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Abstract

In this paper, we address the problem of estimating the

positions of human joints, i.e., articulated pose estimation.

Recent state-of-the-art solutions model two key issues, joint

detection and spatial configuration refinement, together us-

ing convolutional neural networks. Our work mainly fo-

cuses on spatial configuration refinement by reducing varia-

tions of human poses statistically, which is motivated by the

observation that the scattered distribution of the relative lo-

cations of joints (e.g., the left wrist is distributed nearly uni-

formly in a circular area around the left shoulder) makes the

learning of convolutional spatial models hard. We present

a two-stage normalization scheme, human body normaliza-

tion and limb normalization, to make the distribution of the

relative joint locations compact, resulting in easier learn-

ing of convolutional spatial models and more accurate pose

estimation. In addition, our empirical results show that in-

corporating multi-scale supervision and multi-scale fusion

into the joint detection network is beneficial. Experiment re-

sults demonstrate that our method consistently outperforms

state-of-the-art methods on the benchmarks.

1. Introduction

Human pose estimation is one of the most challeng-

ing problems in computer vision and plays an essential

role in human body modeling. It has wide applications

such as human action recognition [35], activity analyses

[1], and human-computer interaction [29]. Despite many

years of research with significant progress made recently

[3, 11, 10, 8, 32, 31], pose estimation still remains a very

challenging task, mainly due to the large variations in body

postures, shapes, complex inter-dependency of parts, cloth-

ing and so on.
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Figure 1: Pose normalization can compact the relative po-

sition distribution. (a) Example images with various poses

from LSPET [17]. (b) and (d) are originally relative posi-

tions of two joints. (b) shows the positions of heads with

respect to the body centers. (d) shows the positions of the

left wrists with respect to the left shoulders. (c) and (e) are

the relative positions after body and limb normalization cor-

responding to (b) and (d) respectively. The distributions of

the relative positions in (c) and (e) are much more compact.
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There are two key problems in pose estimation: joint de-

tection, which estimates the confidence level of each pixel

being some joint, and spatial refinement, which usually re-

fines the confidence for joints by exploiting the spatial con-

figuration of the human body.

Our work follows this path and mainly focuses on spa-

tial configuration refinement. It is observed that the distri-

bution of relative positions of joints may be very diverse

with respect to their neighboring ones. Examples regarding

the distributions of the joints on the LSPET dataset [17] are

shown in Figure 1. The relative positions of the head with

respect to the center of the human body are shown in Fig-

ure 1 (b), which is distributed almost uniformly in a circular

region. After making the human body upright, the distribu-

tion becomes much more compact, as shown in Figure 1 (c).

We have similar observations for other neighboring joints.

For some joints on the limbs (e.g., wrist, ankle), their dis-

tributions are still diverse even after positioning the torso

upright. We further rotate the human upper limb (e.g., the

left arm) to a vertical downward positions. The distribution

of the relative positions of the left wrist, shown in Figure 1

(e), becomes much more compact.

The diversity of orientations (e.g., body and limb) is the

main factor in the variations of pose. Motivated by these

observations, we propose two normalization schemes, re-

ducing diversity to generate compact distributions. The first

normalization scheme is human body normalization, rotat-

ing the human body to upright according to joint detection

results, which globally makes the relative positions between

joints compactly distributed. This scheme is followed by a

global spatial refinement module to refine all the estima-

tions of the joints. The second one is limb normalization:

rotating the joints of each limb to make the relative posi-

tions more compact. There are four total limb normaliza-

tion modules, and each is followed by a spatial limb re-

finement module to refine the estimations from the global

spatial refinement. Thanks to the normalization schemes,

a much more consistent spatial configuration of the human

body can be obtained, which facilitates the learning of spa-

tial refinement models.

Besides the observations in [20, 21, 30, 36] that the

multi-stage supervision, e.g., supervision on the joint de-

tection stage and the spatial refinement stage, is helpful, we

observe that multi-scale supervision and multi-scale fusion

over the convolutional network within the joint detection

stage are also beneficial.

Our main contribution lies in effective normalization

schemes to facilitate the learning of convolutional spatial

models. Our scheme can be applied following different

joint detectors for refining the spatial configurations. Our

experiment results demonstrate the effectiveness on several

joint detectors, such as FCN [21], ResNet [13] and Hour-

glass [22]. An additional minor contribution is that we em-

pirically show the improvement by using an architecture

with multi-scale supervision and fusion for joint detection.

2. Related Work

Significant progress has been made recently in human

pose estimation by deep learning based methods [33, 23,

8, 31, 25, 14, 22]. The joint detection and joint relation

models are widely recognized as two key components in

solving this problem. In the following, we briefly review

related developments on these two components respectively

and discuss some related works which motivate our design

of the normalization scheme.

Joint detection model. Many recent works use convo-

lutional neural networks to learn feature representations for

obtaining the score maps of joints or the locations of joints

[33, 12, 6, 34, 22, 26, 5]. Some methods directly employ

learned feature representations to regress joint positions,

e.g., the DeepPose method [33]. A more typical way of joint

detection is to estimate a score map for each joint based on

the fully convolutional neural network (FCN) [21]. The es-

timation procedure can be formulated as a multi-class clas-

sification problem [34, 22] or regression problem [6, 31].

