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Abstract

Feature extraction and matching are two crucial compo-

nents in person Re-Identification (ReID). The large pose de-

formations and the complex view variations exhibited by the

captured person images significantly increase the difficulty

of learning and matching of the features from person im-

ages. To overcome these difficulties, in this work we propose

a Pose-driven Deep Convolutional (PDC) model to learn

improved feature extraction and matching models from end

to end. Our deep architecture explicitly leverages the hu-

man part cues to alleviate the pose variations and learn

robust feature representations from both the global image

and different local parts. To match the features from glob-

al human body and local body parts, a pose driven feature

weighting sub-network is further designed to learn adaptive

feature fusions. Extensive experimental analyses and result-

s on three popular datasets demonstrate significant perfor-

mance improvements of our model over all published state-

of-the-art methods.

1. Introduction

Person Re-Identification (ReID) is an important compo-

nent in a video surveillance system. Here person ReID

refers to the process of identifying a probe person from a

gallery captured by different cameras, and is generally de-

ployed in the following scenario: given a probe image or

video sequence containing a specific person under a certain

camera, querying the images, locations, and time stamps of

this person from other cameras.

Despite decades of studies, the person ReID problem is

still far from being solved. This is mainly because of chal-
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Figure 1. Illustration of part extraction and pose normalization

in our Feature Embedding sub-Net (FEN). Response maps of 14

body joints (b) are first generated from the original image in (a).

14 body joints in (c) and 6 body parts in (d) can hence be inferred.

The part regions are firstly rotated and resized in (e), then normal-

ized by Pose Transform Network in (f).

lenging situations like complex view variations and large

pose deformations on the captured person images. Most of

traditional works try to address these challenges with the

following two approaches: (1) representing the visual ap-

pearance of a person using customized local invariant fea-

tures extracted from images [11, 6, 33, 29, 60, 51, 64, 44]

or (2) learning a discriminative distance metric to reduce the

distance among features of images containing the same per-

son [32, 9, 17, 36, 55, 23, 54, 30, 26, 65, 50, 3, 27, 4, 39, 28,

10, 37, 59]. Because the human poses and viewpoints are

uncontrollable in real scenarios, hand-coded features may

be not robust enough to pose and viewpoint variations. Dis-

tance metric is computed for each pair of cameras, making

distance metric learning based person ReID suffers from the

O2 computational complexity.

In recent years, deep learning has demonstrated strong

model capabilities and obtains very promising perfor-

mances in many computer vision tasks [24, 14, 31, 38, 8].

Meanwhile, the release of person ReID datasets like CUHK

03 [25], Market-1501 [63], and MARS [61], both of which

contain many annotated person images, makes training deep
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models for person ReID feasible. Therefore, many re-

searchers attempt to leverage deep models in person ReI-

D [1, 10, 53, 46, 42, 61, 13, 56, 43, 57]. Most of these

methods first learn a pedestrian feature and then compute

Euclidean distance to measure the similarity between two

samples. More specifically, existing deep learning based

person ReID approaches can be summarized into two cate-

gories: 1) use Softmax Loss with person ID labels to learn a

global representation [1, 10, 53, 46, 42, 61, 13], and 2) first

learn local representations using predefined rigid body part-

s, then fuse the local and global representations [5, 47, 40]

to depict person images. Deep learning based methods have

demonstrated significant performance improvements over

the traditional methods. Although these approaches have

achieved remarkable results on mainstream person ReID

datasets, most of them do not consider pose variation of hu-

man body.

Because pose variations may significantly change the ap-

pearance of a person, considering the human pose cues is

potential to help person re-identification. Although there

are several methods [5, 47, 40] that segment the person im-

ages according to the predefined configuration, such sim-

ple segmentation can not capture the pose cues effectively.

Some recent works [62, 16] attempt to use pose estimation

algorithms to predict human pose and then train deep mod-

els for person ReID. However, they use manually cropped

human body parts and their models are not trained from end

to end. Therefore, the potential of pose information to boost

the ReID performance has not been fully explored.

To better alleviate the challenges from pose variation-

s, we propose a Pose-driven Deep Convolutional (PDC)

model for person ReID. The proposed PDC model learn-

s the global representation depicting the whole body and

local representations depicting body parts simultaneously.

The global representation is learned using the Softmax Loss

with person ID labels on the whole input image. For the

learning of local representations, a novel Feature Embed-

ding sub-Net (FEN) is proposed to learn and readjust human

parts so that parts are affine transformed and re-located at

more reasonable regions which can be easily recognizable

through two different cameras. In Feature Embedding sub-

Net, each body part region is first automatically cropped.

