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Abstract

Texture classification has been extensively studied in

computer vision. Recent research shows that the combi-

nation of Fisher vector (FV) encoding and convolutional

neural network (CNN) provides significant improvement in

texture classification over the previous feature representa-

tion methods. However, by truncating the CNN model at

the last convolutional layer, the CNN-based FV descriptors

would not incorporate the full capability of neural networks

in feature learning. In this study, we propose that we can

further transform the CNN-based FV descriptors in a neural

network model to obtain more discriminative feature repre-

sentations. In particular, we design a locally-transferred

Fisher vector (LFV) method, which involves a multi-layer

neural network model containing locally connected layers

to transform the input FV descriptors with filters of locally

shared weights. The network is optimized based on the

hinge loss of classification, and transferred FV descriptors

are then used for image classification. Our results on three

challenging texture image datasets show improved perfor-

mance over the state-of-the-art approaches.

1. Introduction

Texture is a fundamental component in visual recogni-

tion. The study of texture, especially feature representation

of textures, has evolved over the years from basic statistical

features, to the most recent methods based on deep learning.

Among the numerous representation methods, we are par-

ticularly interested in the feature encoding aspect. While the

earlier studies have mainly used the bag-of-words (BOW)

model and its variations [14, 11, 34, 13, 30, 19, 18], en-

coding via Fisher vectors (FV) has become the dominant

approach in texture classification [21, 6, 25, 7].

Similar to BOW, FV encoding aggregates the local-level

features into the image-level representation. The main

uniqueness of FV encoding is the soft assignment of Gaus-

Figure 1. With the VGG-VD model, FV-CNN descriptor is com-

puted by FV encoding of the local features from the last convo-

lutional layer. We design the LFV model, in a multi-layer neural

network construct, to further transform the FV-CNN descriptor to

a more discriminative LFV descriptor.

sian components and the computation of first and second

order difference vectors. In addition, while typically the

dense scale-invariant feature transform (DSIFT) features

are the local features used with FV encoding [17, 6, 25],

the recent approach has shown that the local features from a

convolutional neural network (CNN) model could produce

more discriminative FV descriptors [7]. In particular, this

study proposes a FV-CNN descriptor, which is computed

by FV encoding of the local features extracted from the

last convolutional layer of the VGG-VD model (very deep

CNN model with 19 layers) [24] pretrained on ImageNet.

This FV-CNN descriptor shows large improvement over the

more standard FV-DSIFT descriptor [7, 26].

Also, for texture classification, this FV-CNN descrip-

tor shows higher classification performance than FC-CNN,

which is the descriptor obtained from the penultimate fully

connected layer of the CNN [7]. Moreover, we find that

even if the pretrained VGG-VD model is fine-tuned on the

texture image dataset, the fine-tuned FC-CNN descriptors

are still less discriminative than the FV-CNN descriptors.

These observations indicate that FV encoding is more ef-
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fective than the encoding by the fully connected layers in

the CNN pipeline. We suggest that the main reason of this

advantage is that the GMM model used in FV encoding

provides an explicit feature space modeling and this has a

higher generalization capability to better capture the com-

plex feature space.

However, with FV-CNN, the benefit of CNN is not fully

utilized since it is truncated at the last convolutional layer.

To better incorporate the learning capability of a CNN

model, there is a trend to create end-to-end learning by

mimicking the handcrafted encoding in a CNN model. For

example, in the NetVLAD model [1], customized layers are

inserted in place of the fully connected layers to generate a

descriptor similar to the VLAD encoding. However, our ex-

periments show that this NetVLAD model is less effective

than FV-CNN descriptors in the texture classification prob-

lem. We find that besides the reason that VLAD encodes

only first order differences, the classification performance

of NetVLAD is also limited by the design of the fully con-

nected layer connecting the high-dimensional VLAD de-

scriptor with the softmax loss layer.

In this work, we consider that since the multi-layer neu-

ral network model (with fully connected layers) is very dif-

ferent from the GMM construct, both algorithms (FV en-

coding and neural network) could discover complementary

information to represent the images effectively. Therefore,

it could be helpful to integrate the FV encoding with a neu-

ral network model, rather than using a single model in place

of the other, so that the advantages of both algorithms would

be incorporated. We expect that the integrated model would

generate descriptors with higher discriminative power.

