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Abstract

In this work, we address multimodal learning problem

with Gaussian process latent variable models (GPLVMs)

and their application to cross-modal retrieval. Existing

GPLVM based studies generally impose individual priors

over the model parameters and ignore the intrinsic rela-

tions among these parameters. Considering the strong com-

plementarity between modalities, we propose a novel joint

prior over the parameters for multimodal GPLVMs to prop-

agate multimodal information in both kernel hyperparam-

eter spaces and latent space. The joint prior is formulat-

ed as a harmonization constraint on the model parameters,

which enforces the agreement among the modality-specific

GP kernels and the similarity in the latent space. We in-

corporate the harmonization mechanism into the learning

process of multimodal GPLVMs. The proposed method-

s are evaluated on three widely used multimodal datasets

for cross-modal retrieval. Experimental results show that

the harmonization mechanism is beneficial to the GPLVM

algorithms for learning non-linear correlation among het-

erogeneous modalities.

1. Introduction

In real-world applications, we have access to rich data

that involves multiple modalities, such as image with tex-

t [1, 2], or video with audio [3]. Better multimodal repre-

sentations are required to describe the complementary in-

formation of heterogeneous modalities with intrinsic topic

and semantic relations. In this work, we consider multi-

modal learning problem and its application to cross-modal

retrieval [4–7] that has attracted much attention in comput-

er vision community. Specifically, given queries from one

modality (e.g., image), the goal of cross-modal retrieval is

to retrieve database entries from other modalities (e.g., tex-

tual descriptions) that are semantically consistent or rele-

vant to the queries.

Various methods have been proposed recently to model

the correlation across different modalities. Among these,

latent variable models are typically used to relate heteroge-

neous modalities to a latent space, where a joint representa-

tion is learned across content modalities. Canonical corre-

lation analysis (CCA) [1, 8, 9] is one of the representative

schemes for latent variable modeling, where the shared sub-

space is learned by maximizing the correlation between the

projections of data modalities. However, the deterministic

mappings in CCA-based methods generally lack probabilis-

tic interpretation on the interactions between modalities and

flexibilities to content divergence. In this work, we study

generative non-linear and non-parametric model for cross-

modal correlation learning.

As a probabilistic extension of PCA [10], a probabilistic

Gaussian process mapping is defined in Gaussian process

latent variable model (GPLVM) [10] from low dimensional

latent space to high dimensional observation space. Fur-

ther, multimodal GPLVMs [11–15] are proposed to learn

a latent representation to capture the shared information a-

mong multimodal data. Due to the non-parametric nature,

they can effectively learn low dimensional representation-

s of heterogeneous data sources. The latent representation

can be used for various tasks such as robotic imitation learn-

ing [11], facial recognition [15], tracking [16], and cross-

modal retrieval [12].

In the context of multimodal GPLVM learning, how to

learn the relation on heterogeneous data modalities is still

a critical issue that is left to be further investigated. Typi-

cally, manifold alignment [17] is used to build connections

between manifolds by fitting the point-wise related observa-

tions. By learning Gaussian process (GP) projections from

each original data modality, alignment-based approaches

[11, 13, 14, 18] attempt to discover a shared latent manifold
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to align different modalities. Since multimodal GPLVM-

s are learned by unsupervised learning strategy, the learned

latent representations of correlated data pairs might be quite

different, and thus their structure and semantic correlations

are not guaranteed to be well preserved.

A possible solution to this problem is to employ addi-

tive priors over the latent space by incorporating structure

and semantic information of data observations [13, 14, 19]

or enforcing data alignment [15, 20]. For example, latent

points are back-constrained in [13] to be a smooth func-

tion of the data points for preserving affinity structure. A

distance-preserved constraint is proposed for the latent s-

pace in [19] to maximally preserve the intra-modal global

similarity structure. In [15], data-dependent GMRF prior

is used to learn a discriminative shared manifold to align

multiple views of a facial expression. For these GPLVM al-

gorithms, the prior information for kernel hyperparameters

is ignored, or only uninformative priors are imposed over

kernel hyperparameters.

