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Abstract

Despite rapid advances in face recognition, there remains

a clear gap between the performance of still image-based

face recognition and video-based face recognition, due to

the vast difference in visual quality between the domains and

the difficulty of curating diverse large-scale video datasets.

This paper addresses both of those challenges, through an

image to video feature-level domain adaptation approach,

to learn discriminative video frame representations. The

framework utilizes large-scale unlabeled video data to re-

duce the gap between different domains while transferring

discriminative knowledge from large-scale labeled still im-

ages. Given a face recognition network that is pretrained in

the image domain, the adaptation is achieved by (i) distilling

knowledge from the network to a video adaptation network

through feature matching, (ii) performing feature restora-

tion through synthetic data augmentation and (iii) learning

a domain-invariant feature through a domain adversarial

discriminator. We further improve performance through a

discriminator-guided feature fusion that boosts high-quality

frames while eliminating those degraded by video domain-

specific factors. Experiments on the YouTube Faces and

IJB-A datasets demonstrate that each module contributes

to our feature-level domain adaptation framework and sub-

stantially improves video face recognition performance to

achieve state-of-the-art accuracy. We demonstrate qualita-

tively that the network learns to suppress diverse artifacts in

videos such as pose, illumination or occlusion without being

explicitly trained for them.

1. Introduction

Motion of objects or the observer in a video sequence is

a powerful cue for perceptual tasks such as shape determina-

tion or identity recognition [5, 10]. For face recognition in

computer vision, recent years have seen the success of emerg-

ing approaches in video face analysis [37, 19, 4, 38, 20]

and several image-based face recognition engines [32, 24]

on video face recognition benchmarks [37, 17]. But it is

arguably true that these efforts have been outpaced by image-

based face recognition engines that perform comparably

or even better than human perception in certain settings

[32, 29, 26, 15]. For example, a verification accuracy of
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Figure 1. We propose an unsupervised domain adaptation method

for video face recognition using large-scale unlabeled videos and

labeled still images. To help bridge the gap between two domains,

we introduce a new domain of synthesized images by applying a

set of image transformations specific to videos such as motion blur

to labeled images that simulates a video frame from still image. We

utilize images, synthesized images, and unlabeled videos for do-

main adversarial training. Finally, we train a video domain-adapted

network (VDNet) with domain adversarial loss (Section 3.3) as

well as by distilling knowledge from pretrained reference network

(RFNet) through feature matching (Section 3.1), feature restoration

and image classification (Section 3.2) losses.

95.12% is reported by [26] on the YouTube Faces dataset,

much lower than 99.63% on the LFW dataset.

Besides better understanding of training convolutional

neural networks (CNNs), a key ingredient to the success of

image-based face recognition is the availability of large-scale

datasets of labeled face images collected from the web [40].

Thus, one source of difficulty for video face recognition is

attributable to the lack of similar large-scale labeled datasets.

The number of images used to train the state-of-the-art face

recognition engines varies from 200K [29] to 200M [26]

collected with at least 10K different identities or as many

as 8M. In contrast, large-scale labeled video database is

publicly available to date, such as YouTube face dataset

(YTF) [37], only contains 3.4K videos in total from 1.5K

different subjects. Although more frames may be labeled,

it is difficult to collect a dataset with as many variations

without a surge in dataset size and labeling effort.

An avenue for overcoming the lack of labeled training

data in the video domain is to transform labeled still face

images so that they look like images captured from videos.
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Video frames are likely to be degraded for multiple reasons

such as motion or out-of-focus blur, compression noise or

scale variations. Approaches such as [6] augment image-

based training data with synthetic blur kernels and noise, to

demonstrate moderate improvement in video face recogni-

tion. However, attempting to bridge the domain gap between

images and videos with such an approach faces fundamental

challenges – first, it is non-trivial to sufficiently enumerate

all types of blur kernels that degrade visual quality in videos,

and second, it is not possible to model the transformation

from images to videos with sufficient accuracy.

In this work, we propose a data-driven method for image

to video domain adaptation for video face recognition. In-

stead of collecting a labeled video face dataset, we utilize

large-scale unlabeled video data to reduce the gap between

video and image domains, while retaining the discriminative

power of large-scale labeled still images. To take advan-

tage of labeled image data, Section 3.1 proposes to transfer

discriminative knowledge by distilling the distance metric

through feature matching, from a reference network (RFNet)

trained on a web-face dataset [40] to our video face network

(VDNet). A further avenue to leverage image domain labels

is through the domain-specific data augmentation of Section

3.2, whereby we degrade still images using synthetic motion

blur, resolution variation, or video compression noise. Then,

we train VDNet to be able to restore the original representa-

tion of an image extracted from RFNet.

