x∗N−1, q)

)

,

(7)

where 1/(N−1) normalizes the overall confidence for can-
didate visual-spatio-temporal paths with different lengths.
Then we choose the visual-spatio-temporal proposal among
the candidate paths.

For every pair of queries, even if they do not have the
same identity, the proposed algorithm always tries to gener-
ate the most feasible path in terms of both visual and spatio-
temporal compatibility between neighboring cameras as the
path proposals. Some examples of the candidate visual-
spatio-temporal paths are shown in Figure 3.

For efficiency, when generating visual-spatio-temporal
paths for all state pairs in the dataset, our method utilizes
a systematic way to avoid redundant computation. For in-
stance, suppose cameras A and C have two possible paths
A−B1 − C and A−B2 − C. When calculating path pro-
posals between queries on cameras A and C, the sub-paths
A−B1 and A−B2 are also computed during the computa-
tion process, and can be reused by other queries on A−B1

and A − B2. The details of time complexity analysis will
be introduced in Section 4.4.
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Figure 3: An example visual-spatio-temporal path proposal
on the VeRi dataset [28] by our chain MRF model.
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(Δ�, Δ�) MLP
Spatiotemporal 

Similarity

Figure 4: A Siamese-CNN is learned as the pairwise poten-
tial function for the chain MRF model, which takes a pair
of visual-spatio-temporal states as inputs and estimates their
pairwise similarity.

3.1.2 Deep neural networks as pairwise potential func-
tions

The pairwise potential function ψ(xi, xi+1) in (1) evaluates
the compatibility between two visual-spatio-temporal states
for neighboring random variables xi and xi+1. We learn the
potential function ψ as a two-branch deep neural network,
whose structure is illustrated in Figure 4. The visual branch
and spatio-temporal branch estimate pairwise compatibility
between pairwise visual and spatio-temporal states.

The visual branch (Siamese-Visual) is designed as a
Siamese network with a shared ResNet-50 [13]. It takes
two images Ii,k and Ii+1,j at cameras xi and xi+1 as in-
puts and utilizes features from the “global pooling” layers
to describe their visual appearances. The visual similarity
between the two images is computed as the inner-product
of the two “global pooling” features followed by a sigmoid
function.

The other branch computes the spatio-temporal compat-
ibility. Given the timestamps {ti,k, ti+1,j} and the two geo-
locations {li, li+1} of at cameras i and i+ 1, the input fea-
tures of the branch are calculated as their time difference
and spatial difference,

∆ti,i+1(k, j) = ti+1,j − ti,k, (8)

∆di,i+1 = |li+1 − li|, (9)
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(b) Valid path. Empirical averaged potential: 0.916
Figure 5: Examples of empirical averaged potential favor-
ing longer paths. The invalid longer path in (a) has a higher
averaged potential than the valid path in (b).

where ti,k denotes the timestamp of the k-th state
at camera i. The scalar spatio-temporal compatibil-
ity is obtained by feeding the concatenated features,
[∆ti,i+1(k, j),∆di,i+1]

T , into a Multi-Layer Perception
(MLP) with two fully-connected layers and a ReLU non-
linearity function after the first layer and a sigmoid function
after the second layer.

The outputs of the two branches are concatenated and in-
put into a 2× 1 fully-connected layer with a sigmoid func-
tion to obtain the final compatibility between the two states,
which takes all visual, spatial and temporal information into
consideration.

For training the pairwise potential network, Siamese-
CNN, we first pretrain the ResNet-50 network to classify
vehicle identity with the classification cross-entropy loss
function. All pairs of visual-spatio-temporal states at neigh-
boring random variables (cameras) are then collected for
finetuning the whole network. If a pair has the same vehi-
cle identities, they are treated as positive samples, while the
pairs with different identities are treated as negative ones.
The positive-to-negative sampling ratio is set to 1:3. The
two-branch network is trained with a 0-1 cross-entropy loss
function and stochastic gradient descent.