It is worth noticing that the learning of multimodal G-

PLVMs is not restricted to the set of latent representation-

s for heterogeneous modalities. The GP mapping func-

tion, also to be learned, is generated conditionally on both

the latent points and the kernel hyperparameters. Gaus-

sian process kernels play an important role in pattern dis-

covery [14, 21]. With more expressive kernels, one could

use Gaussian processes to learn a better latent representa-

tion for multimodal data. Therefore, the fully Bayesian ap-

proaches [22, 23] for GPLVM are proposed by additionally

placing priors on the kernel parameters. However, the latent

points and the kernel hyperparameters are treated indepen-

dently in these works. Such an individual learning scheme

may be mutually incompatible on real world problems, and

thus limited adaptation to content divergence and complex

multimodal correlation may be achieved.

To address these concerns, we propose harmonized mul-

timodal GPLVM, which includes a model-driven prior that

goes beyond the individual design paradigm of latent priors

and GP kernels. The harmonization is achieved by mini-

mizing the divergence, measured by distance-induced loss

functions, between modality-specific GP kernels and sim-

ilarity matrix of the latent points. By building the model

harmonization, the modality-specific structure information

can be more sufficiently transferred among the kernel hy-

perparameters via the shared latent space, and in return the

learned representations are endowed with better multimodal

topology preservation. Furthermore, the additional infor-

mation transfer pathway on the model parameter space can

help to avoid the inappropriate solution brought by noise

and correlation observation sparsity.

In this work, three variants of multimodal GPLVMs are

proposed for cross-modal retrieval. The Harmonized Mul-

timodal GPLVM (hmGPLVM) enforces model harmoniza-

Figure 1. Multimodal GPLVM (mGPLVM): Independent prior

constraints are imposed over the parameters (latent representations

X and kernel hyperparameters θ1, θ2) of multimodal GPLVM.

tion in the learning process of standard multimodal G-

PLVM [11]. The Harmonized Similarity GPLVM (hm-

SimGP) introduces harmonization into the similarity-based

GPLVM [12] to minimize the divergence among input sim-

ilarity, latent similarity and GP covariance. The Harmo-

nized m-RSimGP (hm-RSimGP) combines the harmoniza-

tion constraint with the inter-modal (dis)similarity prior to

enhance the cross-modal semantic consistency. The re-

sulting low dimensional representations for heterogeneous

modalities can be used to perform cross-modal retrieval by

ranking their distances on the latent space. Significant im-

provement has been achieved over the existing approaches

on three widely used real-world multimodal datasets.

2. Multimodal GPLVM

Multimodal Gaussian process latent variable model

(mGPLVM) assumes that different data modalities are

aligned in a shared manifold [11, 13, 14]. Without loss of

generality, we discuss the multimodal learning on two da-

ta modalities in this paper. As shown in Figure 1, the ob-

jective of multimodal GPLVM is to relate two modalities

Y 1 ∈ R
N×d1 and Y 2 ∈ R

N×d2 to the same latent space

X ∈ R
N×q , where q ≪ min (d1, d2). Data in each modali-

ty can be generated through the mapping functions (F 1, F 2)

parameterized by two Gaussian processes. By marginaliz-

ing the non-linear mappings out, the joint marginal likeli-

hood of Y 1 and Y 2 is given by,

p
(

Y 1, Y 2 |X, θ
)

= p
(

Y 1
∣

∣X, θ1
)

p
(

Y 2
∣

∣X, θ2
)

=

∫

p
(

Y 1
∣

∣F 1
)

p
(

F 1
∣

∣X, θ1
)

dF 1

·

∫

p
(

Y 2
∣

∣F 2
)

p
(

F 2
∣

∣X, θ2
)

dF 2,

(1)

where θ = {θ1, θ2} is the kernel or covariance hyperpa-

rameters for GP mapping functions. In the following, we

denote c ∈ {1, 2} in order to simplify our notation.