While the above augmentation is useful, its effectiveness

is limited by the fact that types of artifacts in videos are

too diverse to be enumerated. In Section 3.3, we further

regularize VDNet to reduce the domain gap by introducing

a discriminator that learns to distinguish different domains,

without any supervision such as identity labels or instance-

level correspondence. Once trained, the score output by this

discriminator is a measure of the confidence in the similarity

of the feature representation of a video frame to that of a

still image. This is a useful ability, since poor performance

in video face recognition can often be attributed to some

frames in a sequence that are of substantially poor quality.

Consequently, Section 3.4 proposes a discriminator-guided

weighted feature fusion to aggregate frames in each video,

by assigning higher weights to “image-like” frames, that

potentially have better quality among the others. Figure 1

illustrates our proposed framework.

In Section 5, we extensively evaluate the proposed frame-

work on the YouTube Faces (YTF) dataset to demonstrate

performance that surpasses prior state-of-the-art. We present

ablation studies that demonstrate the importance of each

of the above components. Interestingly, degradation fac-

tors such as blur, illumination or occlusions, automatically

emerge in qualitative visualizations of frames within a se-

quence ranked by domain discriminator scores.

The main contributions of this work are:

• We present a novel unsupervised domain adaptation al-

gorithm from images to videos for face recognition in

unlabeled videos.

• We develop a feature-level domain adaptation to learn

VDNet by distilling discriminative knowledge from pre-

trained RFNet through feature matching.

• We propose a domain adversarial learning method that

modulates the VDNet to learn a domain-invariant feature

without needing to enumerate all causes of domain gap.

• We design a method to train with synthetic data augmen-

tation for feature-level restoration and to help the discrim-

inator to discover domain differences.

• We use the confidence score of the discriminator to de-

velop an unsupervised feature fusion method that sup-

presses low quality frames.

• We demonstrate the superiority of VDNet over exist-

ing methods with extensive experiments on YTF dataset,

achieving state-of-the-art verification accuracy. We also

demonstrate performance gains over baseline methods on

the IJB-A dataset without supervised fine-tuning.

2. Related Work

Our work falls into the class of problems on unsupervised

domain adaptation [22, 8, 33, 9] that concerns adapting a

classifier trained on a source domain (e.g., web images) to a

target domain (e.g., video) where there is no labeled training

data for target domain to fine-tune the classifier. Among

those, feature space alignment and domain adversarial learn-

ing methods are closely related to our approach.

The basic idea of feature space alignment is to mini-

mize the distance between domains in the feature space

through learning a transformation of source to target features

[8, 25, 7, 35, 43], or a joint adaptation layer that embeds

features into a new domain-invariant space [22, 33]. Specifi-

cally, Tzeng et al. [33] use two CNNs for source and target

domain with shared weights and the network is optimized

for classification loss in the source domain as well as domain

difference measured by the maximum mean discrepancy

(MMD) metric. Gupta et al. [13] consider a similar network

architecture for cross-modality supervision transfer.

There also exists a body of work on unsupervised domain

adaptation and transfer with adversarial learning [11], where

the domain difference is measured by a discriminator net-

work D [41, 21, 30]. For example, [41, 30] consider cross-

domain transfer of images from one style to another with-

out instance-level correspondence between domains using

adversarial loss. Coupled GAN [21] constructs individual

networks for each domain with partially shared higher-layer

parameters for generator and discriminator to generate co-

herent images of two domains. Unlike the above works that

generate images in the target domain, we consider feature-

level domain adaptation.

