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Abstract

Semantic segmentation has been a long standing chal-

lenging task in computer vision. It aims at assigning a la-

bel to each image pixel and needs a significant number of

pixel-level annotated data, which is often unavailable. To

address this lack of annotations, in this paper, we lever-

age, on one hand, a massive amount of available unlabeled

or weakly labeled data, and on the other hand, non-real

images created through Generative Adversarial Networks.

In particular, we propose a semi-supervised framework –

based on Generative Adversarial Networks (GANs) – which

consists of a generator network to provide extra training

examples to a multi-class classifier, acting as discrimina-

tor in the GAN framework, that assigns sample a label y

from the K possible classes or marks it as a fake sample

(extra class). The underlying idea is that adding large fake

visual data forces real samples to be close in the feature

space, which, in turn, improves multiclass pixel classifica-

tion. To ensure a higher quality of generated images by

GANs with consequently improved pixel classification, we

extend the above framework by adding weakly annotated

data, i.e., we provide class level information to the genera-

tor. We test our approaches on several challenging bench-

marking visual datasets, i.e. PASCAL, SiftFLow, Stanford

and CamVid, achieving competitive performance compared

to state-of-the-art semantic segmentation methods.

1. Introduction

Semantic segmentation, i.e., assigning a label from a set

of classes to each pixel of the image, is one of the most chal-

lenging tasks in computer vision due to the high variation

in appearance, texture, illumination, etc. of visual scenes

as well as multiple viewpoints and poses of different ob-

jects. Nevertheless, despite the enormous work during past

years [4], [14], this problem is still not fully solved, even

though recent deep methods have demonstrated to be very

valuable. However, deep networks require substantial anno-
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Figure 1. Our idea is to employ a small set of labeled data to-

gether with large available unlabeled data (both realistic and fake)

to identify hidden patterns supporting semantic segmentation.

tated visual data. In case of semantic segmentation, anno-

tation should be at the pixel-level (i.e., each pixel of train-

ing images must be annotated), which is expensive to ob-

tain. An alternative to supervised learning is unsupervised

learning leveraging a large amount of available unlabeled

visual data. Unfortunately, unsupervised learning methods

have not been very successful for semantic segmentation,

because they lack the notion of classes and merely try to

identify consistent regions and/or region boundaries [28].

Semi-Supervised Learning (SSL) is halfway between su-

pervised and unsupervised learning, where in addition to

unlabeled data, some supervision is also given, e.g., some

of the samples are labeled. In semi-supervised learning,

the idea is to identify some specific hidden structure – p(x)
from unlabeled data x –under certain assumptions - that can

support classification p(y|x), with y class label. In this pa-

per, we aim to leverage unlabeled data to find a data struc-

ture that can support the semantic segmentation phase, as

shown in Fig. 1. In particular, we exploit the assumption

that if two data points x1, x2 are close in the input fea-

ture space, then the corresponding outputs (classifications)

y1, y2 should also be close (smoothness constraint) [3]. This

concept can be applied to semantic segmentation, i.e., pixels
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lying on the same manifold (close in feature space) should

be close in the label space, thus should be classified in the

same class. This means that unsupervised data acts as regu-

larizer in deep networks, accordingly improving their gen-

eralization capabilities.

Under the above assumption, in this paper, we em-

ploy generative adversarial networks (GANs) [8] to support

semi-supervised segmentation by generating additional im-

ages useful for the classification task. GANs have, recently,

gained a lot of popularity because of their ability in gener-

ating high-quality realistic images with several advantages

over other traditional generative models [12]. In our GAN-

based semi-supervised semantic segmentation method, the

generator creates large realistic visual data that, in turn,

forces the discriminator to learn better features for more ac-

curate pixel classification. Furthermore, to speed up and im-

prove the quality of generated samples for better classifica-

tion, we also condition the GANs with additional informa-

tion – weak labels – for image classes. In our formulation

of GAN, we employ a generator network similar to [21],

which, given a noise vector as an input, generates an im-

age to be semantically segmented by a multiclass classifier

(our discriminator) that, in addition to classifying the pix-

els into different semantic categories, determines whether a

given image belongs to training data distribution or is com-

ing from a generated data.

The performance analysis of several benchmarking

datasets for semantic segmentation, namely Pascal VOC

2012, SiftFlow, StanfordBG, and CamVid, shows the effec-

tiveness of our approach compared to state-of-the-art meth-

ods.