The cropped part regions are hence transformed by a Pose

Transformation Network (PTN) to eliminate the pose vari-

ations. The local representations are hence learned on the

transformed regions. We further propose a Feature Weight-

ing sub-Net (FWN) to learn the weights of global represen-

tations and local representations on different parts. There-

fore, more reasonable feature fusion is conducted to facili-

tate feature similarity measurement.

Some more detailed descriptions to our local represen-

tation generation are illustrated in Fig.1. Our method first

locates the key body joints from the input image, e.g., illus-
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Figure 2. Flowchart of Pose-driven Deep Convolutional (PDC)

model. Feature Embedding sub-Net (FEN) leverages human pose

information and transforms a global body image into an image

containing normalized part regions. Feature Weighting sub-Net

(FWN) automatically learns the weights of the different part rep-

resentations to facilitate feature similarity measurement.

trated in Fig.1 (c). From the detected joints, six body parts

are extracted, e.g., shown in Fig.1(d). As shown in Fig.1(e),

those parts are extracted and normalized into fixed sizes and

orientations. Finally, they are fed into the Pose Transforma-

tion Network (PTN) to further eliminate the pose variation-

s. With the normalized and transformed part regions, e.g.,

Fig.1 (f), local representations are learned by training the

deep neural network. Different parts commonly convey d-

ifferent levels of discriminative cues to identify the person.

We thus further learn weights for representations on differ-

ent parts with a sub-network.

Most of current deep learning based person ReID works

do not consider the human pose cues and the weights of rep-

resentation on different parts. This paper proposes a novel

deep architecture that transforms body parts into normal-

ized and homologous feature representations to better over-

come the pose variations. Moreover, a sub-network is pro-

posed to automatically learn weights for different parts to

facilitate feature similarity measurement. Both the repre-

sentation and weighting are learned jointly from end to end.

Since pose estimation is not the focus of this paper, the used

pose estimation algorithm, i.e., Fully Convolutional Net-

works(FCN) [31] based pose estimation method is simple

and trained independently. Once the FCN is trained, it is

incorporated in our framework, which is hence trained in an

end-to-end manner, i.e., using images as inputs and person

ID labels as outputs. Experimental results on three popular

datasets show that our algorithm significantly outperforms

many state-of-the-art ones.

2. Related Work

Traditional algorithms perform person re-identification

through two ways: (a) acquiring robust local features visu-

ally representing a person’s appearance and then encoding
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Table 1. Detailed structure of the proposed Pose-driven Deep Convolutional (PDC) model.

type
share patch size

output size depth #1×1
#3×3

#3×3
double#3×3 double

pool proj
weight /stride reduce reduce #3×3

data - - 512× 256× 3 - - - - - - -

convolution Yes 7× 7/2 256× 128× 64 1 - - - - - -

max pool - 3× 3/2 128× 64× 64 0 - - - - - -

convolution Yes 3× 3/1 128× 64× 192 1 - 64 192 - - -

max pool - 3× 3/2 64× 32× 192 0 - - - - - -

inception(3a) Yes - 64× 32× 256 3 64 64 64 64 96 avg+32

inception(3b) Yes - 64× 32× 320 3 64 64 96 64 96 avg+64

inception(3c) Yes stride 2 32× 16× 576 3 0 128 160 64 96 max+pass through

inception(4a) Yes - 32× 16× 576 3 224 64 96 96 128 avg+128

inception(4b) Yes - 32× 16× 576 3 192 96 128 96 128 avg+128

inception(4c) Yes - 32× 16× 576 3 160 128 160 128 160 avg+128

inception(4d) Yes - 32× 16× 576 3 96 128 192 160 192 avg+128

inception(4e) Yes stride 2 16× 8× 1024 3 0 128 192 192 256 max+pass through

inception(5a) No - 16× 8× 1024 3 352 192 320 160 224 avg+128

inception(5b) No - 16× 8× 1024 3 352 192 320 192 224 max+128

convolution No 1× 1/1 16× 8× class num 1 - - - - - -

ave pool - global pooling 1× 1× class num 0 - - - - - -

them [11, 6, 33, 29, 60, 51, 64]; (b) closing the gap be-

tween a person’s different features by learning a discrim-

inative distance metric [32, 9, 17, 36, 55, 23, 54, 30, 26,

65, 50, 3, 27, 4, 39, 28, 10, 37, 59]. Some recent work-

s [1, 10, 53, 46, 42, 61, 13, 5, 47, 40, 62, 16] have started to

apply deep learning in person ReID and achieved promis-

ing performance. In the following, we briefly review recent

deep learning based person ReID methods.

