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Abstract

Regression based methods are not performing as well as

detection based methods for human pose estimation. A cen-

tral problem is that the structural information in the pose

is not well exploited in the previous regression methods.

In this work, we propose a structure-aware regression ap-

proach. It adopts a reparameterized pose representation us-

ing bones instead of joints. It exploits the joint connection

structure to define a compositional loss function that en-

codes the long range interactions in the pose. It is simple,

effective, and general for both 2D and 3D pose estimation

in a unified setting. Comprehensive evaluation validates the

effectiveness of our approach. It significantly advances the

state-of-the-art on Human3.6M [20] and is competitive with

state-of-the-art results on MPII [3].

1. Introduction

Human pose estimation has been extensively studied for

both 3D [20] and 2D [3]. Recently, deep convolutional neu-

tral networks (CNNs) have achieved significant progresses.

Existing approaches fall into two categories: detection

based and regression based. Detection based methods gen-

erate a likelihood heat map for each joint and locate the joint

as the point with the maximum value in the map. These heat

maps are usually noisy and multi-mode. The ambiguity is

reduced by exploiting the dependence between the joints in

various ways. A prevalent family of state-of-the-art meth-

ods [11, 6, 31, 5, 47, 18] adopt a multi-stage architecture,

where the output of the previous stage is used as input to

enhance the learning of the next stage. These methods are

dominant for 2D pose estimation [1]. However, they do not

easily generalize to 3D pose estimation, because the 3D heat

maps are too demanding for memory and computation.

Regression based methods directly map the input image

to the output joints. They directly target at the task and they

are general for both 3D and 2D pose estimation. Never-

theless, they are not performing as well as detection based
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methods. As an evidence, only one method [6] in the 2D

pose benchmark [1] is regression based. While they are

widely used for 3D pose estimation [54, 30, 28, 43, 24, 42,

33], the performance is not satisfactory. A central problem

is that they simply minimize the per-joint location errors in-

dependently but ignore the internal structures of the pose.

In other words, joint dependence is not well exploited.

In this work, we propose a structure-aware approach,

called compositional pose regression. It is based on two

ideas. First, it uses bones instead of joints as pose represen-

tation, because the bones are more primitive, more stable,

and easier to learn than joints. Second, it exploits the joint

connection structure to define a compositional loss function

that encodes long range interactions between the bones.

The approach is simple, effective and efficient. It only

re-parameterizes the pose representation, which is the net-

work output, and enhances the loss function, which relates

the output to ground truth. It does not alter other algorithm

design choices and is compatible with such choices, such as

network architecture. It can be easily adapted into any exist-

ing regression approaches with little overhead for memory

and computation, in both training and inference.

The approach is general and can be used for both 3D and

2D pose regression, indistinguishably. Moreover, 2D and

3D data can be easily mixed simultaneously in the training.

For the first time, it is shown that such directly mixed learn-

ing is effective. This property makes our approach different

from all existing ones that target at either 3D or 2D task.

The effectiveness of our approach is validated by com-

prehensive evaluation with a few new metrics, rigorous ab-

lation study and comparison with state-of-the-art on both

3D and 2D benchmarks. Specifically, it advances the state-

of-the-art on 3D Human3.6M dataset [20] by a large margin

and achieves a record of 59.1 mm average joint error, about

12% relatively better that state-of-the-art. On 2D MPII

dataset [3, 1], it achieves 86.4% (PCKh 0.5). It is the best-

performing regression based method and on bar with the

state-of-the-art detection based methods. As a by-product,

our approach generates high quality 3D poses for in the wild

images, indicating the potential of our approach for transfer

learning of 3D pose estimation in the wild.
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2. Related Work

Human pose estimation has been extensively studied for

years. A complete review is beyond the scope of this work.

We refer the readers to [29, 41] for a detailed survey.

The previous works are reviewed from two perspectives

related to this work. First is how to exploit the joint depen-

dency for 3D and 2D pose estimation. Second is how to

exploit “in the wild” 2D data for 3D pose estimation.

3D Pose Estimation Some methods use two separate

steps. They first perform 2D joint prediction and then re-

construct the 3D pose via optimization or search. There is

no end-to-end learning. Zhou et al. [56] combines uncer-

tainty maps of the 2D joints location and a sparsity-driven

3D geometric prior to infer the 3D joint location via an EM

algorithm. Chen et al. [7] searches a large 3D pose library

and uses the estimated 2D pose as query. Bogo et al. [4] fit a

recently published statistical body shape model [27] to the

2D joints. Jahangiri et al. [21] generates multiple hypothe-

ses from 2D joints using a novel generative model.