We thus design a locally-transferred Fisher vector (LFV)

method to further transform the FV-CNN descriptor in a

neural network model (as shown in Figure 1). Briefly, we

design a multi-layer neural network model, with the FV-

CNN descriptors as the input layer and a final layer repre-

senting the hinge loss of classification. The intermediate

layers comprise a locally connected layer, with local fil-

ters that transform the input data into a lower dimension.

The filter weights are shared locally so that the data trans-

form is performed differently on the sub-regions of the FV-

CNN descriptor. Compared to FV-CNN, this LFV method

helps to integrate the benefit of discriminative neural net-

work in feature learning. Also when compared to end-to-

end learning, the capability of FV encoding in representing

the complex feature space is retained by keeping the FV-

CNN component. Therefore, instead of attempting to use

a single CNN model to encompass the benefits of both FV

encoding and neural network, it becomes a simpler prob-

lem to design the additional neural network model on top of

FV-CNN descriptors.

We performed experiments on three texture image

datasets, including the KTH-TIPS2 dataset [4], the Flickr

Material Dataset (FMD) [20], and the Describable Tex-

ture Datasets (DTD) [6]. We demonstrate improved per-

formance over the recent approaches [7, 12].

1.1. Related work

The current state-of-the-art approaches for texture clas-

sification include the one with FV-CNN descriptors [7] and

the bilinear CNN (B-CNN) model [12]. Both approaches

use the pretrained VGG-VD model as the base network,

but with different encoding techniques, i.e. FV versus bilin-

ear encoding. The two encoding techniques provide similar

classification performance with FV-CNN having a smaller

feature dimension.

When applying the pretrained VGG-VD model to the

texture image datasets, it could be intuitive to consider fine-

tuning the model first on the specific dataset [3, 15, 16]. For

FV-CNN and B-CNN models, the fine-tuning needs to be

conducted down to the convolutional layers to take effect.

However, it is reported in [12] that fine-tuning the VGG-VD

model on the texture image datasets leads to negligible per-

formance difference. This could be due to the small num-

ber of images available for training in the texture datasets.

The B-CNN model also has the advantage of an end-to-end

learning capability with its neural network construct. How-

ever, such learning requires a large image dataset and has

only been performed on ImageNet [12].

A particularly interesting end-to-end learning model is

the NetVLAD [1]. In this model, the outputs from the last

convolutional layer are used as input to the VLAD layer,

which contains learnable parameters and can be computed

with convolution and softmax operations. The model is

however designed for place recognition. When applied to

texture images, we find that the classification performance

is lower than FV-CNN, partly due to the formulation of only

first order differences. Another study proposes a FisherNet

model, which adds layers with similar effects to FV encod-

ing, incorporating both first and second order differences

[28]. However, this model is quite complicated requiring

an explicit patch generation layer, rather than using the lo-

cal features from the convolutional layers. Another model,

namely HistNet, is recently proposed to simulate the his-

togram / BOW encoding in the CNN model [33]. However,

without the first and second order difference information,

such a network might not be suitable for texture classifica-

tion problems.

There are also other ways to improve the FV descriptors.

For example, dimensionality reduction with a large margin

construct is designed and shows improvement in face recog-

nition over the high-dimensional FV descriptor [23]. Also,

with deep Fisher networks [22], multiple Fisher layers are

stacked and combined with a global layer to produce the fi-

nal descriptor, and discriminative dimensionality reduction

is learned in each layer. In another study [27], the Gaus-
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Figure 2. Our LFV model comprises the input layer, locally connected layer, local normalization layer, ReLU layer, and the hinge loss

layer. The input layer is the FV-CNN descriptor. The output at the ReLU layer is the LFV descriptor generated.

sian parameters are integrated into the SVM learning ob-

jective to achieve end-to-end learning of both FV encoding

and SVM classification. In addition, approximate Fisher

kernel [8] is designed to incorporate latent variable mod-

eling into Fisher encoding, so that local features need not

be identically and independently distributed (iid). An intra-

normalization technique [2], which is originally proposed

for the VLAD descriptor, has also been applied to FV de-

scriptors recently [10]. With this technique, each feature

block is individually normalized to reduce the bursty effect

in the descriptor encoding. These approaches are however

less coupled with the CNN model and not designed for tex-

ture image classification.