Deep learning is commonly used to either learn a per-

son’s representation or the distance metric. When handling

a pair of person images, existing deep learning method-

s usually learn feature representations of each person by

using a deep matching function from convolutional fea-

tures [1, 25, 53, 13] or from the Fully Connected (FC) fea-

tures [58, 40, 61]. Apart from deep metric learning method-

s, some algorithms first learn image representations directly

with the Triplet Loss or the Siamese Contrastive Loss, then

utilize Euclidean distance for comparison [48, 5, 10, 46].

Wang et al. [48] use a joint learning framework to unify

single-image representation and cross-image representation

using a doublet or triplet CNN. Shi et al. [40] propose a

moderate positive mining method to use deep distance met-

ric learning for person ReID. Another novel method [40]

learns deep attributes feature for ReID with semi-supervised

learning. Xiao et al. [53] train one network with several

person ReID datasets using a Domain Guided Dropout al-

gorithm.

Predefined rigid body parts are also used by many deep

learning based methods [5, 47, 40] for the purpose of learn-

ing local pedestrian features. Different from these algo-

rithms, our work and the ones in [62, 16] use more accu-

rate human pose estimation algorithms to acquire human

pose features. However, due to the limited accuracy of

pose estimation algorithms as well as reasons like occlu-

sion and lighting change, pose estimation might be not ac-

curate enough. Moreover, different parts convey different

levels of discriminative cues. Therefore, we normalize the

part regions to get more robust feature representation using

Feature Embedding sub-Net (FEN) and propose a Feature

Weighting sub-Net (FWN) to learn the weight for each part

feature. In this way, the part with high discriminative power

can be identified and emphasized. This also makes our work

different from existing ones [62, 16], which do not consider

the inaccuracy of human poses estimation and weighting on

different parts features.

3. Pose-driven Deep ReID Model

In this section, we describe the overall framework of the

proposed approach, where we mainly introduce the Feature

Embedding sub-Net (FEN) and the Feature Weighting sub-

Net (FWN). Details about the training and test procedures

of the proposed approach will also be presented.

3.1. Framework

Fig.2 shows the framework of our proposed deep ReID

model. It can be seen that the global image and part images

are simultaneously considered during each round of train-

ing. Given a training sample, we use an human pose es-

timation algorithm to acquire the locations of human pose

joints. These pose joints are combined into different human

body parts. The part regions are first transformed using our

Feature Embedding sub-Net (FEN) and then are combined

to form a new modified part image containing the normal-

ized body parts. The global image and the new modified

part image are then fed into our CNN together. The two

images share the same weights for the first several layers,

then have their own network weights in the subsequent lay-

ers. At last, we use Feature Weighting sub-Net (FWN) to

learn the weights of part features before fusing them with

the global features for final Softmax Loss computation.

Considering that pedestrian images form differen-
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Figure 3. Illustration of Feature Embedding sub-Net (FEN). We

divide the human image into 6 parts and apply an affine transfor-

mation on each part (except head part) by PTN, then we combine

6 transformed part regions together to form a new image.

t datasets have different sizes, it is not appropriate to direct-

ly use the CNN models pre-trained on the ImageNet dataset

[7]. We thus modify and design a network based on the

GoogLeNet [45], as shown in the Table 1. Layers from da-

ta to inception(4e) in Table 1 corresponds to the blue CNN

block in Fig.2, CNNg and CNNp are inception(5a) and in-

ception(5b), respectively. The green CONV matches the

subsequent 1×1 convolution. The loss layers are not shown

in Table 1. The Batch Normalization Layers [18] are insert-

ed before every ReLU Layer to accelerate the convergence.

We employ a Convolutional Layer and a Global Average

Pooling Layer (GAP) at the end of network to let our net-

work can fit different sizes of input images. In this work,

we fix input image size as 512×256.

3.2. Feature Embedding sub­Net

The Feature Embedding sub-Net (FEN) is divided into

four steps, including locating the joint, generating the origi-

nal part images, PTN, and outputting the final modified part

images.