Some methods implicitly learn the pose structure from

data. Tekin et al. [42] represents the 3D pose with an

over-complete dictionary. A high-dimensional latent pose

representation is learned to account for joint dependencies.

Pavlakos et al. [34] extends the Hourglass [31] framework

from 2D to 3D. A coarse-to-fine approach is used to ad-

dress the large dimensionality increase. Li et al. [24] uses

an image-pose embedding sub-network for regularization.

Above works do not use prior knowledge in 3D model.

Such prior knowledge is firstly used in [54, 55] by embed-

ding a kinematic model layer into deep neutral networks and

estimating model parameters instead of joints. The geomet-

ric structure is better preserved. Yet, the kinematic model

parameterization is highly nonlinear and its optimization in

deep networks is hard. Also, the methods are limited for a

fully specified kinematic model (fixed bone length, known

scale). They do not generalize to 2D pose estimation, where

a good 2D kinematic model does not exist.

2D Pose Estimation Before the deep learning era, many

methods use graphical models to represent the structures in

the joints. Pictorial structure model [13] is one of the earli-

est. There is a lot of extensions [23, 50, 36, 35, 51, 26, 9].

Pose estimation is formulated as inference problems on the

graph. A common drawback is that the inference is usually

complex, slow, and hard to integrate with deep networks.

Recently, the graphical models have been integrated into

deep networks in various ways. Tompson et al. [46] firstly

combine a convolutional network with a graphical model

for human pose estimation. Ouyang et al. [32] joints fea-

ture extraction, part deformation handling, occlusion han-

dling and classification all into deep learning framework.

Chu et al. [10] introduce a geometrical transform kernels in

CNN framework that can pass informations between differ-

ent joint heat maps. Both features and their relationships

are jointly learned in a end-to-end learning system. Yang et

al. [49] combine deep CNNs with the expressive deformable

mixture of parts to regularize the output.

Another category of methods use a multi-stage architec-

ture [11, 6, 31, 5, 47, 18, 14]. The results of the previous

stage are used as inputs to enhance or regularize the learn-

ing of the next stage. Newell et al. [31] introduce an Stacked

Hourglass architecture that better capture the various spatial

relationships associated with the body. Chu et al. [11] fur-

ther extend [31] with a multi-context attention mechanism.

Bulat et al. [5] propose a detection-followed-by-regression

CNN cascade. Wei et al. [47] design a sequential archi-

tecture composed of convolutional networks that directly

operate on belief maps from previous stages. Gkioxari et

al. [14] predict joint heat maps sequentially and condition-

ally according to their difficulties. All such methods learn

the joint dependency from data, implicitly.

Different to all above 3D and 2D methods, our approach

explicitly exploits the joint connection structure in the pose.

It does not make further assumptions and does not involve

complex algorithm design. It only changes the pose repre-

sentation and enhances the loss function. It is simple, effec-

tive, and can be combined with existing techniques.

Leveraging in the wild 2D data for 3D pose estimation

3D pose capturing is difficult. The largest 3D human pose

dataset Human3.6M [20] is still limited in that the subjects,

the environment, and the poses have limited complexity and

variations. Models trained on such data do not generalize

well to other domains, such as in the wild images.

In contrast, in the wild images and 2D pose annotation

are abundant. Many works leverage the 2D data for 3D pose

estimation. Most of them consist of two separate steps.

Some methods firstly generate the 2D pose results (joint

locations or heat maps) and then use them as input for re-

covering the 3D pose. The information in the 2D images is

discarded in the second step. Bogo et al. [4] first use Deep-

Cut [38] to generate 2D joint location, then fit with a 3D

body shape model. Moreno et al. [30] use CPM [47] to

detect 2D position of human joints, and then use these ob-

servations to infer 3D pose via distance matrix regression.

Zhou et al. [57] use Hourglass [31] to generate 2D joint

heat maps and then coupled with a geometric prior and Ja-

hangiri et al. [21] also use Hourglass to predict 2D joint heat

maps and then infer multiple 3D hypotheses from them. Wu

et al. [48] propose 3D interpreter network that sequentially

estimates 2D keypoint heat maps and 3D object structure.