2. Preliminary

FV encoding computes an image-level descriptor by ag-

gregating the local patch-level features. The key step in FV

encoding is to generate a Gaussian mixture model (GMM)

with K components from the local features of the training

set. To obtain the FV descriptor of an image, the local fea-

tures in this image are soft assigned to each Gaussian com-

ponent. Then based on the soft assignment, the average first

and second order differences between the local features and

K Gaussian components are computed and concatenated to

produce the FV descriptor.

In this study, we focus on the FV-CNN descriptor. Given

an image I and the VGG-VD model pretrained on Ima-

geNet, the 512-dimensional local features are derived from

the last convolutional layer of the VGG-VD model. These

local features of training images are then pooled together

to generate the GMM model, and encoded accordingly to

produce the FV-CNN descriptor. The dimension of the FV-

CNN descriptor h is 2KD, with D = 512 and K is set to

64 following the approach used in [7].

3. Locally transferring Fisher vectors

We design the LFV method in a multi-layer neural net-

work model. Figure 2 gives an overview of our model,

which comprises five layers. The first input layer is simply

the FV-CNN descriptor. In a CNN sense, this input layer

has a size of 1× 1× (2KD)×N , with N as the batch size

during training. We denote the nth input vector in the batch

as h(n).
The second layer is a locally connected layer. It consists

of 2K filters, with each filter of D1 neurons. Each filter is

fully connected to a section of D inputs in the input layer,

and produces D1 outputs. Formally, the output f2(n, i) ∈
R

D1 corresponding to the input h(n) from the ith filter is

computed as:

f2(n, i) = W2(i)h(n, i) + b2(i) (1)

where h(n, i) ∈ R
D is the ith section in the input vector

h(n), W2(i) ∈ R
D1×D is the weight matrix of the ith fil-

ter, and b2(i) ∈ R
D1 is the bias vector. Also, to reduce the

number of parameters, we choose to have every four con-

secutive filters share the same weights, hence there are a

total of 2K/4 unique filters in this layer. The total output

dimension of the second layer is 1×1×(2KD1)×N . Note

that with D1 set to 64, this layer effectively condenses the

FV descriptor to a lower dimension.

The third layer is a local normalization layer. Each out-

put f2(n, i) from the second layer is L2 normalized so that

the various sections have the same importance in the trans-

ferred descriptor. The fourth layer is a ReLU layer, with

ReLU activation applied to the 1×1×(2KD1)×N dimen-

sional output of the previous layer. We denote the output of

the input h(n) at the fourth layer as f4(n), which can be

summarized as:

f4(n) = ReLU({‖f2(n, 1)‖2, . . . , ‖f2(n, 2K)‖2}). (2)

This f4(n) is then the transferred FV descriptor LFV from

our model.

The last layer is the loss layer, which gives a loss value

of classification based on the output f4 from the previous

layer. We define this layer with the hinge loss. Specifically,

assume that the dataset contains L image classes. A one-

versus-all multi-class linear-kernel classification model is

formulated, with one weight vector wl ∈ R
2KD1 for each
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class l ∈ {1, . . . , L}. The loss value ε is computed as:

1

2

L∑

l=1

wT

l
wl+C

L∑

l=1

N∑

n=1

max(1−wT

l
f4(n)λ(n, l), 0) (3)

where λ(n, l) = 1 if the nth input vector h(n) belongs to

class l and λ(n, l) = −1 otherwise. Minimizing this loss

value at the last layer is thus analogous to minimizing the

margin in an SVM classifier.

3.1. Design explanation

In our network design, we consider the second layer con-

ceptually similar to a fully connected layer in the VGG-VD

model, which is useful for transforming the input data to a

lower dimension. However, we choose to use the locally

connected structure rather than fully connected, since we

consider that it would be difficult to have a single filter that

would effectively transform the long FV descriptors. By

using the local filters, varying feature patterns could po-

tentially be explored in different sub-regions of the FV de-

scriptors, and the collective results from local filters could

improve the overall results. Also, we set the section size as

512, which is the dimension of the local feature. Each fil-

ter thus corresponds to the mean or variance vector of one

Gaussian component in the GMM model. Furthermore, al-

though we could have one filter for each 512-dimensional

section, the amount of learnable parameters would be huge

and overfitting would be a problem for the small size of

dataset. We thus experimented with a number of strategies

to merge filters with weight sharing. We found that the sim-

ple technique of having a common filter for every four con-

secutive sections could provide good performance.