For feature-level domain adaptation using adversarial
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Figure 2. An illustration of network architecture for RFNet, VDNet and discriminator (D). The red and gray blocks denote the trainable

and fixed modules, respectively. VDNet not only shares the network architecture with RFNet, but also is initialized with the same network

parameters. Once trained, D can sort the frames in a video sequence by indicating whether a frame is similar to images compatible to a face

recognition engine and rejects those frames that are extremely ill-suited for face recognition.

learning, domain adversarial neural network (DANN) [9]

appends domain classifier to high-level features and intro-

duces a gradient reversal layer for end-to-end learning via

backpropagation while avoiding cumbersome minimax op-

timization of adversarial training. The goal of DANN is

to transfer discriminative classifier from source to target

domain, which implicitly assumes the label spaces of two

domains are equivalent (or at least the label space of target

domain is the subset of that of source domain). Our work

is to transfer discriminative distance metric and hence there

is no such restriction in label space definition. In addition,

we propose domain-specific synthetic data augmentation to

further enhance the performance of domain adaptation and

use discriminator outputs for feature fusion.

3. Domain Adaptation from Image to Video

As previewed in Section 1, curating large-scale video

datasets with identity labels is an onerous task, but there do

exist such datasets for still images. This makes it natural to

consider image to video domain adaptation. However, the

representation gap is a challenging one to bridge due to blur,

compression, motions and other artifacts in videos. This

section tackles the challenge by introducing a set of domain

adaptation objectives that allow our video face recognition

network (VDNet) to be trained on large-scale unlabeled

videos in V , while taking advantage of supervised informa-

tion from labeled web-face images in I.

3.1. Distilling Knowledge by Feature Matching

To take advantage of labeled web-face images, we train

VDNet by distilling discriminative knowledge from a face

recognition engine pretrained on a labeled web-face dataset,

which we call a reference network (RFNet). Unlike previous

works that distill knowledge through class probabilities [14],

we do so by matching feature representations between two

networks, since we do not have access to labeled videos.

Let φ(·) : RD → R
K be a feature generation operator of

VDNet and ψ(·) : RD → R
K be that of RFNet. The feature

matching (FM) loss is defined on an image x ∈ I as:

LFM =
1

|I|

∑

x∈I

‖φ(x)− ψ(x)‖22 (1)

The FM loss allows VDNet to maintain a certain degree

of discriminative information for face identity recognition.

With regards to network structure, VDNet can be very flexi-

ble as long as the matching feature has the same dimensional-

ity with that of RFNet. In practice, we use the same network

architecture between VDNet and RFNet. Moreover, we ini-

tialize the network parameters of VDNet with RFNet and

freeze network parameters for a few higher layers to further

maintain discriminative information learned from labeled

web-face images, as illustrated in Figure 2. Note that while

more complex distillation methods and architectures are cer-

tainly possible, our intent is simply a strong initialization for

VDNet, for which these choices suffice.

3.2. Adaptation via Synthetic Data Augmentation

Data augmentation has been widely used for training

very deep CNNs with limited amount of training data as

it prevents overfitting and enhances generalization ability.

In addition to generic data transformations such as random

cropping or horizontal flips, applying data transformation

that is specific to the target domain has been shown to be

effective [6]. To generalize to video frames, we consider

data augmentation by applying transformations such as lin-

ear motion blur, image resolution (scale) variation or video

compression noise, which are the most typical causes of

quality degradation in video. We train VDNet to “restore”

the original RFNet representation of an image without data

augmentation through the feature restoration (FR) loss:

LFR =
1

|I|

∑

x∈I

EB(·)

[

‖φ(B(x))− ψ(x)‖22

]

(2)

where B(·) : RD → R
D is an image transformation kernel

and EB(·) is the expectation over the distribution of B(·). In

this work, we consider three types of image transformations

with the following parameters:

• Linear motion blur: kernel length is randomly selected in

(5, 15) and kernel angle is selected in (10, 30).
• Scale variation: we rescale an image as small as 1

6 of the

original image size.

• JPEG compression: the quality parameter is set randomly

in (30, 75).
These augmentations are applied in sequence to an image

with probability of 0.5 for each noise process.
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Taking advantage of labeled training examples from im-

age domain, one can also use standard metric learning ob-

jectives to learn discriminative metric that generalizes to

low-quality images defined by aforementioned blur kernels.

We adopt N-pair loss [27], which is shown to be effec-

tive at learning deep distance metric from large number of

classes. Given N pairs of examples from N different classes

{(xi, x
+
i
)}N

i=1 with individual synthetic data augmentation

Bi(·), the N-pair loss is defined as follows:

LIC = −
1

N

N
∑

i=1

log
exp(φ(Bi(x

+
i
))⊤ψ(xi))

∑

N

n=1 exp(φ(Bi(x
+
i
))⊤ψ(xn))

(3)

We note that N-pair loss could be one example of an objec-

tive function for metric learning with synthetic augmentation,

but can be replaced with other standard metric learning ob-

jectives such as contrastive loss [2] or triplet loss [26].