Some methods firstly train the deep network model on

2D data and fine-tune the model on 3D data. The informa-

tion in 2D data is partially retained by the pre-training, but

not fully exploited as the second fine-tuning step cannot use

2D data. Pavlakos et al. [34] extends Hourglass [31] model

for 3D volumetric prediction. 2D heat maps are used as in-

termediate supervision. Tome et al. [44] extends CPM [47]
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to 3D by adding a probabilistic 3D pose model to the CPM.

Mehta et al. [28] and Park et al.[33] train both 2D and

3D pose networks simultaneously by sharing intermediate

CNN features. Yet, they use separate sub-networks and data

for 2D and 3D tasks.

Unlike the above methods, our approach treats the 2D

and 3D data in the same way and combine them in a uni-

fied training framework. The abundant information in the

2D data is fully exploited during training. As a result, our

method achieves strong performance on both 3D and 2D

benchmarks. As a by-product, it generates plausible and

convincing 3D pose results for in the wild images.

Some methods use synthetic datasets which are gener-

ated from deforming a human template model with known

ground truth [8, 40]. These methods are complementary to

the others as they focus on data augmentation.

3. Compositional Pose Regression

Given an image of a person, the pose estimation problem

is to obtain the 2D (or 3D) position of all the K joints, J =
{Jk|k = 1, ...,K}. Typically, the coordinate unit is pixel

for 2D and millimeter (mm) for 3D.

Without loss of generality, the joints are defined with re-

spect to a constant origin point in the image coordinate sys-

tem. For convenience, let the origin be J0. Specifically,

for 2D pose estimation, it is the top-left point of the im-

age. For 3D pose estimation, it is the ground truth pelvis

joint [54, 33].

For regression learning, normalization is necessary to

compensate for the differences in magnitude of the vari-

ables. We use the standard normalization by subtraction of

mean and division of standard deviation. For a variable var,

it is normalized as

˜var = N(var) =
var −mean(vargt)

std(vargt)
. (1)

The inverse function for unnormalization is

var = N−1( ˜var) = ˜var ·std(vargt)+mean(vargt). (2)

Note that both mean(∗) and std(∗) are constants and

calculated from the ground truth training samples. The pre-

dicted output from the network is assumed already normal-

ized. Both functions N(∗) and N−1(∗) are parameter free

and embedded in the network. For notation simplicity, we

use ˜var for N(var).

3.1. Direct Joint Regression: A Baseline

Most previous regression based methods [6, 54, 33, 42,

43] directly minimize the squared difference of the pre-

dicted and ground truth joints. In experiments, we found

that the absolute difference (L1 norm) performs better. In

our direct joint regression baseline, the joint loss is

L(J ) =

K∑

k=1

||J̃k − J̃
gt
k ||1. (3)

Note that both the prediction and ground truth are nor-

malized.

There is a clear drawback in loss Eq.(3). The joints are

independently estimated. The joint correlation, or the inter-

nal structure in the pose, is not well exploited. For example,

certain geometric constraints (e.g., bone length is fixed) are

not satisfied.

Previous works only evaluate the joint location accuracy.

This is also limited because the internal structures in the

pose are not well evaluated.

3.2. A Bone Based Representation

We show that a simple reparameterization of the pose

is effective to address the above issues. As shown in Fig-

ure 1(left), a pose is structured as a tree. Without loss of

generality, let pelvis be the the root joint J1 and tree edges

be directed from the root to the end joints such as wrists and

ankles. Let the function parent(k) return the index of par-

ent joint for kth joint. For notation consistency, let the par-

ent of the root joint J1 be the origin J0, i.e., parent(1) = 0.

Now, for kth joint, we define its associated bone as a

directed vector pointing from it to its parent,

Bk = Jparent(k) − Jk. (4)

The joints J are defined in the global coordinate sys-

tem. In contrast, bones B = {Bk|k = 1, ...,K} are more

primitive and defined in the local coordinate systems. Rep-

resenting the pose using bones brings several benefits.

Stability Bones are more stable than joints and easier to

learn. Figure 1 (middle and right) shows that the standard

deviation of bones is much smaller than that of their corre-

sponding joints, especially for parts (ankle, wrist, head) far

away from the root pelvis, in both 3D (Human 3.6M [20])

and 2D datasets (MPII [3]).