Summarizing, the main contributions of this paper are:

• We present a GAN network framework which extends

the typical GAN to pixel-level prediction and its appli-

cation in semantic segmentation.

• Our network is trained in semi-supervised manner to

leverage from generated data and unlabeled data.

• Finally, we extend our approach to use weakly la-

beled data by employing conditional GAN and avail-

able image-level labeled data.

The organization of the rest of the paper is as follows.

In the next section, we review recent methods for semantic

segmentation. In Section 3, we present our approach, where

we first provide a brief background of generative adversar-

ial networks, then we describe the design and structure of

our proposed model for semi-supervised learning. This is

followed by System Overview related to training and infer-

ence, which is covered in Section 4. Section 5 deals with

experimental results, where we report our results on Pascal

VOC 2012, SiftFlow, StanfordBG and CamVid datasets. Fi-

nally, we conclude the paper in Section 6.

2. Related Work

Semantic segmentation has been widely investigated in

past years. Some of the existing methods aim at finding a

graph structure over the image, by using Markov Random

Field (MRF) or Conditional Random Field (CRF), to cap-

ture the context of an image and employ classifiers to label

different entities (pixels, super pixels or patches) [26] [10]

[24]. Additional information, such as long range connec-

tions, to refine further the segmentation results have been

also proposed [24]. Nonetheless, these methods employ

hand crafted features for classification, and their perfor-

mance on a variety of datasets is not that adequate .

Convolutional Neural Networks (CNNs) have been very

popular recently in many computer vision applications in-

cluding semantic segmentation. For instance, [17] and [7]

leverage deep networks to classify super-pixels and label

the segments. More recent methods such as [14] apply

per-pixel classification using a fully convolutional network.

This is achieved by transforming fully-connected layers of

CNN (VGG16) into convolutional layers and using the pre-

trained ImageNet model to initialize the weights of the net-

work. Multiple deconvolution layers [18] have been also

employed to enhance pixel classification accuracy. Post-

processing based on MRF or CRF on top of deep network

framework has been adopted, as in [4], to refine pixel label

predictions. For example, in [23] the error of MRF infer-

ence is passed backward into CNN in order to train jointly

CNN and MRF. However, this kind of post-processing is

rather expensive since, for each image during training, iter-

ative inference should be performed.

The aforementioned methods are based on supervised

learning and rely strongly on large annotated data, which

is often unavailable. To cope with this limitation, a few

weakly or semi-supervised semantic segmentation methods

have been proposed,[19], [20], [5]. These approaches as-

sume that weak annotations (bounding boxes or image level

labels) are available during training and that such annota-

tions, combined with limited pixel-level labels, can be used

to make deep networks to learn better visual features for

classification. In [11], the authors address the semantic seg-

mentation as two separate tasks of classification and seg-

mentation, and assume image level labels for all images in

data set and a limited number of fully pixel-level labeled

data are available.

To tackle the limitations of current methods, we propose

to use GANs in semi-supervised learning for semantic seg-

mentation to leverage freely available data and additional

synthetic data to improve the fully supervised methods.

While generative methods have been largely employed in

unsupervised and semi-supervised learning for visual clas-

sification tasks [25], [22], very little has been done for se-

mantic segmentation, e.g., [15]. In particular, [15] aims at

creating probability maps for each class for a given image,
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then the discriminator is used to distinguish between gen-

erated maps and ground truth. Our method is significantly

different from this method as 1) we let the discriminator to

find the labels of pixels, 2) we leverage unlabeled data along

side generated data, in an adversarial manner, to compete in

getting realistic labels, and 3) we use conditional GAN to

enhance the quality of generated samples for better segmen-

tation performance as well as to make GAN training more

stable.

3. Proposed Approach

In this section, first we briefly cover the background

about GANs and then present our network architectures and

corresponding losses for semi supervised semantic segmen-

tation.

3.1. Background

3.1.1 Generative Adversarial Network

Generative Adversarial Network (GAN) is a framework in-

troduced by [8] to train deep generative models. It consists

of a generator network, G, whose goal is to learn a distri-

bution, pz matching the data, and a discriminator network

D, which tries to distinguish between real data (from true

distribution pdata(x)) and fake data (generated by the gen-

erator). G and D are competitors in a minmax game with

the following formulation:

min
G

max
D

V (D,G) = Ex∼pdata(x)[log(D(x))]+

Ez∼pz(z)[log(1−D(G(z))],
(1)

where E is the empirical estimate of expected value of the

probability. G transforms a noise variable z into G(z),
which basically is a sample from distribution pz , and ide-

ally distribution pz should converge to distribution pdata.