3.3. Adaptation via Domain Adversarial Learning

Although data augmentation has been successful in many

computer vision applications, the types of transformation

between source and target domains are not always known,

that is, there might be many unknown factors of variation

between two domains. Moreover, modeling such transfor-

mations is challenging even if they are known, so we may

need to resort to an approximation in many cases. Therefore,

it is difficult to close the gap between two domains. Rather

than attempting to exhaustively enumerate or approximate

different types of transformations between two domains, we

learn them from large-scale unlabeled data and facilitate the

recognition engine to be robust to those transformations.

Adversarial learning [11] provides a good framework to

approach the above problem, whereby the generator, that is,

VDNet, is regularized to close the gap between two domains,

where the domain difference is captured by the discriminator.

The adversarial loss with two domains I and V is defined

over the expectation of all training samples:

LD =− Ex∈I

[

logD(y = 1|φ(x))
]

(4)

− Ex∈V

[

logD(y = 2|φ(x))
]

LAdv =− Ex∈V

[

logD(y = 1|φ(x))
]

(5)

The discriminator (D) is defined on top of VDNet that al-

ready induces highly abstract features from a deep CNN.

Thus, the architecture of D can be very simple, such as

two or three fully-connected layer networks. Unlike sev-

eral recent applications of adversarial frameworks on image

translation [18, 31], D is not distinguishing between gener-

ated and real images in pixel space, rather between feature

representations. We argue that this is desirable due to the

relative maturity of feature learning for face recognition as

opposed to high-quality image generation.

Note that adversarial loss allows utilizing a large volume

of unlabeled video data to train VDNet without additional

labeling effort. However, the loss can only match representa-

tions between two domains in a global manner and the effect

would be marginal if the contrast between two domains is

small or the discriminator cannot distinguish them well. As

a result, we can still take advantage of synthetic data aug-

mentation to guide the discriminator, either to realize the

difference between domains or to discriminate additional

domain differences from known synthetic transformations.

This naturally leads us to two different discriminator types,

one with two-way classifier between image (I) and syn-

thesized image and video (B(I) ∪ V) or the other with a

three-way classifier among image, synthesized image, and

video.

Two-way D. We use a two-way softmax classifier as D
to discriminate between the image domain (y = 1) and the

domain of synthesized images and videos (y = 2). While

the original images are from the image domain, both synthet-

ically degraded images as well as random video frames are

trained to belong to the same domain as follows:

LD =− Ex∈I

[

logD(y = 1|φ(x))
]

− Ex∈B(I)∪V

[

logD(y = 2|φ(x))
]

(6)

LAdv =− Ex∈B(I)∪V

[

logD(y = 1|φ(x))
]

(7)

Since the contrast between two classes becomes apparent by

including synthetic images for the second class, the trans-

formations in the video domain that are similar to synthetic

image transformations can be easily restored.

Three-way D. We use a three-way softmax classifier as D
to discriminate images (y = 1), synthesized images (y = 2)

and video frames (y = 3) into three different categories.

LD =− Ex∈I

[

logD(y = 1|φ(x))
]

− Ex∈B(I)

[

logD(y = 2|φ(x))
]

(8)

− Ex∈V

[

logD(y = 3|φ(x))
]

LAdv =− Ex∈B(I)∪V

[

logD(y = 1|φ(x))
]

(9)

Unlike the two-way network, the three-way network aims to

distinguish video frames from not only the image domain

but also synthetically degraded images. Therefore, it may

not learn a VDNet with as strong restoration capability to

synthetic transformations as with two-way discriminator, but

aims to find additional factors of variation between image or

synthetic image and video domains.