Geometric convenience Bones can encode the geomet-

ric structure and express the geometric constraints more

easily than joints. For example, constraint of “bone length

is fixed” involves one bone but two joints. Constraint

of “joint rotation angle is in limited range” involves two

bones but three joints. Such observations motivate us to

propose new evaluation metrics for geometric validity, as

elaborated in Section 5. Experiments show that bone based

representation is better than joint based representation on

such metrics.

Application convenience Many pose-driven applica-

tions only need the local bones instead of the global joints.

For example, the local and relative “elbow to wrist” motion

can sufficiently represent a “pointing” gesture that would be

useful for certain human computer interaction scenarios.
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Figure 1. Left: a human pose is represented as either joints J or bones B. Middle/Right: standard deviations of bones and joints for the

3D Human3.6M dataset [20] and 2D MPII dataset [3].

3.3. Compositional Loss Function

Similar to the joint loss in Eq. (3), bones can be learnt by

minimizing the bone loss function

L(B) =
K∑

k=1

||B̃k − B̃
gt
k ||1. (5)

However, there is a clear drawback in this loss. As

the bones are local and independently estimated in Eq. (5),

the errors in the individual bone predictions would propa-

gate along the skeleton and accumulate into large errors for

joints at the far end. For example, in order to predict Jwrist,

we need to concatenate Bwrist, Belbow,...,Bpelvis. Errors

in these bones will accumulate and affect the accuracy of

Jwrist in a random manner.

To address the problem, long range objectives should be

considered in the loss. Long range errors should be bal-

anced over the intermediate bones. In this way, bones are

jointly optimized. Specifically, let Ju and Jv be two arbi-

trary joints. Suppose the path from Ju to Jv along the skele-

ton tree has M joints. Let the function I(m) return the in-

dex of the mth joint on the path, e.g., I(1) = u, I(M) = v.

Note that M and I(∗) are constants but depend on u and v.

Such dependence is omitted in the notations for clarity.

The long range, relative joint position ∆Ju,v is the sum-

mation of the bones along the path, as

∆Ju,v =
M−1∑

m=1

JI(m+1) − JI(m)

=

M−1∑

m=1

sgn(parent(I(m)), I(m+ 1)) ·N−1(B̃I(m)).

(6)

The function sgn(∗, ∗) indicates whether the bone

BI(m) direction is along the path direction. It returns 1
when parent(I(m)) = I(m + 1) and −1 otherwise. Note

that the network predicted bone B̃(∗) is normalized, as in

Eq. (6). It is unnormalized via Eq. (2) before summation.

Eq.(6) is differentiable with respect to the bones. It is

efficient and has no free parameters. It is implemented as a

special compositional layer in the neutral networks.

The ground truth relative position is

∆J
gt
u,v = J

gt
u − J

gt
v . (7)

Then, given a joint pair set P , the compositional loss

function is defined as

L(B,P) =
∑

(u,v)∈P

||∆̃Ju,v − ∆̃J
gt

u,v||1. (8)

In this way, every joint pair (u, v) constrains the bones

along the path from u to v. Each bone is constrained by

multiple paths given a large number of joint pairs. The er-

rors are better balanced over the bones during learning.

The joint pair set P can be arbitrary. To validate the

effectiveness of Eq.(8), we test four variants:

• Pjoint = {(u, 0)|u = 1, ...,K}. It only considers the

global joint locations. It is similar to joint loss Eq.(3).

• Pbone = {(u, parent(u))|u = 1, ...,K}. It only con-

siders the bones. It degenerates to the bone loss Eq.(5).

• Pboth = Pjoint

⋃
Pbone. It combines the above two

and verifies whether Eq.(8) is effective.

• Pall = {(u, v)|u < v, u, v = 1, ...,K}. It contains all

joint pairs. The pose structure is fully exploited.

4. Unified 2D and 3D Pose Regression

All the notations and equations in Section 3 are applica-

ble for both 3D and 2D pose estimation in the same way.

The output pose dimension is either 3K or 2K.

Training using mixed 3D and 2D data is straightforward.

All the variables, such as joint J, bone B, and relative joint

position ∆Ju,v , are decomposed into xy part and z part.