3.2. SiameseCNN+PathLSTM for query pair clas
sification

Our proposed candidate visual-spatio-temporal path pro-
posal algorithm generates the most feasible path for each
query pair, even if they do not have the same identity. One
naive solution of ranking the similarities of query pairs
would be directly treating their maximum probability (Eq.
(1)) or the empirical averaged potential (Eq. (7)) as the final
similarity scores for ranking. However, there are limitations
when either of the strategies is adopted. For calculating the
maximum probability in Eq. (1), the partition function Z
needs to be calculated, which is generally time-consuming.
For the empirical averaged potential in Eq. (7), it is biased
and would favor longer paths. An exmaple is illustrated in
Figure 5. Given two pairs of negative queries with different
path lengths, since the path proposal algorithm tries to gen-
erate most feasible paths for both pairs, there might be only

LSTM

Visual
Differences

Spatio-temporal
Differences

LSTM

Feature
Embedding

�"
∗

�"$%
∗

�"$&
∗

�"$'
∗

LSTM

Figure 6: The network structure of the Path-LSTM. It takes
visual and spatio-temporal differences of neighboring states
along the path proposal as inputs, and estimates the path
validness score.

one identity switch along each path. The empirical averaged
confidence for the longer path would be higher because the
low pairwise confidence would be diminished by a larger
N .

Given a pair of queries, we utilize their candidate visual-
spatio-temporal path as priors to determine whether the
query pair has the same identity or not with a Siamese-
CNN+path-LSTM network. The network structure is illus-
trated in Figure 6. where the Siamese-CNN has the same
structure as the overall network in Section 3.1.2. It directly
takes the query pair as input and estimates the similarity be-
tween the queries.

For the candidate visual-spatio-temporal path, a path-
LSTM is adopted to judge whether the path is valid or
not. The framework of path-LSTM network is shown in
Figure 6. Each step of the path-LSTM processes a step
along the candidate path and the length of the LSTM is
therefore N − 1. At each step, the input features of the
path-LSTM, yi, is the concatenation of visual difference
∆I∗i,i+1, spatial difference ∆d∗i,i+1, and temporal differ-

ence ∆t∗i,i+1 between the visual-spatio-temporal states at
cameras i and i + 1, followed by a fully-connected layer
with 32 output neurons and a ReLU non-linearity function,
i.e., yi = f([∆I∗i,i+1,∆d

∗

i,i+1,∆t
∗

i,i+1]
T ), where f denotes

the feature transformation by the fully-connected layer.
Given the visual-spatio-temporal states on the candidate

path, the image Ii,k∗

i
and its associated time stamp ti,k∗

i
is

fixed at camera i, where k∗i denotes the optimized index
of the visual-spatio-temporal state. The visual difference
∆I∗i,i+1 is calculated as absolute difference between the vi-
sual features of Ii,k∗

i
and Ii+1,k∗

i+1
, which are obtained as

the ResNet-50 global pooling features followed by a 32-
neuron fully-connected layer and a ReLU function,

∆I∗i,i+1 =
∣

∣

∣
R
(

Ii,k∗

i

)

−R
(

Ii+1,k∗

i+1

)∣

∣

∣
, (10)

where R denotes the feature transformation for the input
images. The spatial difference ∆di,i+1 is calculated as
∆di,i+1 = li+1 − li, and the temporal difference is

∆ti,i+1 = ti+1,k∗

i+1
− ti,k∗

i
. (11)

1904



The LSTM consists of a memory cell ct and three con-
trol gates: input gate ig, output gate og and forget gate fg
at each time step t. With the input feature yt, The LSTM
updates the memory cell ct and hidden state ht with the fol-
lowing equations,

fgt = σ(Wf · [ht−1, yt]) + bf ) (12)

igt = σ(Wi · [ht−1, yt]) + bi) (13)

ogt = σ(Wo · [ht−1, yt]) + bo) (14)

c̃t = tanh(Wc · [ht−1, yt] + bc) (15)

ct = fgt ∗ ct−1 + igt ∗ c̃t (16)

ht = ogt ∗ tanh(ct) (17)

where ∗ represents the element-wise multiplication, W and
b are the parameters.

The number of hidden neurons of our Path-LSTM is set
to 32. The hidden feature of the Path-LSTM at the last step
is fed into a fully-connected layer to obtain the valid-path
confidence score, which is added with the pairwise similar-
ity score generated by the Siamese-CNN to represent the
final similarity score. In this way, the Path-LSTM provides
important regularization for estimating final matching sim-
ilarity.