Different GPLVM approaches for multimodal learning
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can be obtained by varying the assumption of the prior dis-

tribution over the model parameters. Generally, the shared

representations X and the kernel hyperparameters θ are

treated independently in existing works [22–24], and as-

sumed to follow separate prior distributions p (X), p
(

θ1
)

and p
(

θ2
)

, as shown in Figure 1. By incorporating prior

information on the problem at hand, we can learn the mod-

el parameters X and θ using maximum a posteriori (MAP)

probability estimation. In practice, the learning of the mod-

el parameters is carried out by minimizing the negative log-

posterior,

L =
∑

c

Lc − log p (θc)− log p (X) , (2)

where Lc is the corresponding negative log-likelihood of

p (Y c |X, θc ), c ∈ {1, 2}, and is derived as

Lc =
dc
2

ln |Kc|+
1

2
tr
(

K−1
c Y c(Y c)⊤

)

. (3)

The covariance matrix Kc = kc(X,X) is defined by the

kernel function kc operating on the latent space X .

The original mGPLVM may encounter model degrada-

tion in processing high dimensional multimodal data, since

the topological structure in the data space is not guaran-

teed to be preserved in the function embedding process. To

solve this problem, similarity GPLVM (m-SimGP) for mul-

timodal learning is proposed in [12], which learns latent s-

pace and multimodal mapping functions to maximize the

consistency to the modality-specific topologies. The intra-

modal similarities S1 ∈ R
N×N and S2 ∈ R

N×N are com-

puted according to the Gaussian kernel, and they are as-

sumed to be generated from a shared q-dimensional latent

manifold X ∈ R
N×q . Similar as the generation procedure

of multimodal GPLVM, the joint marginal likelihood of S1

and S2 given the model parameters can be computed as,

p
(

S1, S2 |X, θ
)

= p
(

S1
∣

∣X, θ1
)

p
(

S2
∣

∣X, θ2
)

, (4)

p(Sc |X, θc ) =
1

Ac
exp

(

−
1

2
tr
(

K−1
c Sc(Sc)

⊤
)

)

, (5)

where Ac =

√

(2π)
N2

|Kc|
N

, c ∈ {1, 2}. The shared latent

space X and the kernel hyperparameters θ can be learned by

minimizing the joint negative log-likelihood.

3. Multimodal GPLVMs with Harmonization

Learning in the multimodal GPLVM consists of mini-

mizing the log-posterior with respect to the latent space

X and the hyperparameters θ. Beyond existing individual

learning mechanism for the model parameters, e.g., Eq. (2)

assuming the three kinds of model parameters to be inde-

pendent, we assume a joint prior distribution p (θc, x) over

the hyperparameters θc and the latent space X for each da-

ta modality, c ∈ {1, 2}, as shown in Figure 2. The new

Figure 2. Harmonized multimodal GPLVM (hmGPLVM). We

impose joint prior constraints on the parameters of multimodal G-

PLVM to harmonize X and kernel hyperparameters θ1, θ2.

negative log-posterior is given by

L =
∑

c

Lc − log p (θc, X). (6)

In this work, we define the joint prior distribution by a

harmonization constraint over the modality-specific kernel-

s and the similarity in the latent space. By building direct

linkages between the model parameters, the proposed har-

monization mechanism facilitates better GP learning, and

enforces multimodal information to transfer across hyper-

parameter spaces via the latent space.

3.1. The harmonization constraint

For multimodal learning, we aim to learn a model in

which the divergence between similarity in the data space

and the latent space is small. In this work, the covariance

kernel of the GP mapping is chosen to model the simi-

larity among data. For structure preservation, we enforce

the agreement between the modality-specific kernels and

the similarity of latent points, and propose a harmonization

constraint formulated as:

Hc(Kc − Sx) ≤ ρc, c ∈ {1, 2}, (7)

where Sx ∈ R
N×N is the latent similarity matrix measured

by the distances among latent points. K1 and K2 are the

non-linear covariance matrices which depend on the respec-

tive kernel hyperparameters θ1 and θ2. For each c ∈ {1, 2},

Hc(·, ·) is a convex sub-differentiable loss function operat-

ing on Kc and Sx. The constraint parameters ρ1, ρ2 > 0 are

used to control the divergence between GP kernels and the

similarity of latent points.