The loss functions can be similarly decomposed. For ex-

ample, for compositional loss function Eq.(8), we have

L(B,P) = Lxy(B,P) + Lz(B,P). (9)
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The xy term Lxy(∗, ∗) is always valid for both 3D and

2D samples. The z term Lz(∗, ∗) is only computed for 3D

samples and set to 0 for 2D samples. In the latter case, no

gradient is back-propagated from Lz(∗, ∗).
Note that the xy part and z part variables have different

dimensions. xy is in image coordinate frame and the unit

is in pixel. z is in camera coordinate frame and the unit is

metric (millimeters in our case). This is no problem. During

training, they are appropriately normalized (Eq.(8), Eq.(1))

or unnormalized (Eq.(6), Eq.(2)). During inference, in order

to recover the 3D metric coordinates, the xy part is back-

projected into camera space using known camera intrinsic

parameters and a perspecitive projection model.

Training We use the state-of-the-art ResNet-50 [16].

The model is pre-trained on ImageNet classification

dataset [12]. The last fully connected layer is then modified

to output 3K (or 2K) coordinates and the model is fine-

tuned on our target task and data. The training is the same

for all the tasks (3D, 2D, mixed). SGD is used for optimiza-

tion. There are 25 epoches. The base learning rate is 0.03. It

drops to 0.003 after 10 epoches and 0.0003 after another 10

epoches. Mini-batch size is 64. Two GPUs are used. Weight

decay is 0.0002. Momentum is 0.9. Batch-normalization

[19] is used. Implementation is in Caffe [22].

Data Processing and Augmentation The input image

is normalized to 224 × 224. Data augmentation includes

random translation(±2% of the image size), scale(±25%),

rotation(±30 degrees) and flip. For MPII dataset, the train-

ing data are augmented by 20 times. For Human3.6M

dataset, the training data are augmented by 4 times. For

mixed 2D-3D task, each mini-batch consists of half 2D and

half 3D samples, randomly sampled and shuffled.

5. Experiments

Our approach is evaluated on 3D and 2D human pose

benchmarks. Human3.6M [20] is the largest 3D human

pose benchmark. The dataset is captured in controlled en-

vironment. The image appearance of the subjects and the

background is simple. Accurate 3D human joint locations

are obtained from motion capture devices.

MPII [3] is the benchmark dataset for 2D human pose

estimation. It includes about 25k images and 40k annotated

2D poses. 25k of them are for training and another 7k of

the remaining are for testing. The images were collected

from YouTube videos covering daily human activities with

complex poses and image appearances.

5.1. Comprehensive Evaluation Metrics

For 3D human pose estimation, previous works [7, 44,

30, 57, 21, 28, 34, 52, 40, 4, 56, 43, 54] use the mean per

joint position error (MPJPE). We call this metric Joint Er-

ror. Some works [52, 40, 7, 4, 30, 57] firstly align the pre-

dicted 3D pose and ground truth 3D pose with a rigid trans-

CNN prediction loss function

Baseline joints J L(J ), Eq.(3)

Ours (joint)

bones B

L(B,Pjoint), Eq.(8)

Ours (bone) L(B,Pbone), Eq.(8)

Ours (both) L(B,Pboth), Eq.(8)

Ours (all) L(B,Pall), Eq.(8)
Table 1. The baseline and four variants of our method.

formation using Procrustes Analysis [15] and then compute

MPJPE. We call this metric PA Joint Error.

For 2D human pose estimation in MPII [3], Percentage

of Correct Keypoints (PCK) metric is used for evaluation.

Above metrics only measures the accuracy of absolute

joint location. They do not fully reflect the accuracy of in-

ternal structures in the pose. We propose three additional

metrics for a comprehensive evaluation.

The first metric is the mean per bone position error, or

Bone Error. It is similar to Joint Error, but measures the

relative joint location accuracy. This metric is applicable

for both 3D and 2D pose.

The next two are only for 3D pose as they measure the

validity of 3D geometric constraints. Such metrics are im-

portant as violation of the constraints will cause physically

infeasible 3D poses. Such errors are critical for certain ap-

plications such as 3D motion capture.

The second metric is the bone length standard deviation,

or Bone Std. It measures the stability of bone length. For

each bone, the standard deviation of its length is computed

over all the testing samples of the same subject.

The third metric is the percentage of illegal joint angle,

or Illegal Angle. It measures whether the rotation angles at a

joint are physically feasible. We use the recent method and

code in [2] to evaluate the legality of each predicted joint.

Note that this metric is only for joints on the limbs and does

not apply to those on the torso.

5.2. Experiments on 3D Pose of Human3.6M

For Human3.6M [20], there are two widely used evalua-

tion protocols with different training and testing data split.