Both the Siamese-CNN and Path-LSTM are pretrained
separately and then finetuned jointly. Their training sam-
ples are prepared similarly to those for learning the pairwise
potential function in Section 3.1.2. However, the training
samples here are no longer restricted to only visual-spatio-
temporal states from neighboring cameras but from any
camera pair in the entire camera network. The Path-LSTM
is first pretrained with the Adam algorithm [20]. The whole
Siamese-CNN+Path-LSTM network is then finetuned in an
end-to-end manner with stochastic gradient descent and 0-1
cross-entropy loss function.

4. Experiments

4.1. Dataset and evaluation metric

For evaluating the effectiveness of our vehicle re-
identification framework, we conduct experiments on the
VeRi-776 dataset [28], which is the only existing vehicle re-
identification dataset providing spatial and temporal annota-
tions. The VeRi-776 dataset contains over 50,000 images of
776 vehicles with identity annotations, image timestamps,
camera geo-locations, license plates, car types and colors
information. Each vehicle is captured by 2 to 18 cameras in
an urban area of 1km2 during a 24-hour time period. The
dataset is split into a train set consisting of 37,781 images of
576 vehicles, and a test set of 11,579 images belonging to
200 vehicles. A subset of 1,678 query images in the test set
are used as to retrieve corresponding images from all other
test images.

The mean average precision (mAP), top-1 accuracy and
top-10 accuracy are chosen as the evaluation metric. Given
each query image in the test image subset for retrieving
other test images, the average precision for each query q

is calculated by

AP (q) =

∑n

k=1
P (k)× rel(k)

Ngt

(18)

where P (k) denotes the precision at cut-off k, rel(k) is
an indication function equaling 1 if the item at rank k is
a matched vehicle image, zero otherwise, n is the number
for retrieval, and Ngt denotes the number of ground truth
retrievals for the query. The mean average precision for all
query images is then calculated by

mAP =

∑Q

q=1
AP (q)

Q
, (19)

where Q is the number of all queries (1,678 for the dataset).
Following the experimental setup in Liu et al. [28], for each
query image, only images of the same vehicles from other
cameras would be taken into account for calculating the
mAP, top-1 and top-5 accuracies.

Since our proposed method generates one visual-spatio-
temporal candidate path for each pair of query images, we
can extend the evaluation metrics to the whole sequence
of images. For every pair of query images that have the
same vehicle identity, we obtain the vehicle’s actual visual-
spatio-temporal path and compare it with our candidate path
using Jaccard Similarity [15],

JS(Pp, Pg) =
Pp ∩ Pg

Pp ∪ Pg

, (20)

where Pp is the set of retrieved images on the proposal path
between the query pair, and Pg is the set of the groundtruth
images between them. We further define the average Jac-
card Similarity for all query images,

AJS(Pp, Pg) =
1

Q

Q
∑

q=1

Ppq
∩ Pgq

Ppq
∪ Pgq

. (21)

4.2. Compared With Vehicle ReID methods

We compare our proposed approach with the state-of-
the-art methods [27, 28] and design several baselines on the
VeRi-776 dataset to evaluate the effectiveness of our pro-
posed method.

• Siamese-CNN+Path-LSTM denotes our final approach
which takes pairs of query visual-spatio-temporal
states for Siamese-CNN and proposed visual-spatio-
temporal path for the Path-LSTM to generate the final
similarity score. Note that our approach did not utilize
the plate information in the images as that in [28].

• FACT and FACT+Plate-SNN+STR. Liu et al. [27] pro-
posed the FACT model that combines deeply learned
visual feature from GoogleNet [36], BOW-CN and
BOW-SIFT feature to measure only the visual simi-
larity between pairs of query images. In [28], they
further integrated visual appearance, plate and spatio-
temporal information for vehicle re-identification.
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For appearance similarity, the same FACT model is
adopted. They utilized a Siamese Neural Network
(Plate-SNN) to compare visual similarity between
plate regions. The spatio-temporal similarity is com-
puted as

STR(i, j) =
|Ti − Tj |

Tmax

×
δ(Ci − Cj)

Dmax

, (22)

where Ti and Tj are the timestamps of two queries,
δ(Ci, Cj) is the space distance between two cameras,
and Tmax and Dmax are the maximum time distance
and space distance in the whole dataset.