The proposed distance-based constraint Eq. (7) enforces

the harmonization among the modality-specific kernels and

the similarity of latent points, which enforces the agreement

between GP kernels (K1,K2) for different modalities. Fur-

ther, this will also enforce the agreement among the simi-

larities in the data space across modalities. In our proposed

models, we take the proposed distance-based harmonization
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constraint Eq. (7) as joint priors over the latent space X
and the kernel hyperparameter space θ. From this point, the

mapping functions F 1 and F 2 are no longer conditionally

independent given the latent points X . Therefore, different

data modalities are more closely related in our models.

3.2. The proposed models

In this work, we propose three models for multimodal

learning, i.e., hmGPLVM, hm-SimGP, and hm-RSimGP, to

evaluate the effectiveness of the proposed harmonization

constraint on different multimodal GPLVM algorithms. We

incorporate the constraint Eq. (7) respectively as prior in-

formation over model parameters into three multimodal G-

PLVM algorithms, i.e., mGPLVM [11], m-SimGP [12], and

m-RSimGP [12], which differ greatly in the model structure

for GP learning and the function of multimodal data infor-

mation.

3.2.1 Harmonized multimodal GPLVM (hmGPLVM)

The mGPLVM algorithm is the first multimodal general-

ization of the GPLVM that can handle multiple observation

modalities, which assumes that the observable outputs Y 1

and Y 2 are generated from a common latent space, as de-

scribed in Section 2. To learn the latent representation X
shared by heterogeneous modalities, we minimize the neg-

ative log-posterior L given by Eq. (6), where the prior infor-

mation over the model parameters is derived from the mini-

mization of the loss function Hc in (7). Specifically, we re-

place the hard constraint in (7) by a penalty term on the loss

function, and combine it with the negative log-likelihood

of observed data modalities. The harmonized multimodal

GPLVM is derived as follows,

argmin
X,θ

∑

c

Lc+µcHc(Kc − Sx), (8)

where c ∈ {1, 2}. Lc is the negative log-likelihood function

given by (3). µc is the tradeoff parameter. The regulariza-

tion terms ensure that the solution for K1 and K2 should be

in the vicinity of Sx, which enforces consistency of corre-

lation structure among heterogeneous data.

3.2.2 Harmonized similarity GPLVM (hm-SimGP)

As mentioned in Section 2, the m-SimGP algorithm [12] is

proposed for structure preservation, which learns a shared

latent representation from the intra-modal similarities of

multimodal data. We incorporate the harmonization con-

straint Eq. (7) into the similarity-based m-SimGP model to

enforce the consistency among similarities on both the la-

tent and the kernel hyperparameter spaces. The proposed

hm-SimGP model is formulated as:

argmin
X,θ

∑

c

Ls
c+µcHc(Kc − Sx), (9)

where c ∈ {1, 2}. Ls
c is the negative log-likelihood associ-

ated with Eq. (5). µ1 and µ2 are the tradeoff parameters.

By introducing harmonization, we build the interaction

among three different kinds of similarities in different mani-

folds for hm-SimGP, i.e., the latent similarity (Sx) in shared

space, the intra-modal similarities (S1, S2) in multimodal

data spaces, and the kernels of mapping functions (K1,K2).

The harmonization mechanism encourages the divergence

between these similarities to be small, and thus brings a

more consistent representation for multimodal data.

3.2.3 Harmonized m-RSimGP (hm-RSimGP)

The m-RSimGP algorithm [12] incorporates semantic infor-

mation of multimodal data into the m-SimGP model, where

the inter-modal semantic relation is used as a smooth prior

over the latent space to maximize the cross-modal semantic

consistency. By incorporating the harmonization constraint

Eq. (7) into the m-RSimGP model, we arrive at the follow-

ing minimization problem:

argmin
X,θ

∑

c

Ls
c+µcHc(Kc − Sx)

+ λ1

∑

(oi,oj)∈S
‖xi − xj‖

2

+ λ2

∑

(oi,oj)∈D
max

(

0, 1− ‖xi − xj‖
2
)