Minimizing log(1 − D(G(z)) is equivalent to maximizing

log(D(G(z)), and it has been shown that it would lead to

better performance, so we follow the latter formulation.

3.2. Semi Supervised Learning using Generative
Adversarial Networks

In semi-supervised learning, where class labels (in our

case pixel-wise annotations) are not available for all train-

ing images, it is convenient to leverage unlabeled data for

estimating a proper prior to be used by a classifier for en-

hancing performance. In this paper we adopt and extend

GANs, to learn the prior fitting the data, by replacing the

traditional discriminator D with a fully convolutional multi-

class classifier, which, instead, of predicting whether a sam-

ple x belongs to the data distribution (it is real or not), it

assigns to each input image pixel a label y from the K se-

mantic classes or mark it as a fake sample (extra K + 1
class). More specifically, our discriminator D(x) is a func-

tion parametrized as a network predicting the confidences

for K classes of image pixels and softmax is employed to

obtain the probability of sample x belonging to each class.

In order to be consistent with GAN terminology and to sim-

plify notations we will not use Dk and use D to represent

pixel-wise multi-class classifier. Generator network, G, of

our approach maps a random noise z to a sample G(z) try-

ing to make it similar to training data, such that the output of

D on that sample corresponds to one of the real categories.

D, instead, is trained to label the generated samples G(z) as

fake. Fig. 2 provides a schematic description of our semi-

supervised convolutional GAN architecture and shows that

we feed three inputs to the discriminator: labelled data, un-

labelled data and fake data. Accordingly, we minimize a

pixel-wise discriminator loss, LD, in order to account for

the three kind of input data, as follows:

LD = −Ex∼pdata(x)log(D(x))− Ez∼pz(z)log(1−D(G(z))
+γEx,y∼p(y,x)[CE(y, P (y|x,D))],

(2)

where

D(x) = [1− P (y = fake|x)]. (3)

with y = 1 · · ·K being the semantic class label, p(x, y) the

joint probability of labels (y) and data (x), CE the cross

entropy loss between labels and probabilities predicted by

D(x). The first term of LD is devised for unlabeled data

and aims at decreasing the probability of pixels belonging

to the fake class. The second term accounts for all pixels

in labeled data to be correctly classified in one of the K

available classes. While the third loss term aims at driving

the discriminator in distinguishing real samples from fake

ones generated by G. γ is a parameter used for balancing

generator and discriminator (segmentation) tasks; decreas-

ing gamma gives more emphasis to the generator rather than

discriminator (segmentation). We empirically set γ = 2.

Then, we minimize generator loss, LG which is defined as

follows:

LG = Ez∼pz(z)[log(1−D(G(z))]. (4)

Note that our GAN formulation is different from typical

GANs, where the discriminator is a binary classifier for dis-

criminating real/fake images, while our discriminator per-

forms multiclass pixel categorization.

3.3. Semi Supervised Learning with Additional
Weakly labeled data using Conditional GANs

An recent extension of GANs is conditional GANs [16],

where generator and discriminator are provided with extra

information, e.g., image class labeles. The traditional loss

function, in this case, becomes:

min
G

max
D

V (D,G) = Ex,l∼pdata(x,l)[log(D(x, l))]+

Ez∼pz(z,l),l∼pl(l)[log(1−D(G(z, l), l)],
(5)
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Figure 2. Our semi-supervised convolutional GAN architecture. Noise is used by the Generator to generate an image. The Discriminator

uses generated data, unlabeled data and labeled data to learn class confidences and produces confidence maps for each class as well as a

label for a fake data.

where pl(l) is the prior distribution over class labels,

D(x, l) is joint distribution of data, x, and labels l, and

G(z, l) is joint distributions of generator noise z and labels

l indicating that labels l control the conditional distribution

of pz(z|l) of the generator.

Semantic segmentation can naturally fit into this model,

as long as additional information on training data is avail-

able, e.g., image level labels (whose annotation is much

less expensive than pixel level annotation). We use this

side-information on image classes to train our GAN net-

work with weak supervision. The rationale of exploiting

weak supervision in our framework lies on the assumption

that when image classes are provided to the generator, it is

encouraged to learn co-occurrences between labels and im-

ages resulting in higher quality generated images, which,

in turn, help our multiclassifier to learn more meaningful

features for pixel-level classification and true relationships

between labels.