With a given person image, FEN first locates the 14

joints of human body using human pose estimation algo-

rithm [31]. Fig.1(c) shows an example of the 14 joints

of human body. According to number, the 14 joints are

{head, neck, rightshoulder, rightelbow, rightwrist,

leftshoulder, leftelbow, leftwrist, lefthip, leftknee,

leftankle, righthip, rightknee, rightankle}. Then we

propose six rectangles to cover six different parts of human

body, including the head region, the upper body, two arms

and two legs.

For each human joint, we calculate a response feature

map Vi ∈ R
(X,Y ). The horizontal and vertical dimen-

sions of the feature maps are denoted by X and Y , re-

spectively. With the feature maps, the fourteen body joints

CONV

POOLING

POOLING

Sampler

POOLING

RELU

FC

Modified PartOriginal Part

��−����
CONV

FC

Figure 4. Detailed structure of the PTN subnet.

Ji = [Xi, Yi], (i = 1, 2 · · · 14), can be located by finding

the center of mass with the feature values:

Ji = [Xi, Yi] = [

∑

Vi(xj , y)xj
∑

Vi

,

∑

Vi(x, yj)yj
∑

Vi

], (1)

where Xi, Yi in Eq.1 are the coordinates of joints , and

V (x, y) is the value of pixels in response feature maps.

Different from [62, 16] , we do not use complex pose

estimation networks as the pre-trained network. Instead, we

use a standard FCN [31] trained on the LSP dataset [21] and

MPII human pose dataset [2]. In the second step, the FEN

uses the 14 human joints to further locate six sub-regions

(head, upper body, left arm, right arm, left leg, and right

leg) as human parts. These parts are normalized through

cropping, rotating, and resizing to fixed size and orientation.

As shown in Fig.1(d), the 14 located body joints are as-

signed to six rectangles indicating six parts. The head part

P1 = [1], the upper body part P2 = [2, 3, 6, 9, 12], the left

arm part P3 = [6, 7, 8], the right arm part P4 = [3, 4, 5],
the left leg part P5 = [9, 10, 11], and the right leg part

P6 = [12, 13, 14], respectively.

For each body part set Pi ∈ {P1, P2, P3, P4, P5, P6},

The corresponding sub-region bounding box Hi ∈
{H1, H2, H3, H4, H5, H6} can be obtained based on the lo-

cation coordinates of all body joints in each part set:

Hi =







[x− 30, x+ 30, y − 30, y + 30], if i = 1
[xmin−10, xmax+10, ymin−10, ymin+10],

if i = 2, 3, 4, 5, 6
(2)

An example of the extracted six body sub-regions are

visualized in Fig.1(d). As shown in Fig.1(e), these body

sub-regions are normalized through cropping, rotating, and

resizing to fixed sizes and orientations. All body parts are

rotated to fixed vertical direction. Arms and legs are resized

to 256×64, upper body is resized to 256×128 and head is

resized to 128×128. Those resized and rotated parts are

combined to form the body part image. Because 6 body

parts have different sizes, black area is unavoidable in body

part image.
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Simply resizing and rotation can not overcome the com-

plex pose variations, especially if the pose estimations are

inaccurate. We thus design a PTN modified from Spatial

Transformer Networks (STN) [19] to learn the angles re-

quired for rotating the five body parts.

STN is a spatial transformer module which can be in-

serted to a neural network to provide spatial transformation

capabilities. It thus is potential to adjust the localizations

and angles of parts. A STN is a small net which allows for

end-to-end training with standard back-propagation, there-

fore, the introduction of STN doesn’t substantially increase

the complexity of training procedure. The STN consist

of three components: localisation network, parameterised

sampling grid, and differentiable image sampling. The lo-

calisation network takes the input feature map and output-

s the parameters of the transformation. For our net, we

choose affine transformation so our transformation parame-

ter is 6-dimensional. The parameterized sampling grid com-

putes each output pixel and the differentiable image sam-

pling component produces the sampled output image. For

more details about STN, please refer to [19].

As discussed above, we use a 6-dimensional parameter

Aθ to complete affine transformation:

(

xs

ys

)

= Aθ





xt

yt

1



 =

[

θ1 θ2 θ3
θ4 θ5 θ6

]





xt

yt

1



 , (3)

where the θ1, θ2, θ4, θ5 are the scale and rotation parame-

ters, while the θ3, θ6 are the translation parameters. The

(xt, yt) in Eq.3 are the target coordinates of the output im-

age and the (xs, ys) are the source coordinates of the input

image.