,

(10)

where Ls
c, c ∈ {1, 2}, is the negative log-likelihood associ-

ated with Eq. (5). The data object oi =
{

y1i , y
2
i

}

is repre-

sented by the point xi in the low dimensional latent space,

where i = 1, 2, . . . , N . S = {(oi, oj)} denotes the set

of pairs with similar semantics, and D = {(oi, oj)} de-

notes the set of pairs with dissimilar semantics. µ1 and µ2

are the tradeoff parameters for the harmonization regular-

ization terms. λ1 and λ2 are the tradeoff parameters for the

cross-modal semantic regularization terms. The new model

is denoted as hm-RSimGP.

3.3. Optimization and inference

The problems to be solved in Section 3.2 are highly non-

linear functions of the latent variable X and kernel param-

eters θ, and there are no closed form solutions. Note that

the regularization terms, Hc(Kc − Sx), are chosen to be

convex sub-differentiable functions, and the log-likelihood

functions, e.g., L1 and L2 in Eq. (3), are differentiable as

long as the gradients of kernel functions can be computed

with respect to the model parameters. Therefore, we can use

a non-linear gradient-based optimizer such as scaled conju-

gate gradients [25] to obtain the low dimensional embed-

ding for multimodal data. As described in [10], the opti-

mization process for the latent variable X and the kernel pa-

rameters is accelerated through sparsification of the model,

i.e., optimization in an active subset of M points (M ≪ N )

selected from all points in the dataset. In our model, we

use an active block matrix selection strategy on the kernel
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matrices in the harmonization constraints, which is an im-

proved optimization scheme of fast GPLVM [10] by reduc-

ing the gradient computation complexity on the harmoniza-

tion constraints. For learning, the dominant complexity of

our methods reduces to O(NM2). Consequently, our meth-

ods are efficient in processing large training datasets.

Once we have learned the Gaussian processes on the

training multimodal data, the inference procedure is s-

traightforward. Given a new observed point (e.g., a test

image y1t ), we obtain the corresponding latent representa-

tion xt by maximizing the posterior probability p(xt|y
1
t ).

Then we can perform cross-modal retrieval to discover the

non-linear correlations among latent representations of mul-

timodal observations. Specifically, given an image query,

retrieval from the other modality (e.g., text) is accomplished

by ranking the retrieved data according to the distance mea-

sured in the shared latent space.

4. Experiments

In this section, we conduct experimental evaluation on

three datasets for multimodal learning to demonstrate the

advantages of our harmonized models.

4.1. Datasets

Cross-modal retrieval is a typical multimodal application

that requires a common representation of heterogeneous da-

ta objects. The experiments are performed on three publicly

available image/text datasets, i.e., PASCAL Sentence [26],

Wikipedia [1], and TVGraz [27].

PASCAL Sentence [26] is probably the first dataset

aligning images with captions. The dataset contains a total

of 1000 images collected from 20 categories of PASCAL

2008. For each of the categories, 50 images are random-

ly selected. Each image is annotated with 5 sentences via

Amazon Mechanical Turk. We use the same feature repre-

sentation as in [28]. After SIFT features are extracted, each

image is represented as an 1024-dim feature vector with

bag-of-visual-words (BoVW) model. The text representa-

tion is based on Latent Dirichlet Allocation (LDA) model

with 100 topics. A random 70%/30% split of the dataset is

used for training/testing.

Wikipedia [1] is a widely used benchmark for cross-

modal retrieval. It consists of 2,866 image-text pairs which

are collected from Wikipedia articles. 2,173 pairs are ran-

domly chosen for training and the remaining 693 pairs are

used for testing. Each image is represented by an 128-dim

BoVW feature with SIFT descriptors, and each text is repre-

sented by a 10-dim LDA feature. All of the image-text doc-

uments cover 10 semantic categories, and each document is

categorized as one of them.