Our proposed GAN network architecture for semi su-

pervised semantic segmentation using additional weakly la-

beled data is shown in Fig. 3. The discriminator is fed

with unlabeled images together with class level informa-

tion, generated images coming from G and pixel-level la-

beled images. Thus, the discriminator loss, LD, is com-

prised of three terms: the term for weakly labeled sample

data belonging to data distribution pdata(x, l), the term for

loss of generated samples not belonging to the true distri-

bution, and the term for the loss of pixels in labeled data

classified correctly. Hence, the discriminator loss LD is as

follows:

LD = −Ex,l∼pdata(x,l)
log[p(y ∈ Ki ⊂ 1...K|x)]

−Ex,l∼pz,l(x,l) log[p(y = fake|x)]
+γEx,y∼p(y,x)[CE(y, P (y|x,D))],

(6)

where Ki indicates the classes present in the image. Here,

we have modified the notations for probability distributions

and expectation to include label l. Conditioning space l (la-

beled) in loss LD aims at controlling the generated samples,

i.e., given image classes along with the noise vector the gen-

erator attempts to maximize the probability of seeing labels

in the generated images, while the goal of discriminator is

to suppress the probability of real classes for generated data

and to encourage high confidence of image level labels for

unlabeled data. The generator loss is similar to the one used

for semi-supervised case (see Eq. 4), and aims at enforcing

the image-level labels to be present in the generated images.

For unlabeled data, we use negative log-likelihood of confi-

dences, favoring the labels occur in the image, meaning that

we add a fixed value to pixel confidences for image-level la-

bels.

4. System Overview

In this section, we present the details of our deep net-

works, including the discriminator (classifier) and the gen-

erator. In both settings, i.e., semi-supervised and weakly-

supervised approaches, the discriminator is a fully convolu-

tional network [14] using VGG16 convolutional layers plus

1 or 3 deconvolution layers, which generates K + 1 confi-

dence maps.

The generator network, shown in Fig. 4, starts with

noise, followed by a series of deconvolution filters and gen-

erates a synthetic image resembling samples from real data

distribution. The generator loss enforces the network to

minimize the distance between D(G(zi)) and yi ∈ li...lK ,

as shown in Equation 2.

The discriminator loss is the sum of cross entropy be-

tween labeled data and the output of classifiers. This en-

forces that the discriminator should classify pixels from the

generated image (data) into the fake class and unlabeled

data to the true classes.

In semi supervised training with weakly labeled data, we

impose the constraint on the generator that, instead, of gen-

erating generic images from data distribution, it produces

samples belonging to specific visual classes provided as in-
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Figure 3. Our semi-supervised with additional weakly-labeled data convolutional GAN architecture. In addition to noise, class label

information is used by the Generator to generate an image. The Discriminator uses generated data, unlabeled data plus image-level labels

and pixel-level labeled data to learn class confidences and produces confidence maps C1, C2, . . . , Ck for each semantic class as well as a

label Cfake for the fake data.
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Figure 4. The generator network of our GAN architecture. The

noise is a vector of size 100 sampled from a uniform distribution.

The number of feature maps in the five different convolutional lay-

ers, respectively, are 769, 384, 256, 192 and 3.

put to it. To do that, a one-hot image classes vector is con-

catenated to the noise sampled from the noise distribution.

Afterward, the deconvolution layers are applied similar to

the typical generator network and a syntactic image condi-

tioned on image classes is generated.

All the networks are implemented in chainer framework

[27]. The standard Adam optimizer with momentum is used

for discriminator optimization, and the classifier network’s

convolutional layers weights are initialized using VGG 16-

layer net pre-trained on ILSVRC dataset. For training the

generator, we use Adam optimizer with isotropic Gaussian

weights. For the generator, learning rate and β1 (momen-

tum) is respectively set to 2e-5 and 0.5; while for the Dis-

criminator the learning rate is 1e-8, momentum 0.9 and

weight decay is 0.0005. Due to memory limitations, we

use a batch of size 2; however, since the loss is computed

for every pixel of training images and the final loss is aver-

aged over those values, the batch-size is not that small. We

do not use any data augmentation or post-processing (e.g.

CRF) in these experiments.