Usually the STN computes one affine transform for the

whole image, considering a pedestrian’s different parts have

various orientations and sizes from each other, STN is not

applicable to a part image. Inspired by STN, we design

a Pose Transformer Network (PTN) which computes the

affine transformation for each part in part image individ-

ually and combines 6 transformed parts together. Similar to

STN, our PTN is also a small net and doesn’t substantially

increase the complexity of our training procedure. As a con-

sequence, PTN has potential to perform better than STN for

person images. Fig.3 shows the detailed structure of PTN.

Considering a pedestrian’s head seldom has a large rotation

angle, we don’t insert a PTN net for the pedestrian’s head

part. Therefore, we totally have 5 independent PTN, namely

Aθ−larm, Aθ−rarm, Aθ−upperbody , Aθ−lleg , Aθ−rleg . Each

PTN can generate a 6-dimensional transformation parame-

ter Aθi and use Aθi to adjust pedestrian’s part Pi, we can get

modified body part Mi. By combining the five transformed

parts and a head part together, we obtain the modified part

image.

(a)          (b)                               (c) 

Figure 5. Illustration of some inaccurate part detection result. (a)

Arms are obscured by upper bodies. (b) Upper bodies with large

variation. (c) Miss detection on arms.

3.3. Feature Weighting sub­Net

The generated part features are combined with the global

feature to generate a robust feature representation for pre-

cise person re-identification. As the poses generated by the

pose detector might be affected by factors like occlusion-

s, pose changes, etc. Then inaccurate part detection results

could be obtained. Examples are shown in Fig.5. There-

fore, the part features could be not reliable enough. This

happens frequently in real applications with unconstrained

video gathering environment. Simply fusing global feature

and the part feature may introduces noises. This motivates

us to introduce Feature Weighting sub-Net (FWN) to seek

a more optimal feature fusion. FWN is consisted with a

Weight Layer and a nonlinear transformation, which de-

cides the importance of each dimension in the part feature

vector. Considering that a single linear Weight Layer might

cause excessive response on some specific dimensions of

the part vector, we add a nonlinear function to equalize the

response of part feature vector, and the fused feature repre-

sentation is

Ffusion = [Fglobal, tanh(Fpart ⊙W +B)], (4)

where the Fglobal and the Fpart are the global and part fea-

ture vectors. The W and B in Eq. 4 are the weight and

bias vectors which have the same dimensions with Fpart.

The ⊙ means the Hadamard product of two vectors, and

the [, ] means concatenation of two vectors together. The

tanh(x) = ex−e−x

ex+e−x
imposes the hyperbolic tangent non-

linearity. Ffusion is our final person feature generated by

Fglobal and Fpart.

To allow back-propagation of the loss through the FWN,

we give the gradient formula:

∂fi

∂gj
=

{

1, if i = j

0, if i 6= j
(5)

∂fi

∂pk
=

{

w(1− tanh2(wpj + b)), if i = k +m,

0, if i 6= k +m.
(6)
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Figure 6. Illustration of the Feature Weighting sub-Net(FWN).

where fi ∈ Ffusion(i = 1, 2 · · ·m + n), gj ∈ Fglobal(j =
1, 2 · · ·m), pk ∈ Fpart(k = 1, 2 · · ·n), wk ∈ W (k =
1, 2 · · ·n), b ∈ B(k = 1, 2 · · ·n), m and n are the dimen-

sions of Fglobal and Fpart.

3.4. ReID Feature Extraction

The global feature and body-part features are learned by

training the Pose-driven Deep Convolutional model. These

two types of features are then fused under a unified frame-

work for multi-class person identification. PDC extracts the

global feature maps from the global body-based represen-

tation and learns a 1024-dimensional feature embedding.

Similarly, a 1024-dimension feature is acquired from the

modified part image after the FEN. The global body fea-

ture and the local body part features are compensated into a

2048-dimensional feature as the final representation. After

being weighted by FWN, the final representation is used for

Person ReID with Euclidean distance.

4. Experiment

4.1. Datasets

We select three widely used person ReID datasets as our

evaluation protocols, including the CUHK 03 [25], Market

1501 [63], and VIPeR [15]. Note that, because the amount

of images in VIPeR is not enough for training a deep mod-

el, we combine the training sets of VIPeR, CUHK 03 and

Market 1501 together to train the model for VIPeR.

CUHK 03: This dataset is made up of 14,096 images of

1,467 different persons taken by six campus cameras. Each

person only appears in two views. This dataset provides two

types of annotations, including manually labelled pedestri-

an bounding boxes and bounding boxes automatically de-

tected by the Deformable-Part-Model (DPM) [12] detector.