Overall, the objective function is written as follows:

L = LFM + αLFR + βLIC + γLAdv (10)

3.4. Discriminator­Guided Feature Fusion

As noted by Yang et al. [39], the quality evaluation of

each frame is important for video face recognition since not

all frames contribute equally. Moreover, it is important to
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discount frames that are extremely noisy due to motion blur

or other noise factors, in favor of those that are better for

recognition. Our discriminator is already trained to distin-

guish still images from blurred ones or video frames, so

its output may already be used as a confidence score at for

each frame being a high quality image. Training with the

domain contrast between image, blurred image and video,

the discriminator is ready to provide a confidence score at

test time, for each frame being a “high-quality web image”

(D(y = 1|φ(v))). Specifically, with the confidence score

from the discriminator, the aggregated feature vector for a

video V with frames v is represented as a weighted average

of feature vectors as follows:

φV =

∑

v∈V
D (y = 1|φ (v)) · φ (v)

∑

v∈V
D (y = 1|φ (v))

. (11)

Note that this target domain of web images comes with large-

scaled labeled training examples to train a discriminative

face recognition engine. Thus, the discriminator serves a

dual role of guiding both the feature-level domain adaptation

and a fusion weighted by confidence in the fitness of a frame

for a face recognition engine.

4. Implementation Details

We provide detailed information of network architectures

for the RFNet, the VDNet, and the discriminator.

4.1. Face Recognition Engine

Our face recognition engine is also on a deep CNN trained

on CASIA-webface dataset [40]. The network architecture is

similar to the ones used in [40, 27], which contains 10 layers

of 3× 3 convolution followed by ReLU nonlinearities with

4 max pooling layers with stride 2 and one average pooling

layer with stride 7, except for that our network uses strided

convolution to replace max pooling and maxout units [12] for

every other convolution layer instead of ReLU layers. Please

see supplementary material for more details. The model is

trained with the deep metric learning objective called N-pair

loss [27] as described in Section 3.2. Our implementation is

based on Torch [3] and N = 1080 (N-pair loss pushes (N-1)

negative examples at the same time while pulling a single

positive example) is used on 8 GPUs for training. Faces are

detected and aligned using keypoints [42] and 100 × 100
gray-scale image patches randomly cropped from 110× 110
resized face images are fed to network for training. The

model achieves 98.85% verification accuracy on the Labeled

Faces in the Wild dataset [15].

The RFNet is the same as face recognition engine and the

parameters are fixed. The VDNet is initialized the same as

RFNet but the parameters are updated for all layers except

for the last two convolution layers, as illustrated in Figure 2.

4.2. Discriminator

We apply a similar network architecture of D for two

and three-way discriminators. For the discriminator D, we

use a simple neural network with two fully-connected layers

(320 − 160 − ReLU − 3) as shown in Figure 2. For two-

way networks, we replace the output channel of last fully-

connected layer from three to two. We train the network

using Adam optimizer [16] with β1 = 0.9, β2 = 0.999,

and learning rate of 0.0003, while setting α = β = γ = 1.

Details of our network architecture and hyper parameters

can be found in supplementary material.

5. Experimental Results

We evaluate the performance of our proposed unsuper-

vised domain adaptation framework, by first providing the

baseline methods in Section 5.1, and then performing an

ablation study for each component of the proposed approach

on YouTube Faces (YTF) dataset [37] in Section 5.2. We

further evaluate the model trained on the YTF dataset to IJB-

A [17], which demonstrates the generalization capabilities

of the proposed approach, as presented in Section 5.3.

5.1. Evalutation Protocol

The standard application of image-based face recogni-

tion engine for video face recognition is to first apply the

face recognition engine to each frame and then aggregate

extracted features from individual frames to obtain a single

representation of videos. For baselines, we follow the stan-

dard protocol of extracting L2 normalized features from each

frame and its horizontally flipped image followed by tempo-

ral average pooling over frames per video. For discriminator-

guided feature fusion, we follow Equation (11) to obtain a

video representation from individual L2 normalized features.

We compute inner product between two video representa-

tions for similarity metric.

5.2. YouTube Faces Dataset

The YTF dataset contains 3425 videos of unconstrained

face images from 1595 different people with the average

length of 181.3 frames per video. Ten folds of video pairs

are available for verification experiments, where each fold is

composed of 250 positive and negative pairs with no over-

lapping identity between different folds. We use videos in 8

training folds in addition to CASIA-webface dataset to train

a VDNet, but no identity label from video is used.

Six networks (A-F) with different combinations of fea-

ture matching (FM), feature restoration (FR) with various

data augmentation methods, adversarial training (Adv) and

discriminator-guided feature fusion are presented in Table 1.