Table 1. The results on val set of VOC 2012 using all fully labeled

and unlabeled data in train set.
method pixel acc mean acc mean IU

Full - our baseline 89.9 69.2 59.5

Semi Supervised 90.5 80.7 64.1

Weak Supervised 91.3 80.0 65.8

FCN [14] 90.3 75.9 62.7

EM-Fixed [19] - - 64.6

During testing, we only use discriminator network as our

semantic segmentation labeling network. Given a test im-

age, the softmax layer of the discriminator outputs a set of

probabilities of each pixel belonging to semantic classes,

and accordingly, the label with the highest probability is as-

signed to the pixel.

5. Experimental Results

We evaluate our method on PASCAL VOC 2012

[6], SiftFlow [13],[29], StanfordBG [9] and CamVid [2]

datasets. In the first experiment for Pascal dataset, we use

all training data (1400 images) for which the pixel-level la-

bels are provided as well as about 10k additional images

with image-level class labels, i.e., for each image its se-

mantic classes are known, but not the pixel-level annota-

tions. These images are used in the weakly supervised set-

ting. In the second experiment on Pascal dataset, for semi-

supervised training, we use about 30% (about 20 samples

per class) of pixel-wise annotated data and the rest of im-

ages are without pixel-wise annotations. As metrics, we

employ pixel accuracy, which is per-pixel classification ac-

curacy, mean accuracy, i.e, average of pixels classification

accuracies on number of classes and mean IU, average of

region intersection over union (IU).

Quantitative results of our method on VOC 2012 valida-

tions set are shown in Tables 1 and 2, and the qualitative

results on some sample images are depicted in Fig. 5. As
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Figure 5. Qualitative segmentation results for VOC 2012 validation set. The first to fifth columns, respectively, show: the original images,

the results of supervised learning using only 30% of labeled data, the results of semi-supervised learning using 30% labeled and unlabelled

images, the results obtained using 30% of labeled data and additional 10k images with image level class labels, and the Ground Truth.

Both semi-supervised and weakly-labeled data methods outperform the fully-supervised method. Using Weakly-labeled data helps more

in suppressing false positives (background pixels misclassified as one of the K available classes).

Table 2. The results on VOC 2012 validation set using 30% of

fully labeled data and all unlabeled data in training set.

method pixel acc mean acc mean IU

Fully supervised 83.15 53.1 38.9

Semi supervised 83.6 60.0 42.2

Weak Supervised 84.6 58.6 44.6

shown in Table 2, the semi-supervised method notably im-

proves mean accuracy about 5% to 7%. The pixel accuracy

is not significantly improved due to some false positives,

which correspond to background pixels promoted by unla-

beled data belonging to one of the classes in the training

set. False positives are reduced by employing weakly la-

beled data, due to the fact that the unsupervised loss encour-

ages only labels occurring in the image and assigns them

high confidences. This effect can be observed in qualitative
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Figure 6. Qualitative results for SiftFlow dataset, using unlabeled

data results in more accurate semantic segmentation, unlikely

classes in the image are removed using semi-supervised approach.

Table 3. The results on SiftFlow using fully labeled data and 2000

unlabeled images from SUN2012

method pixel acc mean acc mean IU

Fully supervised 83.4 46.7 34.4

Semi supervised 86.3 50.8 35.1

50% Fully Labeled 79.0 28.3 21.0

50% Full + Unlabeled 81.0 33.0 23.2

results in Fig. 5. Thus, even though the semi-supervised

method labels most of objects properly, it sometime as-

signs semantic classes to background pixels, while by using

weakly labeled data false positive detections are reduced.

Furthermore, as shown in the same Table 1, our weakly ap-

proach also outperforms state of the art semi-supervised se-

mantic segmentation methods, such as [19], adopting a sim-

ilar strategy to our weakly-supervised one.

Table 3 shows the results achieved by our approaches

on the SiftFlow dataset [13]. Since in this dataset, back-

ground pixels are also labeled, the pixel accuracy is im-

proved compared to the results obtained on PASCAL VOC

2012 dataset.

Since images with class level labels are not available in

the SiftFlow dataset, we only test semi-supervised learning.

Fig. 6 shows qualitative results on the SiftFlow dataset. In

Figure 7. Images generated by the generator of our conditional

GAN on the Pascal dataset. Interestingly, patterns related to dogs,

cars, plants and cats have been automatically discovered. This

highlights the effectiveness of our approach.