Protocol 1 Six subjects (S1, S5, S6, S7, S8, S9) are used

in training. Evaluation is performed on every 64th frame of

Subject 11’s videos. It is used in [52, 40, 7, 30, 57]. PA

Joint Error is used for evaluation.

Protocol 2 Five subjects (S1, S5, S6, S7, S8) are used

for training. Evaluation is performed on every 64th frame

of two subjects (S9, S11). It is used in [56, 43, 54, 7, 44,

30, 57, 21, 28, 34]. Joint Error is used for evaluation.

Ablation study. The direct joint regression baseline and

four variants of our method are compared. They are briefly

summarized in Table 1. As explained in Section 4, train-

ing can use additional 2D data (from MPII), optionally.
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Training Data Metric Baseline Ours (joint) Ours(bone) Ours (both) Ours (all)

Human3.6M

Joint Error 102.2 103.3↑1.1 104.6↑2.4 95.2↓7.0 92.4↓9.8

PA Joint Error 75.0 74.3↓0.7 75.0↓0.0 68.1↓6.9 67.5↓7.5

Bone Error 65.5 63.5↓2.0 62.3↓3.2 59.1↓6.4 58.4↓7.1

Bone Std 26.4 23.9↓2.5 21.9↓4.5 22.3↓4.1 21.7↓4.7

Illegal Angle 3.7% 3.2%↓0.5 3.3%↓0.4 2.6%↓1.1 2.5%↓1.2

Human3.6M + MPII

Joint Error 64.2 62.9↓1.3 63.8↓0.4 60.7↓3.5 59.1↓5.1

PA Joint Error 51.4 50.6↓0.8 50.4↓1.0 48.8↓2.6 48.3↓3.1

Bone Error 49.5 49.3↓0.2 47.4↓2.1 47.2↓2.3 47.1↓2.4

Bone Std 19.9 19.3↓0.6 17.5↓2.4 17.6↓2.3 18.0↓1.9

Table 2. Results of all methods under all evaluation metrics (the lower the better), with or without using MPII data in training. Note

that the performance gain of all Ours methods relative to the Baseline method is shown in the subscript. The Illegal Angle metric for

“Human3.6M+MPII” setting is not included because it is very good (< 1%) for all methods.

Metric Joint Error PA Joint Error Bone Error Bone Std Illegal Angle

Method BL Ours (all) BL Ours (all) BL Ours (all) BL Ours (all) BL Ours (all)

Average 102.2 92.4↓9.8 75.0 67.5↓7.5 65.5 58.4↓7.1 26.4 21.7↓4.7 3.7% 2.5%↓1.2

Ankle(→ Knee) 94.5 88.5↓6.0 81.5 75.8↓5.7 81.2 74.1↓7.1 32.9 32.0↓0.9 - -

Knee(→Hip) 68.6 63.7↓4.9 69.2 62.9↓6.3 69.1 63.4↓5.7 21.7 22.8↑1.1 4.8% 3.8%↓1.0

Hip(→Pelvis) 29.9 25.0↓4.9 63.3 58.4↓4.9 29.9 25.0↓4.9 21.3 16.4↓4.9 0.6% 0.6%↓0.0

Thorax(→Pelvis) 97.2 90.1↓7.1 30.7 28.1↓2.6 97.2 90.1↓7.1 28.0 26.7↓1.3 - -

Neck(→Thorax) 104.3 96.4↓7.9 36.7 35.5↓1.2 22.2 22.9↑0.7 12.4 11.7↓0.7 2.2% 1.3%↓0.9

Head(→Neck) 115.4 108.4↓7.0 42.8 41.1↓1.7 39.7 37.3↓2.4 15.3 14.8↓0.5 - -

Wrist(→Elbow) 181.9 163.0↓18.9 130.2 115.2↓15.0 102.6 89.0↓13.6 40.6 30.6↓10.0 - -

Elbow(→Shoulder) 168.8 146.9↓21.9 115.8 97.6↓18.2 96.9 81.4↓15.5 27.6 21.4↓6.2 8.5% 5.4%↓3.1

Shoulder(→Thorax) 115.6 104.4↓11.2 57.7 52.2↓5.5 55.1 48.5↓6.6 25.9 12.6↓13.3 1.9% 0.8%↓1.1

Table 3. Detailed results on all joints for Baseline (BL) and Ours (all) methods, only trained on Human3.6M data (top half in Table 2). The

relative performance gain is shown in the subscript. Note that the left most column shows the names for both the joint (and the bone).