TVGraz [27] contains 2,058 image-text pairs from 10

visual object categories of the Caltech-256 dataset. It is

collected from webpages retrieved by Google image search

with keywords of the 10 categories. We use the same data

provided by [28], where each image is represented by an

1024-dim BoVW vector based on SIFT, and the text is rep-

resented by the 100-dim LDA feature. The dataset is ran-

domly divided into a training set of 1,558 document pairs

and a test set of 500 document pairs.

For parameter tuning, we further randomly choose 30%
of all the training subsets of the three datasets as the valida-

tion sets in subsequent experiments on parameter sensitivity

analysis, and the remaining 70% data pairs in the training

subsets are used as the training data in the parameter vali-

dation processes.

4.2. Crossmodal retrieval

We evaluate the performance of our methods for two

cross-modal retrieval tasks, i.e., image retrieval with text

query and text retrieval with image query.

4.2.1 Experimental settings

Our models, hmGPLVM, hm-SimGP and hm-RSimGP,

are compared with mGPLVM [11], m-SimGP [12] and

m-RSimGP [12], respectively. In the experiments, log-

likelihood functions of the two baseline models, mGPLVM

and m-SimGP, are penalized by a Gaussian prior on the la-

tent space X , i.e., p (X) =
∏N

n=1 N (xn |0, I ). The m-

RSimGP method imposes inter-modal relations (i.e., se-

mantic similarity and dissimilarity) as smooth priors over

the latent space X . For all these baselines, there are no in-

formative prior over the kernel hyperparameters θ.

Notice that our algorithms work for any convex loss

function. In the experiments, we use the popular Frobenius

norm to define the harmonization constraint, i.e., Hc(Kc −

Sx) = ‖Kc − Sx‖
2
F , c ∈ {1, 2}. The choice of kernel

functions is also arbitrary in our algorithms. For simplicity,

we use an exponential kernel (RBF) to define the non-linear

covariance matrices K1 and K2. Gaussian kernel is used to

compute the similarity Sx on the latent representation.

We also present the performances of several state-of-the-

art approaches for multimodal learning. The probabilistic

model MLBE [6] uses binary hash codes as latent variables

to generate intra-modal and inter-modal similarities. DC-

CAE [9] is a DNN-based multimodal feature learning algo-

rithm which combines CCA-based [30] and autoencoder-

based [31] terms. LGCFL [29] is a supervised cross-modal

matching approach, which utilizes class labels to learn con-

sistent feature representations from heterogeneous modal-

ities, and introduces a local group-based priori for better

utilizing block-based image features.

In all experiments, we use a consistent setting of the pa-

rameters. The tradeoff parameters µ1 and µ2 are assigned

with the same value, indicating equal importance of two da-

ta modalities. We use CCA to initialize the shared latent

space with the nearly optimal latent feature dimension. The

retrieval performance is measured with mean average preci-
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Methods
PASCAL Wiki TVGraz

Image query Text query Average Image query Text query Average Image query Text query Average

MLBE [6] 0.2543 0.2215 0.2379 0.3787 0.4109 0.3948 0.3468 0.3849 0.3659

DCCAE [9] 0.1988 0.1670 0.1829 0.2542 0.1916 0.2229 0.3879 0.3736 0.3808

LGCFL [29] 0.2570 0.2379 0.2475 0.2736 0.2241 0.2489 0.4366 0.4140 0.4253

mGPLVM [11] 0.1507 0.1318 0.1413 0.2054 0.1628 0.1841 0.2645 0.2784 0.2715

hmGPLVM 0.1755 0.1471 0.1613 0.2392 0.1826 0.2109 0.3572 0.3227 0.3400

m-SimGP [12] 0.2761 0.2724 0.2743 0.4336 0.4188 0.4262 0.4467 0.4453 0.4460

hm-SimGP 0.2993 0.3074 0.3034 0.4557 0.4391 0.4474 0.4647 0.4633 0.4640

m-RSimGP [12] 0.3301 0.3275 0.3288 0.4697 0.4418 0.4558 0.5102 0.5079 0.5091

hm-RSimGP 0.3538 0.3514 0.3526 0.4861 0.4791 0.4826 0.5435 0.5351 0.5393

Table 1. The mAP comparison for cross-modal retrieval task on three datasets.

sion (mAP) [32], i.e., average precision at the ranks where

recall changes.