We denote the two corresponding subsets as labeled dataset

and detected dataset, respectively. The dataset also provides

20 test sets, each includes 100 identities. We select the first

set and use 100 identities for testing and the rest 1,367 iden-

tities for training. We report the averaged performance after

repeating the experiments for 20 times.

Market 1501: This dataset is made up of 32,368 pedestri-

an images taken by six manually configured cameras. It has

Table 2. The results on the CUHK 03, Market 1501 and VIPeR

datasets by five variants of our approach and the complete PDC.

dataset
CUHK03

Market1501 VIPeR
labeled detected

method rank1 rank1 mAP rank1 rank1

Global Only 79.83 71.89 52.84 76.22 37.97

Part Only 53.73 47.29 31.74 55.67 22.78

Global+Part 85.07 76.33 62.20 81.74 48.42

Global+Part+FEN 87.15 77.57 62.58 83.05 50.32

Global+Part+FWN 86.41 77.62 62.58 82.69 50.00

PDC 88.70 78.29 63.41 84.14 51.27

1,501 different persons in it. On average, there are 3.6 im-

ages for each person captured from each angle. The images

can be classified into two types, i.e., cropped images and

images of pedestrians automatically detected by the DP-

M [12]. Because Market 1501 has provided the training set

and testing set, we use images in the training set for training

our PDC network and follow the protocol [63] to report the

ReID performance.

VIPeR: This dataset is made up of 632 person images

captured from two views. Each pair of images depict-

ing a person are collected by different cameras with vary-

ing viewpoints and illumination conditions. Because the

amount of images in VIPeR is not enough to train the deep

model, we also perform data augmentation with similar

methods in existing deep learning based person ReID work-

s. For each training image, we generate 5 augmented im-

ages around the image center by performing random 2D

transformations. Finally, we combine the augmented train-

ing images of VIPeR, training images of CUHK 03 and Mar-

ket 1501 together, as the final training set.

4.2. Implementation Details

The pedestrian representations are learned through

multi-class classification CNN. We use the full body and

body parts to learn the representations with Softmax Loss,

respectively. We report rank1, rank5, rank10 and rank20

accuracy of cumulative match curve (CMC) on the three

datasets to evaluate the ReID performance.As for Market-

1051, mean Average Precision (mAP) is also reported as an

additional criterion to evaluate the performance.

Our model is trained and fine-tuned on Caffe [20]. S-

tochastic Gradient Descent (SGD) is used to optimize our

model. Images for training are randomly divided into sev-

eral batches, each of which includes 16 images. The initial

learning rate is set as 0.01, and is gradually lowered after

each 2 × 104 iterations. It should be noted that, the learn-

ing rate in part localization network is only 0.1% of that in

feature learning network. For each dataset, we train a mod-

el on its corresponding training set as the pretrained body-

based model. For the overall network training, the network

is initialized using pretrained body-based model. Then, we

adopt the same training strategy as described above. We

implement our approach with GTX TITAN X GPU, Intel i7
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Table 3. Comparisons on CUHK 03 detected dataset.
Methods rank1 rank5 rank10 rank20

MLAPG [28] 51.15 83.55 92.05 96.90

LOMO + XQDA [27] 46.25 78.90 88.55 94.25

BoW+HS [63] 24.30 - - -

LDNS [59] 54.70 84.75 94.80 95.20

GOG [35] 65.50 88.40 93.70 -

IDLA [1] 44.96 76.01 84.37 93.15

SI+CI [48] 52.17 84.30 92.30 95.00

LSTM S-CNN [47] 57.30 80.10 88.30 -

Gate S-CNN [46] 61.80 80.90 88.30 -

EDM [40] 52.09 82.87 91.78 97.17

PIE [62] 67.10 92.20 96.60 98.10

PDC 78.29 94.83 97.15 98.43

CPU, and 128GB memory.

All images are resized to 512 × 256. The mean value is

subtracted from each channel (B, G, and R) for training the

network. The images of each dataset are randomized in the

process of training stage.

4.3. Evaluation of Individual Components

We evaluate five variants of our approach to verify the

validity of individual components in our PDC, e.g., compo-

nents like Feature Embedding sub-Net (FEN) and Feature

Weighting sub-Net (FWN). Comparisons on three dataset-

s are summarized in Table 2. In the table, “Global Only”

means we train our deep model without using any part infor-

mation. “Global+Part” denotes CNN trained through two

streams without FEN and FWN. Based on “Global+Part”,

considering FEN is denoted as “Global+Part+FEN”. Simi-

larly, “Global+Part+FWN” means considering FWN. In ad-

dition, “Part Only” denotes only using part features. PDC

considers all of these components.