For the loss layer, we suggest that since LFV descriptors

will be finally classified using linear-kernel SVM, the com-

monly used softmax loss function is not well aligned with

the SVM classification objective. We thus choose to use an

SVM formulation in this loss layer based on the standard

hinge loss. This design is similar to the method in [29],

but we explicitly define the multi-class classification loss.

In addition, while it is reported in [29] that the L2-SVM

formulation (squared sum of losses) provides better perfor-

mance than L1-SVM (linear sum of losses), we found that

L1-SVM is more effective in the texture image classifica-

tion problem.

Overall, by transferring the FV descriptor using the pro-

posed model, the benefits of FV encoding and discrimina-

tive learning of neural network are integrated in a simple

manner. We also keep the network design simple with min-

imal layers to reduce the network complexity and the risk of

overfitting. We do however suggest that it could be possible

to further enhance the network with varying configurations

(e.g. more locally connected layers and a different D1), es-

pecially if the method is applied to a different dataset.

3.2. Parameter learning

The forward and backward passes of the locally con-

nected layer can be implemented by a combination of 2K/4
standard fully connected neural networks to learn the pa-

rameters W2 and b2. The input data to each network is of

size 1×4×D×N and the output is of size 1×4×D1×N .

The combination of all individual outputs then gives a total

dimension of 1× 1× (2KD1)×N . Standard implementa-

tion is also used for the L2 normalization and ReLU layers.

For the loss layer, the loss function can be differentiated

with respect to f4(n) and wl to obtain the derivatives for

backpropagation. In particular, we obtain the following:

∂ε

∂f4(n)
= −C

L∑

l=1

λ(n, l)wl1(1 > wT

l
f4(n)λ(n, l)) (4)

and

∂ε

∂wl

= wl − C

N∑

n=1

λ(n, l)f4(n)1(1 > wT

l
f4(n)λ(n, l))

(5)

where the regularization parameter C is set to 0.1.

The parameters W2, b2, and wl are initialized by treating

the local filters as individual networks and training them

separately based on the sections of FV-CNN descriptors. In

other words, we create 2K separate networks, with each one

used to train one filter as the initial values; and we found

such an initialization process to be particularly useful for

the FMD dataset. This initialization process leads to con-

siderable improvement in classification results over the ran-

dom initialization. In addition, we also found that adding a

dropout layer with rate 0.5 before the loss layer can further

reduce the feature redundancy and improve the final clas-

sification result slightly. This is thus incorporated into the

network when learning parameters.

4. Experiments

4.1. Datasets and implementation

We used three texture image datasets for experiments.

The KTH-TIPS2 dataset contains 4752 images from 11 ma-

terial classes, with each class of 432 images. The images in

each class are divided into four samples of different scales.

Following the standard protocol, one sample is used for

training and three samples are used for testing during each

split. The FMD dataset contains 1000 images from 10 ma-

terial classes with each class of 100 images. During exper-

iments, half of the images are randomly selected for train-

ing and the other half for testing. The DTD dataset con-

tains 5640 images from 47 texture classes, with each class

having 120 images. Unlike KTH-TIPS2 and FMD, the im-

ages in DTD have varying sizes. DTD is also considered as

the most challenging dataset since it contains images in the
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Table 1. The classification accuracies (%), comparing our LFV method with FV-CNN [7], FV-CNN computed with fine-tuned VGG-VD

model (backpropagation to the last convolutional layer), FV descriptor generated with end-to-end CNN learning similar to the NetVLAD

model (backpropagation to the FV layer), and B-CNN [12]. Linear-kernel SVM classification is performed with all compared approaches.

Dataset Our LFV FV-CNN Fine-tuned FV End-to-end FV B-CNN

KTH-TIPS2 82.6±2.6 81.4±2.4 80.9±2.3 78.5±2.1 80.2±2.8

FMD 82.1±1.9 79.7±1.8 79.3±2.1 76.9±1.6 80.5±1.6

DTD 73.8±1.0 72.4±1.2 71.8±1.0 68.2±1.3 71.9±1.0

wild. For DTD, the training / testing splits published with

the dataset are used, and within each split, 2/3 of the images

are used for training and 1/3 for testing. For all datasets,

four splits of training and testing are conducted, and the

mean accuracy is used as the performance metric.