4.2.2 Experimental results

Table 1 summarizes the experimental results on all the

datasets. We see that the proposed harmonization mech-

anism is well adapted to multimodal GPLVM framework.

Our method hmGPLVM achieves significant improvemen-

t over the baseline mGPLVM in all cases, which indicates

that the joint prior is powerful in enhancing the consistency

of the latent representation for multimodal data.

It is clear from Table 1 that the harmonization constrain-

t is still a great boost to GPLVM modeling with similarity

outputs. Our harmonization mechanism is able to enhance

the performance of the original similarity-based GPLVMs,

which significantly outperform the rest of the methods, e.g.,

the probabilistic MLBE, the DNN-based DCCAE, the su-

pervised LGCFL. Specifically, when combined with cross-

modal semantic constraint in the m-RSimGP model, anoth-

er kind of priors over the latent space, our method gain fur-

ther improvements on the ability of preserving inter-modal

semantic relations for multimodal GP models. On the w-

hole, we can conclude that the proposed harmonization con-

straint has strong generalization ability as a joint prior over

the model parameters for multimodal GPLVM learning.

Some examples of cross-modal retrieval on Wiki dataset

are shown in Figure 6. A retrieved result is considered cor-

rect if it belongs to the same class as the query [1]. We use

a textual query from the “biology” class as shown on the

left of Figure 6. As can be seen, all the top retrieved results

by hm-SimGP are from the “biology” category, the same as

the query text, while some of the top retrieved images by

other methods are from different categories. For example,

the 4th result of hmGPLVM is incorrect while the first re-

trieved result of mGPLVM and the second of mSimGP are

incorrect. Therefore, we can see that the harmonized multi-

modal GPLVM models achieve better cross-modal retrieval

performance, especially on the top retrieved documents.
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Figure 3. Sensitivity test on the tradeoff parameters w.r.t. the per-

formance of cross-modal retrieval where µ1 = µ2 = µ.

4.3. Parameter sensitivity analysis

The harmonization parameters µ1 and µ2 control the ex-

tent to which we enforce the agreement between the GP k-

ernel matrices (K1 and K2) and the latent similarity matrix

(Sx). In our experiments, they are assigned with the same

value, i.e., µ1 = µ2 = µ, indicating equal importance of

the observation modalities. We conduct sensitivity analysis

on them to test how they impact on the cross-modal cor-

relation learning performance. Figure 3 shows the curves

of average mAP scores of image-to-text and text-to-image

retrieval with different setting on the tradeoff parameter µ.
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Figure 4. Visualization of the discovered latent representation on the TVGraz dataset (Better viewed in color).
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Figure 5. Sensitivity test on the tradeoff parameters in hm-

RSimGP w.r.t. the performance of image-text retrieval: an exam-

ple on the PASCAL dataset.

As seen in Figure 3, the average mAP is improved as µ
is increased and achieves the best performance around 1 for

most cases. However, the further increase of µ leads to a

drop on the retrieval performance. For larger µ, the perfor-

mance of the harmonized methods is even worse than those

of the baselines without the harmonization mechanism (as

shown in the dashed line in all the subfigures in Figure 3).

These phenomenons are possibly due to the fact that a very

large µ will increase the risk of co-adaptation and cause the

model to become trapped in a local minima. For consisten-

cy, we set µ1 = µ2 = 1 for hmGPLVM and hm-SimGP in

our experiments.