From the experimental results, it can be observed that,

fusing global features and part features achieves better

performance than only using one of them. Compared

with “Global Only”, considering extra part cues, i.e.,

“Global+Part”, largely improves the ReID performance

and achieves the rank1 accuracy of 85.07% and 76.33%

on CUHK 03 labeled and detected datasets, respectively.

Moreover, using FEN and FWN further boosts the rank1 i-

dentification rate. This shows that training our model using

PTN and Weight Layer gets more competitive performance

on three datasets.

The above experiments shows that each of the compo-

nents in our method is helpful for improving the perfor-

mance. By considering all of these components, PDC ex-

hibits the best performance.

4.4. Comparison with Related Works

CUHK 03: For the CUHK 03 dataset, we compare our

PDC with some recent methods, including distance met-

ric learning methods: MLAPG [28], LOMO + XQDA [27],

BoW+HS [63], WARCA [22], LDNS [59], feature extrac-

tion method: GOG [35] and deep learning based methods:

Table 4. Comparisons on CUHK 03 labeled dataset.
Methods rank1 rank5 rank10 rank20

MLAPG [28] 57.96 87.09 94.74 96.90

LOMO + XQDA [27] 52.20 82.23 94.14 96.25

WARCA [22] 78.40 94.60 - -

LDNS [59] 62.55 90.05 94.80 98.10

GOG [35] 67.30 91.00 96.00 -

IDLA [1] 54.74 86.50 93.88 98.10

PersonNet [52] 64.80 89.40 94.90 98.20

DGDropout [53] 72.58 91.59 95.21 97.72

EDM [40] 61.32 88.90 96.44 99.94

Spindle [16] 88.50 97.80 98.60 99.20

PDC 88.70 98.61 99.24 99.67

Table 5. Comparison with state of the art on Market 1501.

Methods mAP rank1 rank5 rank10 rank20

LOMO + XQDA [27] 22.22 43.79 - - -

BoW+Kissme [63] 20.76 44.42 63.90 72.18 78.95

WARCA [22] - 45.16 68.12 76.00 84.00

TMA [34] 22.31 47.92 - - -

LDNS [59] 29.87 55.43 - - -

HVIL [49] - 78.00 - - -

PersonNet [52] 26.35 37.21 - - -

DGDropout [53] 31.94 59.53 - - -

Gate S-CNN [46] 39.55 65.88 - - -

LSTM S-CNN [47] 35.30 61.60 - - -

PIE [62] 55.95 79.33 90.76 94.41 96.65

Spindle [16] - 76.90 91.50 94.60 96.70

PDC 63.41 84.14 92.73 94.92 96.82

IDLA [1], PersonNet [52], DGDropout [53], SI+CI [48],

Gate S-CNN [46], LSTM S-CNN [47], EDM [40], PIE [62]

and Spindle [16]. We conduct experiments on both the de-

tected dataset and the labeled dataset. Experimental results

are presented in Table 3 and Table 4.

Experimental results show that our approach outper-

forms all distance metric learning methods by a large mar-

gin. It can be seen that PIE [62], Spindle [16] and our PDC

which all use the human pose cues achieve better perfor-

mance than the other methods. This shows the advantages

of considering extra pose cues in person ReID. It is also

clear that, our PDC achieves the rank1 accuracy of 78.29%
and 88.70% on detected and labeled datasets, respectively.

This leads to 11.19% and 0.20% performance gains over the

reported performance of PIE [62] and Spindle [16], respec-

tively.

Market 1501: On Market 1501, the compared work-

s that learn distance metrics for person ReID include LO-

MO + XQDA [27], BoW+Kissme [63], WARCA [22],

LDNS [59], TMA [34] and HVIL [49]. Compared work-

s based on deep learning are PersonNet [52], Gate S-

CNN [46], LSTM S-CNN [47], PIE [62] and Spindle [16].

DGDropout [53] does not report performance on Mar-

ket1501. So we implemented DGDroput and show experi-

mental results in Table 5.

It is clear that our method outperforms these compared

works by a large margin. Specifically, PDC achieves rank1

accuracy of 84.14%, and mAP of 63.41% using the single

query mode. They are higher than the rank1 accuracy and
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Table 6. Comparison with state of the art on VIPeR dataset.