For the multi-class formulation, either a single-label based

loss (e.g., softmax cross-entropy loss) [9] or a multi-label

based loss (e.g., sigmoid cross-entropy loss) [25] can be

used. One main problem for the FCN-based joint detec-

tion model is that the positions of joints are estimated from

low resolution score maps. This reduces the location ac-

curacy of the joints. In our work, we introduce multi-scale

supervision and fusion to further improve performance with

gradual up-sampling.

Joint relation model. The pictorial structures [38, 24]

define the deformable configurations by spring-like connec-

tions between pairs of parts to model complex joint rela-

tions. Subsequent works [23, 8, 37] extend such an idea

to convolutional neuron networks. In those approaches, to

model the human poses with large variations, a mixture

model is usually learned for each joint. Tompson et al.

[32] formulates the spatial relations as a Markov Random

Field (MRF) like model over the distribution of spatial lo-

cations for each body part. The location distribution of one

joint relative to another is modeled by convolutional prior

which is expected to give some spatial predictions and re-

move false positive outliers for each joint. Similarly, the

structured feature learning method in [9] adapts geomet-

rical transform kernels to capture the spatial relationships

of joints from feature maps. To better estimate the human

pose, complex network architecture design with many more

parameters are expected on account of the articulated struc-

ture of the human body, such as [9] and [37]. In our work,

we address this problem by compensating for the variations

of poses both globally and locally for facilitating the spatial

configuration exploration.
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Figure 2: Proposed framework with global and local normalization. Joint detection with fully convolutional network (FCN)

provides initial estimation of joints in terms of score maps. In the global refinement stage, a body (global) normalization

module rotates the score maps to have upright position for the body, followed by a refinement module. In the local refinement

stage, limb (local) normalization modules rotates the score maps to have vertical downward position for limbs, followed by

refinements.

Normalization. Normalization of the training samples

to reduce their variations has been proven to be a key step

before learning models using these samples. For example,

in the PCA Whitening and ZCA Whitening operations [18],

the feature pre-processing step are adapted before train-

ing an SVM classifier, etc. The batch normalization [15]

technique accelerates the deep network training by reduc-

ing the internal covariate shift across layers. In computer

vision applications, face normalization has been found to

be very helpful for improving the face recognition perfor-

mance [4, 41, 7]. It is beneficial for decreasing the intra-

person variations and achieving pose-invariant recognition.

3. Our Approach

Human pose estimation is defined as the problem of lo-

calization of human joints, i.e., head, neck et al., from an

image. Given an image I , the goal is to estimate the posi-

tions of the joints: {(xk, yk)}
K
k=1, where K is the number

of joints.

3.1. Pipeline

Figure 2 shows the framework of our proposed approach.

It consists of joint detection and spatial configuration re-

finement, which are both realized with convolutional neural

networks. The output of joint detector consists of K + 1
score maps, including K joint score maps, providing spatial

configuration information and one non-joint (background)

score map. The value in each score map indicates the degree

of confidence that the pixel is the corresponding joint. With

the score maps generated by the former stage (e.g., joint

detector or refinement stage) as the input, two normaliza-

tion stages correct wrongly predicted joints based on spatial

configurations of the human body. Note that we focus on

the exploration of the spatial configurations of joints for re-

finement. Unlike many other works [5, 22, 34], we do not

incorporate low level features and our refinement is based

on the score maps which indicate the probabilities of being

each joint.

3.2. Spatial Configuration Refinement

There are two stages for spatial configuration refinement

as depicted in Figure 2. The first stage is a global refine-

ment, consisting of a global normalization module and a re-

finement module that refines all K joints. The second stage

includes two parallel refinement modules: semi-global re-

finement and local refinement. The local refinement mod-

ule consists of four branches. Each branch corresponds to a

limb and contains a local limb normalization module and a

local refinement module. Inverse normalizations by inverse

spatial transforms are used to rotate the joints/body back for

obtaining the final results.

Body normalization. The purpose of body normalization

is to make the orientation of the whole body the same, e.g.,

upright in our implementation1. Specifically, we rotate the

body as well as the K score maps around the center of the

four joints (i.e., left shoulder, right shoulder, left hip, right

hip) so that the line from the center to the neck joint is up-

right, as shown in Figure 3 (b). The positions of the joints

are estimated from the K Gaussian-smoothed score maps

by finding the maximum responses in each map and return-

ing the corresponding position as the position of the joint.

We implement the normalization through spatial trans-

form, which is written as follows,

x̄ = R(x− c) + c, (1)

where c is defined as the center of the four joints on the

torso, c = 1
4 (pl−shoulder+pr−shoulder+pl−hip+pr−hip),

pl−shoulder denotes the estimated location of the left shoul-

der joint, and R is a rotation matrix,

R =

[

cos θ − sin θ

sin θ cos θ

]

. (2)

Here θ = arccos (pneck−c)·e⊥

‖pneck−c‖2

, e⊥ denotes the unit vector

along the vertical upward direction, which is illustrated in

Figure 3.