Feature matching loss. The FM loss enforces VDNet to

learn similar representations as those produced by RFNet on

labeled still images, which is one of the key contributors to

a good initialization for our method. Combination of image

classification (IC) and FM reduces to training the baseline

model. The effectiveness of FM loss can be seen by compar-

ing accuracies of model A and B in Table 1. A significant
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Table 1. Video face recognition accuracy and standard error on the YTF dataset. Image-classification loss (IC), feature matching loss (FM),

feature restoration loss (FR) and adversarial loss (Adv) are applied for training. For feature restoration loss, we consider three types of

data augmentation, namely, linear motion blur (M), scale variation (S), or JPEG compression noise (C). The best performer and those with

overlapping standard error are boldfaced.

Model IC FM FR Adv fusion 1 (fr/vid) 5 (fr/vid) 20 (fr/vid) 50 (fr/vid) all

baseline –
– 91.12±0.318 93.17±0.371 93.62±0.430 93.74±0.443 93.78±0.498

X – 93.30±0.362 93.72±0.428 93.80±0.444 93.94±0.493

A X – M/S – – 91.37±0.334 92.97±0.381 93.42±0.399 93.43±0.384 93.32±0.443

B X X M/S – – 91.44±0.348 93.46±0.392 93.84±0.433 93.95±0.443 93.94±0.507

C X X M/S/C – – 91.68±0.320 93.52±0.323 93.94±0.337 93.90±0.361 93.82±0.383

D X X – two-way – 91.38±0.350 93.74±0.354 94.04±0.375 94.23±0.379 94.36±0.346

E X X M/S/C two-way
– 92.39±0.315 94.72±0.306 95.13±0.263 95.13±0.286 95.22±0.319

X – 94.73±0.270 95.14±0.229 95.13±0.261 95.16±0.284

F X X M/S/C three-way
– 92.17±0.353 94.44±0.343 94.90±0.345 94.98±0.354 95.00±0.415

X – 94.52±0.356 95.01±0.352 95.15±0.370 95.38±0.310

performance drop is observed for the model trained with-

out FM loss but only with the FR loss, when it is evaluated

with more number of frames per video. We hypothesize that

while feature restoration loss drives the VDNet to match the

representation of low-quality images to their high-quality

counterpart, the representation of the original high-quality

images are severely damaged, causing the model to lose its

superior performance on high-quality images. By requiring

the network to work well on both high-quality as well as

low-quality images with FM loss, we observe significant

improvement when evaluated with larger number of frames

per video (for example, from 93.32% of model A to 93.94%
of model B with all frames per video).

Feature restoration loss. We consider three types of data

augmentation described in Section 3.2, with different combi-

nations presented with model B and C in Table 1. Overall,

FR loss moderately improves accuracy compared to the base-

line models. Specifically, we observe that compression noise

is quite effective at feature-level restoration when used along

with linear motion blur and scale variations.

When combined with adversarial loss, we observe more

significant improvement with feature restoration loss. For ex-

ample, model E and F reduce the relative error by 11.7% and

9.2% compared to model D, respectively, on single frame

per video evaluation regime and 15.6% and 13.0% when

using randomly selected 50 frames per video for evaluation.

Domain adversarial loss. In addition to feature restora-

tion loss through synthetic data augmentation, domain ad-

versarial training between high-quality web images and the

videos contributes to reducing the gap between two domains.

To demonstrate its effectiveness, we train the model only

with Adv loss with random video frames as the additional in-

put source with the “fake” labels (while random face images

associate to the “real” ones), and compared to the baseline

model. As shown in Table 1, model D consistently outper-

forms the baseline one with different number of random

frames per video. Note that the “two-way” in model D de-

notes a binary classification between random face images

and video frames, without any artificially degraded sample.

When feature restoration loss is used for training, we

consider two types of discriminators since it introduces an

additional data domain, namely a synthetic image domain,

besides the existing two domains of image and video. First,

we merge synthetically degraded images into video domain

and the discriminator is still a two-way classifier (model E).

Next, synthetic images are considered as their own domain,

which leads to a three-way discriminator among image, syn-

thetic image, and video (model F). In comparison to model

C which is trained without adversarial loss, both models

E and F significantly improve the recognition performance

(e.g, from 93.82% to 95.22% or 95.00% for model E and

F, respectively). When frame-level features are aggregated

by discriminator-guided fusion, the three-way model F im-

proves its performance to 95.38%, which is highly com-

petitive to the performance of previous state-of-the-art face

recognition engines such as FaceNet [26] (95.12%), Cen-

terFace [36] (94.9%), or CNN with different feature aggre-

gation methods [39] (e.g., 95.20% with average pooling)

as shown in Table 3. Note that the evaluation protocol of

prior works is the same as our baseline model, but their

networks are either much deeper or trained on significantly

larger number of training images.