Methods rank1 rank5 rank10 rank20

MLAPG [28] 40.73 - 82.34 92.37

LOMO + XQDA [27] 40.00 67.40 80.51 91.08

BoW [63] 21.74 - - -

WARCA [22] 40.22 68.16 80.70 91.14

LDNS [59] 42.28 71.46 82.94 92.06

IDLA [1] 34.81 76.12 - -

DGDropout [53] 38.6 - - -

SI+CI [48] 35.80 67.40 83.50 -

LSTM S-CNN [47] 42.40 68.70 79.40 -

Gate S-CNN [46] 37.80 66.90 77.40 -

MTL-LORAE [41] 42.30 72.20 81.60 89.60

Spindle [16] 53.80 74.10 83.20 92.10

PDC 51.27 74.05 84.18 91.46

Table 7. Performance of five variants of FWN on CUHK 03, Mar-

ket 1501 and VIPeR, respectively.

dataset
CUHK03

Market1501 VIPeR
labeled detected

type rank1 rank1 mAP rank1 rank1

W0 88.18 77.58 62.58 83.05 42.09

W1 88.70 78.29 63.41 84.14 43.04

W2 88.14 77.48 62.20 82.72 41.77

W3 87.97 77.29 61.99 82.48 41.77

W4 87.69 77.17 61.67 82.42 41.14

mAP of PIE [62], which performs best among the compared

works. This is because our PDC not only learns pose invari-

ant features with FEN but also learns better fusion strategy

with FWN to emphasize the more discriminative features.

VIPeR: We also evaluate our method by comparing

it with several existing methods on VIPeR. The com-

pared methods include distance metric learning ones: M-

LAPG [28], LOMO + XQDA [27], BoW [63], WAR-

CA [22] and LDNS [59], and deep learning based ones:

IDLA [1], DGDropout [53], SI+CI [48], Gate S-CNN [46],

LSTM S-CNN [47], MTL-LORAE [41] and Spindle [16].

From the results shown in Table 6, our PDC achieves

the rank1 accuracy of 51.27%. This outperforms most of

compared methods except Spindle [16] which also consid-

ers the human pose cues. We assume the reason might be

because, Spindle [16] involves more training sets to learn

the model for VIPeR. Therefore, the training set of Spin-

dle [16] is larger than ours, i.e., the combination of Market

1501, CUHK03 and VIPeR. For the other two datasets, our

PDC achieves better performance than Spindle [16].

4.5. Evaluation of Feature Weighting sub­Net

To test the effectiveness of Feature Weighting sub-Net

(FWN), we verify the performance of five variants of FWN,

which are denoted as Wk, k = {0,1,2,3,4}, where k is the

number of Weight Layers in FWN with nonlinear transfor-

mation. For example, W2 means we cascade two Weight

Layers with nonlinear transformation, W0 means we only

have one Weight Layer without nonlinear transformation.

The experimental results are shown in Table 7. As we

Global Feature Part Feature

Original Feature Original Feature 

Original Feature Original Feature 

Feature after FWN Feature after FWN

Feature after FWN Feature after FWN

Figure 7. Examples of fused features before and after Feature

Weighting sub-Net (FWN). The two images on the left side con-

tains the same person. The other two images contains another per-

son. FWN effectively keeps the discriminative feature and sup-

presses the noisy feature.

can see that one Weight Layer with nonlinear transforma-

tion gets the best performance on the three datasets. The

ReID performance starts to drop as we increase of the num-

ber of Weight Layers, despite more computations are being

brought in. It also can be observed that, using one layer

with nonlinear transformation gets better performance than

one layer without nonlinear transformation, i.e., W0. This

means adding one nonlinear transformation after a Weight

Layer learns more reliable weights for feature fusion and

matching. Based on the above observations, we adopt W1

as our final model in this paper. Examples of features before

and after FWN are shown Fig. 7.

5. Conclusions

This paper presents a pose-driven deep convolutional

model for the person ReID. The proposed deep architec-

ture explicitly leverages the human part cues to learn ef-

fective feature representations and adaptive similarity mea-

surements. For the feature representations, both global hu-

man body and local body parts are transformed to a nor-

malized and homologous state for better feature embedding.

For similarity measurements, weights of feature representa-

tions from human body and different body parts are learned

to adaptively chase a more discriminative feature fusion.

Experimental results on three benchmark datasets demon-

strate the superiority of the proposed model over current

state-of-the-art methods.
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