We therefore tested two sets of training data: 1) only Hu-

man3.6M; 2) Human3.6M plus MPII.

Table 2 reports the results under Protocol 2, which is

more commonly used. We observe several conclusions.

Using 2D data is effective. All metrics are significantly

improved after using MPII data. For example, joint error

is reduced from 102.2 to 64.2. This improvement should

originate from the better learnt feature from the abundant

2D data. See the contemporary work [53] for more discus-

sions. Note that adding 2D data in this work is simple and

not considered as a main contribution. Rather, it is consid-

ered as a baseline to validate our regression approach.

Bone representation is superior than joint representa-

tion. This can be observed by comparing Baseline with

Ours (joint) and Ours (bone). They are comparable because

they use roughly the same amount of supervision signals in

the training. The two variants of ours are better on nearly all

the metrics, especially the geometric constraint based ones.

Compositional loss is effective. When the loss function

becomes better (Ours (both) and Ours (all)), further im-

provement is observed. Specifically, when trained only on

Human3.6M, Ours (all) improves the Baseline by 9.8 mm

(relative 9.6%) on joint error, 7.5 mm (relative 10%) on PA

joint error, 7.1 mm (relative 10.8%) on bone error, 4.7 mm

(relative 17.8%) on bone std, and 1.2% (relative 32.4%) on

illegal angle.

Table 3 further reports the performance improvement

from Ours (all) to Baseline on all the joints (bones). It

shows several conclusions. First, limb joints are harder

than torso joints and upper limbs are harder than lower

limbs. This is consistent as Figure 1 (middle). It indi-

cates that the variance is a good indicator of difficulty and

a per-joint analysis is helpful in both algorithm design and

evaluation. Second, our method significantly improves the

accuracy for all the joints, especially the challenging ones

like wrist, elbow and ankle. Figure 2 shows the results on a

testing video sequence with challenging arm motions. Our

result is much better and more stable.

Comparison with the state-of-the-art There are abun-

dant previous works. They have different experiment set-

tings and fall into three categories. They are compared to

our method in Table 4, 5, and 6, respectively. See the arxiv

version of this paper1 for more detailed comparision results.

The comparison is not completely fair due to the dif-

ferences in the training data (when extra data are used),

the network architecture and implementation. Nevertheless,

two common conclusions validate that our approach is ef-

fective and sets the new state-of-the-art in all settings by

a large margin. First, our baseline is strong. It is simple

1https://arxiv.org/abs/1704.00159
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 Frame 24  Frame 102  Frame 119  Frame 180  Frame  200 Frame 0  Frame 158

Ours

(all)

Bone

Error

Joint

Error

 Baseline

Frame

(mm)

 Frame 68

Test Result

Image and 3D 

Ground Truth

Figure 2. (best viewed in color) Errors of wrist joint/bone of Baseline and Ours (all) methods on a video sequence from Human3.6M S9,

action Pose. The average error over the sequence is shown in the legends. For this action, the arms have large motion and are challenging.

Our method has much smaller joint and bone error. Our result is more stable over the sequence. The 3D predicted pose and ground truth

pose are visualized for a few frames. More video results are at https://www.youtube.com/watch?v=c-hgHqVK90M.

Yasin [52] Rogez [40] Chen [7] Moreno [30] Zhou [57] Baseline Ours (all)

108.3 88.1 82.7 76.5 55.3 51.4 48.3
Table 4. Comparison with previous work on Human3.6M. Protocol 1 is used. Evaluation metric is averaged PA Joint Error. Extra 2D

training data is used in all the methods. Baseline and Ours (all) use MPII data in the training. Ours (all) is the best and also wins in all the

15 activity categories.

but already improves the state-of-the-art, by 3.9 mm (rela-

tive 7%) in Table 4, 2.7 mm (relative 4%) in Table 5, and

5.1 mm (relative 4.8%) in Table 6. Therefore, it serves as

a competitive reference. Second, our method significantly

improves the baseline, using exactly the same network and

training. Thus, the improvement comes from the new pose

representation and loss function. It improves the state-of-

the-art significantly, by 7 mm (relative 12.7%) in Table 4,

7.8 mm (relative 11.7%) in Table 5, and 14.9 mm (relative

13.9%) in Table 6.

Example 3D pose results are illustrated in Figure 3.