Discriminator-guided feature fusion. The proposed fu-

sion strategy selectively adopts high-quality frames while

discarding poorer ones in order to further improve the recog-

nition accuracy. To reflect the quality of each frame, the

feature fusion module aggregates all frames of a video using

a weighted average of feature vectors based on the normal-

ized likelihood as in (11). We quantitatively and qualitatively

evaluate the discriminator-guided fusion in Table 1 and Fig-

ure 3. By applyingD from the three-way network, the model

F and the baseline model present consistent improvements.

In contrast, the fusion strategy for the two-way network in

model E (second sub-row) has marginal effect. This indicates

that the three-way network learns a multi-class discriminator

that can better distinguish among input sources.

Qualitative visualization of guided fusion. In Figure 3,

we demonstrate qualitative results for the feature fusion us-
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Table 2. 1:1 verification and rank-K identification accuracy and standard error on IJB-A dataset. The model F is compared to the baseline

method described in Section 4.1. Ten image crops (4 corners + 1 center + horizontal flip) are evaluated and fused together with uniform

weights or discriminator confidence score. We also evaluate after removing images with significant localization errors (∗).

Model fusion
1:1 Verification TAR 1:N Identification Rank-K Accuracy

FAR=0.001 FAR=0.01 FAR=0.1 Rank-1 Rank-5 Rank-10

baseline – 0.539±0.013 0.773±0.008 0.954±0.002 0.864±0.004 0.951±0.003 0.970±0.002

baseline∗ – 0.646±0.012 0.846±0.005 0.968±0.001 0.902±0.003 0.959±0.003 0.971±0.001

F – 0.531±0.016 0.800±0.008 0.963±0.002 0.869±0.003 0.954±0.003 0.970±0.002

F X 0.584±0.018 0.828±0.008 0.962±0.001 0.879±0.004 0.955±0.003 0.970±0.002

F∗ X 0.649±0.022 0.864±0.007 0.970±0.001 0.895±0.003 0.957±0.002 0.968±0.002

Wang et al. [34] – 0.510±0.019 0.729±0.011 0.893±0.004 0.822±0.007 0.931±0.004 –

DCNNall [1] – – 0.787±0.014 0.947±0.003 0.860±0.007 0.943±0.005 –

Yang et al. [39] Mean L2 0.688±0.025 0.895±0.005 0.978±0.001 0.916±0.004 0.973±0.002 0.980±0.001

Yang et al. [39] NAN 0.860±0.004 0.933±0.003 0.979±0.001 0.954±0.002 0.978±0.001 0.984±0.001

Table 3. Comparison on the YTF dataset with other unsupervised

domain adaptation methods and state-of-the-art methods.

Unsupervised DA SOTA (image-based)

baseline 93.78 DeepFace [32] 91.4

PCA 93.56 FaceNet [26] 95.12

CORAL [28] 94.50 CenterFace [36] 94.9

Ours (F) 95.38 CNN+AvePool [39] 95.20

ing the three-way discriminator scores. Each row shows the

top and bottom scored frames. It is evident that high-quality

frames score higher than low-quality ones. More impor-

tantly, we observe that the notions of quality are diverse and

encompass factors of variation such as pose, blur, lighting

and occlusions. This supports our hypothesis that there are

several causes of domain gap between images and videos, so

an adversarially trained discriminator is better than one that

relies on enumerating all possible factors. Our analysis is

reminiscent of that in [39], but we learn the quality of video

frames in an unsupervised manner without identity labels,

whereas [39] utilizes identity labels to assign a higher score

to a frame that contributes more to classification.