• Siamese-Visual. This baseline generates the similarity
between a query pair with only pairwise visual infor-
mation by using only the visual branch of the Siamese-
CNN in Section 3.2. No spatio-temporal information
is used for obtaining the similarity score.

• Siamese-Visual+STR. Instead of learning spatio-
temporal relations by deep neural networks, this base-
line sums up the scores by the above Siamese-Visual
and the spatial-temporal relation score (STR, Eq. (22)
proposoed in [28]. The weight between the two terms
are manually searched for the best performance.

• Siamese-CNN. The baseline is the same as the
Siamese-CNN in Section 3.2. Compared with the
above baseline, it uses both visual and spatio-temporal
information of the two queries for determine their sim-
ilarity score. Candidate visual-spatio-temporal paths
are not used in this baseline.

• Chain MRF model. After obtaining the candidate
visual-spatio-temporal path for a query pair by the
chain MRF model in Section 3.1.1, we directly utilize
the empirical average by Eq. (7) as the pairwise simi-
larity of the query pair.

• Path-LSTM only. The proposed Path-LSTM esti-
mate the validness score of the proposed visual-spatio-
temporal path. We test only use Path-LSTM result
without combining it with the Siamese-CNN.

• Siamese-CNN-VGG16. This is the same as Siamese-
CNN but only replaces ResNet50 with VGG16.

• Path-LSTM-VGG16. This is the same as Path-LSTM
but only replaces Siamese-CNN with Siamese-CNN-
VGG16.

• Siamese-CNN-VGG16+Path-LSTM-VGG16. This is
as same as Siamese-CNN+Path-LSTM but only re-
places ResNet50 with VGG16.

4.3. Experiment Results

The mAP, top-1 and top-5 accuracies of methods are
listed in Tables 1 and 2. Figure 7 shows the CMC curves of
the compared methods. Example vehicle re-identification
results by our approach are shown in Figure 8.

Method mAP (%)

FACT [27] 18.49
FACT+Plate-SNN+STR [28] 27.77
Siamese-Visual 29.48
Siamese-Visual+STR 40.26
Siamese-CNN 54.21
Chain MRF model 44.31
Path-LSTM 54.49
Siamese-CNN-VGG16 44.32
Path-LSTM-VGG16 45.56
Siamese-VGG16+

PathLSTM-VGG16
46.85

Siamese-CNN+Path-LSTM 58.27

Table 1: mAP by compared methods on the VeRi-776
dataset [28].

Method top-1 (%) top-5 (%)

FACT [27] 50.95 73.48
FACT+Plate-SNN+STR [28] 61.44 78.78
Siamese-Visual 41.12 60.31
Siamese-Visual+STR 54.23 74.97
Siamese-CNN 79.32 88.92
Chain MRF model 54.41 61.50
Path-LSTM 82.89 89.81
Siamese-CNN-VGG16 54.41 61.50
Path-LSTM-VGG16 47.79 62.63
Siamese-VGG16+

PathLSTM-VGG16
50.95 61.62

Siamese-CNN+Path-LSTM 83.49 90.04

Table 2: Top-1 and top-5 accuracies by compared methods
on the VeRi-776 dataset [28].
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Figure 7: The CMC curves of different methods.

Our proposed two-stage approach, Siamese-CNN+Path-
LSTM, outperforms state-of-the-art methods [27, 28] and
all compared baselines, which demonstrates the effective-
ness of our overall framework and individual components.
Compared with Siamese-CNN, which only takes pairwise
visual and spatio-temporal information into account, our fi-
nal approach has a gain of 4% in terms of mAP and top-
1 accuracy. Such a performance increase shows that the
Path-LSTM with visual-spatio-temporal path proposal does

1906



Vehicle ID: 2

Cam: 11

Time:16:55:50

Vehicle ID: 42

Cam: 01

Time:16:56:56

Figure 8: Example vehicle re-identification results (top5)
by our proposed approach. The true positive is in green box
otherwise red. The three rows are results of Siamese-Visual,
Siamese-CNN and Siamese-CNN+Path-LSTM.