5.3. Experiments on 2D Pose of MPII

All leading methods on MPII benchmark [1] have so-

phisticated network architectures. As discussed in Sec-

tion 2, the best-performing family of methods adopts a

multi-stage architecture [11, 6, 31, 5, 47, 18, 14]. Our

method is novel in the pose representation and loss func-

tion. It is complementary to such sophisticated networks.

In this experiment, it is integrated into the Iterative Error

Feedback method (IEF) [6], which is the only regression

based method in the family.

We implement a two stage baseline IEF, using ResNet-50

as the basic network in each stage. For reference, the origi-

nal IEF [6] uses five stages with GoogLeNet for each stage.

We denote our implementation as IEF*. The two stages in

IEF* are then modified to use our bone based representa-

tion and compositional loss function. The training for all

the settings remains the same, as specified in Section 4.

Ablation study Table 7 shows the results of IEF* and

our four variants. We observe the same conclusions as in

Table 2. Both bone based representation and compositional

loss function are effective under all metrics. In addition,

both stages in IEF* benefit from our approach.

Comparison with the state-of-the-art Table 8 com-

pares the per-joint accuracy of the original IEF [6], IEF*

and our method. It shows that: 1) IEF* is better than [6],

therefore serving as a valid baseline; 2) our method pro-

duces significant improvement over the baseline.

Table 9 reports the results of all leading methods on MPII

benchmark [1]. Ours (86.4%) is the best regression based

method. It is competitive to other detection based methods.
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Chen [7] Tome [44] Moreno [30] Zhou [57] Jahangiri [21] Mehta [28] Pavlakos [34] Baseline Ours (all)

114.2 88.4 87.3 79.9 77.6 72.9 66.9 64.2 59.1
Table 5. Comparison with previous work on Human3.6M. Protocol 2 is used. Evaluation metric is averaged Joint Error. Extra 2D training

data is used in all the methods. Baseline and Ours (all) use MPII data in the training. Ours (all) is the best and also wins in all the 15

activity categories.

Figure 3. (best viewed in color) Examples of 3D pose estimation for Human3.6M (top row) and MPII (middle and bottom rows), using

Ours (all) method in Table 5, trained with both 3D and 2D data. Note that the MPII 3D results are quite plausible and convincing.

Zhou [56] Tekin [43] Xingyi [54] Baseline Ours (all)

113.0 125.0 107.3 102.2 92.4

Table 6. Comparison with previous work on Human3.6M. Protocol

2 is used. Evaluation metric is averaged Joint Error. No extra

training data is used. Ours (all) is the best and wins in 12 out of

15 activity categories.

Stage Metric IEF* joint bone both all

0

Joint Error 29.7 27.2 27.8 27.5 27.2

Bone Error 24.8 23.1 22.1 22.7 22.5

PCKH 0.5 76.5% 79.3% 79.0% 79.2% 79.6%

1

Joint Error 25.0 23.8 25.2 23.0 22.8

Bone Error 21.2 20.5 20.9 19.7 19.5

PCKH 0.5 82.9% 84.1% 82.7% 84.9% 86.4%

Table 7. Results of the baseline and four variants of our method

(see Table 1), in the two-stage IEF*.

Method Head Sho. Elb. Wri. Hip Knee Ank.

IEF [6] 95.7 91.7 81.7 72.4 82.8 73.2 66.4

IEF* 96.3 92.6 83.1 74.6 83.7 74.1 71.4

Ours (all) 97.5 94.3 87.0 81.2 86.5 78.5 75.4

Table 8. Per-joint evaluation result. PCKH 0.5 metric is used. IEF*

and Ours (all) are the same as in Table 7 (stage 1) and 9.

Pishchulin [37] Tompson [46] Tompson [45] Hu [17]

44.1 79.6 82.0 82.4

Pishchulin [38] Lifshitz [25] Gkioxary [14] Raf [39]

82.4 85.0 86.1 86.3

Insafutdinov [18] Wei [47] Bulat [5] Newell [31]

88.5 88.5 89.7 90.0

Chu [11] IEF [6] IEF* Ours (all)

91.5 81.3 82.9 86.4

Table 9. Comparison to state-of-the-art works on MPII. PCKH 0.5

metric is used. Our approach significantly improves the baseline

IEF and is competitive to other detection based methods.

6. Conclusion

We show that regression based approach is competitive

to the leading detection based approaches for 2D pose esti-

mation once pose structure is appropriately exploited. Our

approach is more potential for 3D pose estimation, where

more complex structure constraints are critical.
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