We also conduct sensitivity analysis on the tradeoff pa-

rameters in hm-RSimGP (Eq. (10)) to evaluate how the har-

monization constraint affects multimodal GPLVM learning

with other kinds of latent priors. The cross-modal retrieval

performance is tested on the PASCAL dataset. In the ex-

periments, both similar and dissimilar semantic information

are used in the hm-RSimGP model, and the tradeoff param-

eters λ1 and λ2 are also assigned with the same value, i.e.,

λ1 = λ2 = λ. Seen from Figure 5, our hm-RSimGP can

achieve consistently good performance as long as the val-

ue of µ is not too large. Specifically, for all the given λs,

the performance decreases significantly when the value of

µ is larger than 10. However, our hm-RSimGP performs

much better when the values of the parameters µ and λ are

limited to [0.001, 0.1] and [0.1, 10], respectively. Overal-

l, the proposed harmonization constraint can improve the

performance of the m-RSimGP model with cross-modal

(dis)similarity constraint. In our experiments, we fix the

tradeoff parameters of hm-RSimGP and set µ = 0.1 and

λ = 1 for all the datasets.

4.4. Latent space visualization

We visualize the discovered latent space to evaluate the

learning quality. The experiment is performed on the TV-

Graz dataset with 10 categories. For visualization, the 10-

dim latent representations are embedded into a 2-dim space

using the t-SNE algorithm [33]. As shown in Figure 4,

our harmonized methods perform much better in produc-

ing a low dimensional embedding compared to the original

GPLVM-based methods. For example, the latent represen-

tations discovered by mGPLVM provide little information

on the category structure of the data objects. In contrast, the

latent representations discovered by our hmGPLVM exhib-

it a more clear grouping pattern for the data from the same

category. Therefore, our harmonized GPLVMs can learn a

more discriminative latent space from multimodal data.

4.5. Analysis of the harmonization mechanism

The multimodal GPLVMs learn a shared latent represen-

tation for multimodal data to bridge heterogeneous modal-

ities. In order to preserve structure and propagate the se-

mantic information among different modalities, similar rep-

resentations for correlated data pairs should be guaranteed.

The harmonization constraint in Eq. (7) forces the diver-

gence between the similarities in different modalities and
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Figure 6. Text-to-image retrieval on Wiki. Here we present top four retrieved images. Red rectangle indicates a false positive example.

(a) mGPLVM v.s. hmGPLVM (b) m-SimGP v.s. hm-SimGP

Figure 7. Visualization of the absolute element-wise difference between modality-specific GP kernels (K1,K2) and similarity matrix of

the latent representations (Sx) on PASCAL (Better viewed in color).
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Method

F-Norm
K1 − Sx K2 − Sx Total

mGPLVM 173.371 104.595 277.966

hmGPLVM 66.559 25.124 91.683

m-SimGP 181.413 164.016 345.439

hm-SimGP 114.880 109.031 223.911

Table 2. The Frobenius-norm of the difference between modality-

specific GP kernels (K1,K2) and the similarity matrix of the latent

representations (Sx) on PASCAL.

the latent space to be small. With Frobenious-norm, the

minimization of the loss function forces them to be element-

wise “closer” to each other, and thus the structure consisten-

cy is achieved by a gradual “resonance” effect between the

two during the model learning process. Here we show some

qualitative and quantitative comparisons between different

models. Figure 7 shows the difference between modality-

specific GP kernels (K1,K2) and the similarity matrix (Sx)

of the latent representations on PASCAL data. It is obvious

that the divergences between the two components of hmG-

PLVM and hm-SimGP are much smaller than those of mG-

PLVM and m-SimGP, which is also validated by the quanti-

tative results in Table 2. The results show that the difference

between GP kernels and the similarity of latent points is re-

duced in our proposed models with harmonization, and thus

better structure consistency is achieved among GP kernels

and the similarity in the latent space.

5. Conclusion

We have introduced a harmonization constraint as a joint

prior over the model parameters for multimodal GPLVM-

s. Three harmonized extensions of multimodal GPLVMs,

i.e., hmGPLVM, hm-SimGP and hm-RSimGP, have been

proposed for multimodal correlation learning. Compared to

existing models, we build the additional information trans-

fer pathway on the model parameter space, so that the intra-

modal and inter-modal information can be more sufficient-

ly transferred among the kernel hyperparameters via the

shared latent space. In return, a more semantically consis-

tent latent representation can be obtained with better multi-

modal topology preservation. In future work, we will inves-

tigate more complex and flexible prior distributions of the

model parameters in multimodal GPLVMs for multimodal

correlation learning.
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