When generating the FV-CNN descriptors, we follow the

approach in [7]. The images are scaled to multiple sizes,

with scales of 2s, s = −3,−2.5, . . . , 1.5, and the VGG-

VD model (with 19 layers) is applied to each scale. The

local features from the last convolutional layer are pooled

together to generate a GMM with K = 64 Gaussian com-

ponents. The resultant FV-CNN descriptor is then 2KD =
65536 dimensional. This high-dimensional FV-CNN de-

scriptor is then input to the LFV model to obtain the trans-

ferred descriptors. The learning rates of the various layers

are set to 0.05 and the batch size N is set to 50. The LFV

model provides a discriminative dimensionality reduction

and reduces the descriptor dimension to 2KD1 = 8192.

Linear-kernel SVM is finally used to classify the LFV de-

scriptors. Our code was implemented based on VLFeat [31]

and MatConvNet [32] libraries.

4.2. Compared approaches

For performance comparison, we evaluated the follow-

ing approaches. For all approaches, VGG-VD is used as the

base model, and linear-kernel SVM is used as the classifier.

Pretrained model. FV-CNN descriptors are generated

with the VGG-VD model pretrained on ImageNet. This is

the same approach proposed in [7], and also the input to our

LFV model.

Fine-tuned model. FV-CNN descriptors are also com-

puted by first fine-tuning the VGG-VD model on the texture

image dataset. The fine-tuning is performed in a standard

manner with the backpropagation stopped at various convo-

lutional layers.

End-to-end learning of FV descriptor. We also ex-

periment with an end-to-end CNN-based learning method

to derive the FV descriptors. To do this, we modify the

NetVLAD model to replace the VLAD layer with an FV

layer while keeping all the other layers unchanged. Also,

a fully connected layer of L neurons (L being the num-

ber of image classes) and a softmax loss layer are appended

at the end of the NetVLAD model for parameter learning.

The FV layer is constructed following the design in [28].

Briefly, in the FV layer, a weight vector wk and bias vector

bk are defined corresponding to each Gaussian component

k. The first and second order difference vectors are com-

puted using element-wise product and sum operations be-

tween the weight vector, local feature, and bias vector. This

layer is differentiable and hence can be embedded into the

CNN model. Note that the model is initialized using the

pretrained VGG-VD model, and the resultant FV descriptor

is also 2KD dimensional.

Include FC-CNN. As reported in [7], the FC-CNN de-

scriptor provided much lower results than FV-CNN, but can

be concatenated with FV-CNN to obtain a more discrimina-

tive feature representation. We also evaluated the classifica-

tion performance by concatenating FC-CNN with our LFV

descriptor. For this concatenation, the 4096-dimensional

FC-CNN descriptor obtained from the penultimate layer of

VGG-VD is transformed using a model similar to LFV, but

with FC-CNN as the input, and the section size D is set to

64 (a convenient number). We found that this transformed

FC-CNN descriptor gives better classification results than

simply concatenating the original FC-CNN descriptor.

B-CNN. The B-CNN encoding is also used to obtain

the image descriptors. Similar to FV-CNN, the images are

scaled to multiple scales and the features from different

scales are pooled together.

Dimension reduced descriptor. Since our IFV descrip-

tor effectively reduces the feature dimension of the original

FV-CNN descriptor, we also compare with the other dimen-

sionality reduction algorithms, including principal compo-

nent analysis (PCA), linear discriminant analysis (LDA),

the compact bilinear pooling designed to reduce the B-CNN

descriptor [9], and a simple fully connected layer in place

of the locally connected layer in our LFV model.

4.3. Results

Table 1 lists the classification results using (i) origi-

nal FV-CNN obtained using VGG-VD pretrained on Ima-

geNet, (ii) FV-CNN from fine-tuned VGG-VD model, (iii)

FV descriptor with end-to-end learning, (iv) B-CNN, and

(v) our LFV model. The results show that our LFV method
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Table 2. The classification accuracies (%) of LFV and LFV com-

bined with FC-CNN.

Dataset LFV LFV + FC-CNN

KTH-TIPS2 82.6±2.6 83.1±1.8

FMD 82.1±1.9 83.5±1.6

DTD 73.8±1.0 75.2±1.2

Figure 3. Classification accuracies (%) comparing our LFV

method with SVM classification on original FV-CNN descriptor,

and the dimension reduced FV-CNN descriptor using PCA, LDA,

and the neural network model with a fully connected (FC) layer in

place of the locally connected layer.

achieved the highest classification performance on all three

datasets. Compared to the current state of the art (FV-CNN

and B-CNN), our method provides the larger improvement

on the FMD dataset than the KTH-TIPS2 and DTD datasets.