Comparison with other unsupervised DA methods. We

study the effectiveness of our proposed method in compar-

ison to other works on unsupervised domain adaptation

such as PCA feature transform or Correlation Alignment

(CORAL) [28] methods. We extract features from both still

images and video frames using RFNet and apply PCA fea-

ture transform while retaining 90% of the total variation. For

CORAL, we calculate the mean (µI , µV ) and covariance

(CI , CV ) of the features from two domains on the training

set and transform features, for individual frames, as follows:

φ(v)← (φ(v)− µV)C
− 1

2

V
C

1

2

I
+ µI (12)

The results in Table 3 show that simple feature transform

method like PCA does not work well since it does not dis-

tinguish between two domains when computing the trans-

formation matrix. On the other hand, CORAL demonstrates

moderate improvement upon baseline by matching the first

and second-order statistics of representations between two

domains. Our method is also based on feature distribution

matching between two domains through a discriminator, but

allows learning a more complete transformation through

end-to-end training of deep networks with a combination of

losses, which results in more substantial improvements.

5.3. IJB­A Dataset

IJB-A [17] is a benchmark dataset for face recognition in

the wild. It contains a mix of 5397 still images and 20412
video frames sampled from 2042 videos of 500 different

subjects. The existence of video frames allows set-to-set

comparison for verification, which opens up a new challenge

for the face recognition problem. It is more challenging than

LFW or YTF due to many factors of variation such as pose

or facial expression as well as various image qualities.

There are 10 splits with about 30k labeled images in each.

Due to the small-sized training set, prior works pretrain

the network using large-scale labeled datasets and use train-

ing set of each split for supervised fine-tuning. While we

also use a pretrained face recognition engine for video face

recognition, our network is fine-tuned on external video data

without identity information and IJB-A is used for evalua-

tion only. This is because the emphasis of our method is to

use large-scale unlabeled video data to improve video face

recognition rather than fine-tuning with manually labeled

data. We first remove 379 videos from the YTF training set

as their identities overlap with those of IJB-A test set. We

then utilize the YTF dataset without label information for

network training and the unlabeled video fine-tuned network

is evaluated on 10 splits of IJB-A test set.

We perform experiments in two settings. The 1:1 veri-

fication task compares genuine and impostor samples for

one-to-one verification, while the 1:N task is to search sam-

ples against an enrolled gallery. We report the true accep-

tance rate (TAR) at different false acceptance rates (FAR)

of 0.1, 0.01, and 0.001 for verification and the rank-1, 5, 10

accuracy for identification in Table 2.

Compared to the baseline model, we observe slightly

worse performance at FAR=0.001, but significant improve-

ment on both FAR=0.01 and 0.1 (e.g., 77.3% to 82.8% at

FAR=0.01). Especially, when discriminator-guided feature

fusion is used, the improvement becomes more significant.

We also evaluate by following the protocol in [34] as we

observe non-negligible amount of localization errors while
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(a) top-5 (b) bottom-5

Figure 3. We sort the frames within a sequence in a descending order with respect to the discriminator-guided weights (D(y = 1|v)), and

display them by showing the top-5 and bottom-5 instances, respectively. The weights are shown in the upper-left corner of each frame. We

visualize eight video sequences that illustrate the following video quality degradation: blurring, compression noise, lighting variation,

video shot-cut, occlusion, detection failure, pose variation and mis-alignment from the first to the last row.

preprocessing. By removing poor quality images based on

localization errors, we obtain much higher verification and

identification results. However, the gap between our pro-

posed model and the baseline is reduced, which we believe

is due to low-quality images being mostly filtered out, so

the baseline method can still work fine or even better. Com-

pared to previous works, the performance of our proposed

method is competitive under similar training and testing pro-

tocols [34, 1]. Further improvement is expected by training a

stronger base network on larger labeled image datasets [39]

or with other types of synthetic data augmentations such as

pose variation with 3D synthesization [23].

6. Conclusions

Face recognition in videos presents unique challenges

due to the paucity of large-scale datasets and several factors

of variation that degrade frame quality. In this work, we

address those challenges by proposing a novel feature-level

domain adaptation approach that uses large-scale labeled

still images and unlabeled video data. By distilling discrim-

inative knowledge from a pretrained face recognition en-

gine on labeled still images while adapting to video domain

through synthetic data augmentation and domain adversarial

training, we learn domain-invariant discriminative represen-

tations for video face recognition. Furthermore, we propose

a discriminator-guided feature fusion method to effectively

aggregate features from multiple frames and effectively rank

them in accordance to their suitability for face recognition.

We demonstrate the effectiveness of the proposed method for

video face verification on the YTF and IJB-A benchmarks.

Our future work will further exploit unsupervised domain

adaptation to achieve continuous improvements through a

growing collection of unlabeled videos.
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