provide vital priors for robustly estimating the vehicle simi-
larities. Compared with Path-LSTM only, which only calcu-
lates path-validness scores with the proposed visual-spatio-
temporal path, our final approach also has a 4% increase in
terms of mAP and top-1 accuracy. This is because to gen-
erate the candidate path, our proposed chain MRF model
always tries to discover the most feasible visual-spatio-
temporal path. The visual-spatio-temporal state changes
along the paths might sometimes be subtle and difficult to
be captured by only pairwise differences of states at neigh-
boring cameras. The obvious state difference between the
query pair can sometimes be more easily captured by the
Siamese-CNN. Therefore, the Path-LSTM acts as a strong
prior for regularizing the Siamese-CNN results and their
combination shows the best retrieval performance.

Compared with the Chain MRF model, the Path-LSTM
has a 10% mAP gain and an increase of 25% top-1 ac-
curacy. Such results demonstrate that the empirical aver-
age is not a robust path-validness indicator of the candidate
paths. Our trained Path-LSTM is able to capture more sub-
tle state changes on the candidate path for estimating cor-
rect path-validness scores. Compared with Siamese-Visual,
Siamese-CNN has significant gains on mAP (∼ 25%) and
top-1 accuracy (∼ 40%). It demonstrates that, unlike per-
son re-identification, the spatio-temporal information is vi-
tal for vehicle re-identification, where the visual differences
between different vehicles might be subtle for vehicles
with the same color. Compared with Siamese-Visual+STR,
which adopts the spatio-temporal relation score in [28],
our Siamese-CNN achieves more accurate retrieval perfor-
mance. Our deep neural network is able to capture more
complex spatio-temporal relations between query pairs.

The Path-LSTM shows strong capability on regularizing
the retrieval results with candidate visual-spatio-temporal
paths. The effectiveness of Path-LSTM relies on the cor-

rectness of the candidate paths. If the candidate path does
correspond to the actual path, the Path-LSTM might have
negative impact on the final similarity score. For all pairs
of queries that have the same vehicle identities, we obtain
their ground-truth visual-spatio-temporal paths and com-
pare them with our proposed ones. The averaged Jaccard
Similarity is calculated. Our proposed chain MRF model
with deeply learned potential function achieves an AJS of
96.39%.

We also test replacing ResNet50 with VGG16 in our
pipeline. Our proposed overall framework (Siamese-
VGG16+ PathLSTM-VGG16) and individual components
(Path-LSTM-VGG16) outperform our VGG16 baseline
(Siamese-CNN-VGG16).

4.4. Time Complexity Analysis

In the worst case, all pairwise potentials need to be cal-
culated, resulting a complexity of O(MK2), where M is
the number of edges (connecting neighboring cameras) in
the camera network, and K is the average number of states
at each camera. After that, the time complexity of dynamic
programming for all path proposals is alsoO(MK2), which
utilizes the technique described in Section 3.1.1 to avoid
redundant computation. Amortized over the total number
of Q query pairs, each query pair has an averaged time
complexity of O(MK2/Q). In practice, for testing, pair-
wise scores are calculated between 19.4 million query pairs
(11579 galleries and 1678 queries). Because of our sys-
tematic way of avoiding redundant computation, each query
pair only requires 0.016s on average.

5. Conclusions

In this paper, we proposed a two-stage framework
for vehicle re-identification with both visual and spatio-
temporal information. Existing methods ignored or used
limited spatio-temporal information for regularizing the re-
identification results. Our proposed approach incorporates
important visual-spatial-temporal path information for reg-
ularization. A chain MRF model with deeply learned pair-
wise potential function is adopted to generate visual-spatio-
temporal path proposals. Such candidate path proposals are
evaluated by a Siamese-CNN+Path-LSTM to obtain simi-
larity scores between pairs of queries. The proposed ap-
proach outperforms state-of-the-arts methods on the VeRi-
776 dataset. Extensive component analysis of our frame-
work demonstrates the effectiveness of our overall frame-
work and individual components.
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