We suggest that this difference in improvements could be

partly affected by the number of image classes. The hinge

loss function would normally better model the differenti-

ation when the number of image classes is small (e.g. 10

classes in FMD).

Also, it is interesting to see that the fine-tuned FV-CNN

actually gives lower accuracy than the original FV-CNN.

This undesirable effect of fine-tuning could be due to the

small number of images available for training. Note that the

results given in the table are from backpropagation only to

the last convolutional layer. If lower convolutional layers

are also fine-tuned, similar or worse results are obtained.

In addition, the end-to-end learning of FV descriptors re-

sults in the lowest performance. This indicates that when

the training data is limited, the generalization capability

of GMM is more effective than the supervised learning in

CNN in representing the complex feature space. We do

however suggest that it might be possible to further enhance

the result with the end-to-end learning approach, with more

thorough experiments on the design of the training method

with data augmentation or multi-scale handling. This is

however beyond the scope of this study.

When the FC-CNN descriptor is concatenated with the

LFV descriptor, the classification performance is further

Table 3. The classification accuracies (%) of LFV and the compact

bilinear pooling (CBP) [9]. The results of CBP are taken from [9],

based on two algorithms (RM & TS). Since the CBP method was

evaluated using 1/3 of images for training and 2/3 for testing, for

fair comparison, we also use this setup here to evaluate LFV. Note

that both LFV and CBP have the same feature dimension of 8192.

Dataset LFV CBP-RM CBP-TS

DTD 68.6±1.0 63.2 67.8

Figure 4. Classification accuracies (%) of our LFV method when

different numbers of local filters have shared weights. For exam-

ple, P = 4 is the default setting, meaning every four consecutive

filters have the same weights.

Figure 5. Classification accuracies (%) comparing our LFV

method with using softmax as the loss layer, and performing intra-

normalization on the FV-CNN descriptor.

improved on all three datasets, as shown in Table 2. Recall

that this FC-CNN descriptor is the transformed descriptor

based on the same LFV model (with different parameters).

This result also indicates that our LFV model is not lim-

ited to transforming FV descriptors but can be extended to

apply to different high-dimensional feature vectors. In ad-

dition, our LFV model has a similar number of parameters

to the VGG-F model [5]. However, the ImageNet pretrained

and fine-tuned VGG-F model provided less than 50% accu-

racy on texture classification, hence further demonstrating

the advantages of using FV-CNN and our LFV descriptors.

Figure 3 shows the various results comparing our LFV

method with the other dimensionality reduction techniques.

For PCA and LDA, the feature dimension is reduced to the

maximum possible dimension when using such techniques.

For FC, to restrict the network size, we set the fully con-
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Figure 6. Example images from the KTH-TIPS2 dataset. With our LFV method, the ‘aluminium’ and ‘lettuce leaf’ image classes are the

best classified classes (around 99.1% recall), while the ‘wool’ and ‘cotton’ classes are worst classified (around 25.9% and 40.1% recall,

respectively). The red border indicates images that are misclassified.

Figure 7. Example images from the FMD dataset. With our LFV method, the ‘foliage’ and ‘water’ image classes are the best classified

classes (around 96% and 94% recall, respectively), while the ‘metal’ and ‘fabric’ classes are worst classified (around 64% and 72% recall,

respectively). The red border indicates images that are misclassified.

nected layer to have 1024 neurons. The results show that

PCA does not affect the classification performance, indicat-

ing that there is indeed a large degree of redundancy in the

FV-CNN descriptor that could be effectively removed. It

is interesting that LDA results in some improvement in the

classification performance, hence LDA could be a better al-

ternative than SVM for classifying the FV-CNN descriptors.

The FC approach gives the lowest classification accuracy,

demonstrating the necessity of using the locally connected

layer instead of fully connected layer when transforming the

descriptors. In addition, recently a compact bilinear pooling

(CBP) method [9] was proposed to reduce the dimension of

the B-CNN feature. The method includes two similar algo-

rithms, RM and TS, and the results on the DTD dataset are

reported. The two CBP algorithms and our LFV method

all reduce the feature dimension to 8192. Our evaluation

shows that our LFV method outperforms CBP, as shown in

Table 3. These results demonstrate that our LFV method

can be regarded as an effective discriminative dimension-

ality reduction algorithm, based on the supervised learning

with a multi-layer neural network model.