Figure 8. Images generated by the generator during our GAN train-

ing on the SiftFlow dataset. Patterns related to forests, beaches and

slies can be observed.

this case, unlabeled data allows us to refine the classifica-

tion that initially are labeled with incorrect classes. For

instance, in the fifth row the pixels which are mistakenly

labeled as car or river are corrected in the semi-supervised

results. Moreover, some small objects, such as the person or

windows in the last row of Fig. 6, which are not detected be-

fore, can be labeled correctly by employing additional data.
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Figure 9. Images generated by the Generator for the CamVid

dataset. Patterns related to mountains, cars and building can be

observed.

Table 4. The results using different percentages of fully labeled

data and all unlabeled data in train set.
method pixel acc mean acc mean IU

VOC 20% Full 73.15 23.2 16.0

VOC 20% Semi 79.6 27.1 19.8

VOC 50% Full 88.5 63.6 51.6

VOC 50% Semi 88.4 66.6 54.0

Table 5. The results on StanfordBG using fully labeled data and

10k unlabeled images from PASCAL dataset

method pixel acc mean acc mean IU

Sem Seg Standard [15] 73.3 66.5 51.3

Sem Seg Adv [15] 75.2 68.7 54.3

Fully supervised 77.5 65.1 53.1

Semi supervised 82.3 77.6 63.3

We repeated the semi-supervised experiments with dif-

ferent training set sizes e.g. 20% and 50% of labeled data,

and the results are presented in Table 4. This results suggest

that the extra data acts as a regularizer. Also, using more la-

beled data increases the overall performances, and the gap

between the two settings is reduced.

For the third experiment, we evaluate our method on

StanfordBG [9] data set. This is a small data set includ-

ing 720 labeled images, therefore we use Pasacal images as

unlabeled data, since these images are collected from Pas-

cal or similar datasets. Table 5 shows our performance over

the test images from StanfordBG data set compared to [15].

It can be noted that our approach, again, outperforms state

of the art methods, e.g., [15], besides improving our fully-

supervised method, which is used as baseline.

Finally, we apply our proposed method to CamVid [2]

dataset. This dataset consists of 10 minutes of videos (about

11k frames), for 700 images of which the per-pixel annota-

tions are provided. We use the training set of fully-labeled

(11 semantic classes) data and all frames as unlabeled data,

Table 6. The results on CamVid using fully labeled training data

and 11k unlabeled frames from its videos.
method pixel acc mean acc mean IU

Segnet-Basic [1] 82.2 62.3 46.3

SegNet (Pretrained) [1] 88.6 65.9 50.2

Ours Fully supervised 88.4 66.7 57.0

Ours Semi supervised 87.0 72.4 58.2

and we perform the evaluation on the test set. We compare

our results to SegNet [1] method in addition to our base-

line (i.e., the fully-supervised method). The results are re-

ported in Table 6 and show that our semi-supervised method

notably improves per-class accuracy, which indicates that

more classes present in the images are identified correctly.

Samples of images generated by our GAN during train-

ing over the employed datasets are shown in Figures 8, 9

and 7. These images clearly indicate that our network is

able to learn hidden structures (specific of each dataset) that

are then used to enhance the performance of our GAN dis-

criminator as they can be seen as additional pixel-level an-

notated data. Moreover, interestingly, our GAN framework

is also able to learn spatial object distributions, for example,

roads are at the bottom of images, sky and mountains are at

the top, etc.

Summarizing, the results achieved over different exper-

iments indicate that the extra data provided through ad-

versarial loss boosts the performance (outperforming both

fully-supervised and state-of-the-art semi-supervised meth-

ods) of semantic segmentation, especially in terms of mean

accuracy measure. The competitiveness of the discriminator

and the generator results not only in generating images, but,

most importantly, it amounts to learning more meaningful

features for pixel classification.

6. Conclusion

In this work, we have developed a novel semi-supervised

semantic segmentation approach employing Generative Ad-

versarial Networks. We have also investigated GANs con-

ditioned by class-level labels, which are easier to obtain,

to train our fully-convolutional network with additional

weakly labeled data. We have demonstrated that this ap-

proach outperforms fully-supervised methods trained with

a limited amount of labeled data as well as state of the art

semi-supervised methods over several benchmark datasets.

Beside, our model generates plausible synthetic images,

which show some meaningful image features such as edges

and correct class labels, that supports the discriminator in

the pixel-classification step. The discriminator can be re-

placed by any better classifier suitable for semantic segmen-

tation for further improvements.
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