We note that an important parameter in our method is

the number of local filters of shared weights. We denote

this number as P . By default, we specify that every four

(P = 4) consecutive local filters have the same weights.

This is mainly to reduce the network size. Figure 4 shows

the effect of this P value on the classification performance.

The classification result tends to increase slightly when

P = 2 or P = 1 is used. However, the training complexity

and time required also increase with smaller P settings. On

the other hand, P = 8 means too many local filters have

shared weights, and the classification result is reduced con-

siderably. Overall, we suggest that P = 4 is a well balanced

choice when designing the network model.

We also evaluated using the standard softmax function

for the loss layer instead of our SVM loss, with an addi-

tional fully-connected layer ahead of the softmax layer. As

shown in Figure 5, the softmax loss provides on average

0.5% lower accuracy than the SVM loss, indicating the ben-

efit of using an SVM loss function. In addition, we consider

that our local transformation of the FV-CNN descriptor is

conceptually related to the intra-normalization technique on

VLAD [2], since in both approaches the transformation /

normalization is performed on individual sections of the
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Figure 8. Example images from the DTD dataset. With our LFV method, the ‘chequered’, ‘studded’, ‘potholed’, and ‘knitted’ image

classes are the best classified classes (around 97.5%, 97.5%, 95.0%, and 92.5% recall, respectively), while the ‘blotchy’, ‘bumpy’, ’pitted’,

and ’stained’ classes are worst classified (around 35.0%, 47.5%, 50.0%, and 50.0% recall, respectively). The red border indicates images

that are misclassified.

descriptor. Therefore, we also evaluated our LFV method

against the intra-normalization technique. As shown in Fig-

ure 5, compared to the original FV-CNN descriptor, the

intra-normalization technique decreases the classification

accuracy on the KTH-TIPS2 dataset by about 2% and pro-

vides a small improvement on the DTD dataset only, while

our LFV method achieves consistent enhancement over FV-

CNN on all three datasets. This demonstrates the advantage

of having a supervised learning-based transformation rather

than a predefined normalization.

Figures 6, 7, and 8 show example images of the classi-

fication results. Take the KTH-TIPS2 dataset for example.

The aluminium and lettuce leaf classes are visually distinc-

tive from the other classes and hence exhibit excellent clas-

sification performance. The lowest classification accuracy

was obtained for the wool class, which is often misclassi-

fied as cotton or linen classes due to the similar visual char-

acteristics among these fabric classes. For the FMD dataset,

it can be seen that although the images in the foliage class

also exhibit large visual variation, our method could effec-

tively identify the distinguishing pattern of the leaves and

the classification performance for this class is high.

The main computational expensive process is the appli-

cation of the CNN model to compute the local features at

multiple scales, requiring about 2 seconds per image. Af-

ter the CNN local features are computed, the encoding of

Fisher vectors need less than 1 minute for each dataset.

Therefore, for a test image at run time, there is little addi-

tional cost to compute the FV-CNN descriptor compared to

obtain a CNN feature at the last fully connected layer. The

training of local filters in LFV needs about 100 epochs on

each dataset, and the training time varies depending on the

size of the data. For example, on the largest DTD dataset,

the training takes about 70 minutes with CPU Core i7 and

GPU GeForce GTX 745.

5. Conclusions

We present a texture image classification method in this

paper. Our method, called the locally-transferred Fisher

vector (LFV), transforms the FV-CNN descriptor in a multi-

layer neural network model to obtain a more discriminative

feature representation. The LFV model comprises a locally

connected layer with filters of locally shared weights and a

hinge loss layer representing the SVM classification objec-

tive. With the LFV model, the benefits of FV encoding and

neural network are integrated in a simple and effective man-

ner, and the resultant LFV descriptor has a lower dimension

than the FV-CNN descriptor. Our method is evaluated on

three texture image datasets including KTH-TIPS2, FMD,

and DTD. The results show that our LFV descriptors pro-

vide higher classification performance than the state-of-the-

art approaches based on FV-CNN and B-CNN descriptors.

We also demonstrate that LFV is more effective than fine-

tuning or end-to-end learning of FV-CNN descriptors.
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