1Essentially, any orientation is fine in our approach.
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Figure 3: Illustration of the body normalization and limb

normalization. (a) and (b) show the rotation angle θ for

body normalization. (c) is the image after body normaliza-

tion and the rotation angle for a limb normalization. (d)

shows the image after limb normalization. Note that our

network actually performs the normalization on the score

maps rather than on the image. From (b) to (d), we show

the magnified view of the images for clarity.
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Figure 4: Limb normalization can compact the relative po-

sition distribution for some joints on limbs, which is hard

to address via body normalization. (a), (b) and (c) are the

relative positions of left wrist with respect to the position of

left shoulder, and the relative positions after body normal-

ization, and that after limb normalization. The distribution

in (c) is much more compact.

Local normalization. The end joints on the four limbs have

higher variations. As illustrated in Figure 4 (a) and (b),

through body normalization, the distribution of the wrist

with respect to the shoulder is still not compact. Limb

normalization is then adopted where we rotate the arm to

have upper arm vertical downwards, with the distribution,

as shown in Figure 4 (c), becoming much more compact.

There are four local normalization modules corresponding

to the four limbs respectively. Each limb contains three

joints: a root joint (shoulder, hip), a middle joint (elbow,

knee), and an end joint (wrist, ankle). We perform the nor-

malization by rotating the corresponding three score maps

around the root joint such that the line connecting the root

joint and the middle joint has a consistent orientation, e.g.,

vertical downwards in our implementation. The normaliza-

tion process is illustrated in Figures 3 (c) and (d).

Discussions. There are some alternative solutions for

handling the diverse distribution problem of relative loca-

tions of the joints, e.g., type supervision [9], and mixture

model [39]. To check the effectiveness of our proposed nor-

Head Shoulder Elbow Wrist Hip Knee Ankle Total #param.

FCN 93.3 86.7 74.4 68.0 85.7 82.0 78.5 81.5 134M

Type-supervision 93.5 87.5 76.4 68.8 87.8 82.8 79.5 82.3 (134+11)M

Multi-branch 93.8 87.7 76.3 69.4 87.7 82.6 79.8 82.5 (134+33)M

Global normalization 93.7 88.8 77.3 69.6 88.4 84.0 81.0 83.3 (134+11)M

Table 1: Comparing our global normalization-based solu-

tion with type supervision and the multi-branch solution on

LSP dataset with the OC annotation (@PCK 0.2) trained on

the LSP dataset.

malization scheme, we provide two alternative solutions by

considering the diversity of pose types. Here, we obtain

pose type information by clustering human poses into three

types from the LSP dataset.

In our first alternative solution (type-supervision), based

on our global refinement framework, we remove the nor-

malization model but add type supervision in the refinement

network by learning three sets of score maps (i.e. 3×K+1)

rather than one set. In the second alternative solution (multi-

branch), based on our global refinement framework, we re-

move the normalization model but extend the refinement

network to multi-branches, with each branch handling one

type of pose. Note that the number of parameters for the

three-branch spatial configuration refinement is three times

of ours. Specifically, for the alternative two solutions, we

process the training data with extra data augmentation, to

make the number of training data for each type similar to

ours. The multi-branch approach is computationally more

expensive and requires more training time than ours.

We take the original FCN [21] as the joint detector, and

make a comparison among the two alternative solutions and

our global normalization refinement scheme. Table 1 shows

the results. The two alternative solutions improve perfor-

mance over FCN, but under-performs our approach. It is

possible to further improve the performance of the multi-

branch approach with more extensive data augmentation

and more branches, but this will increase the computational

complexity for both training and testing. In addition, our

approach can also benefit from the multi-branch and type

supervision solutions, where our normalization is applied

to each branch and the type supervision further constrains

the degrees of freedom of parts.

Figure 5 shows examples of estimated poses from differ-

ent stages of our network (Figure 5 (a), (c), (d)), and that

from the similar network but without normalization mod-

ules (i.e., Figure 5 (b)). With global and local normaliza-

tion, joint estimation accuracy is much improved (e.g., knee

on the top images, ankle on the bottom images). Our nor-

malization scheme can reduce the diversity of human poses

and facilitate the inference process. For example, the con-

sistent orientation of the left hip and the left knee makes it

easier to infer the location of the left ankle on the bottom

example in Figure 5.
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(a) (b) (c) (d)

Figure 5: Estimated poses from (a) FCN, (b) the scheme

with spatial refinement but without body normalization and

limb normalization, (c) our scheme with body normaliza-

tion, (d) our scheme with both body normalization and limb

normalization.

3.3. Multi­Scale Supervision and Fusion for Joint
Detection

To efficiently train the FCN and exploit intermediate-

level representations, we introduce multi-scale supervision

and multi-scale fusion, which show performance gain in

many works [20, 21, 30, 36]. The network structure is pro-

vided in Figure 6. Multi-scale supervision makes the net-

work concentrate on accurate localization on different res-

olutions, avoiding loss in accuracy due to down-sampling.

This is different from [22, 34], adding multi-supervision to

each stage with the same resolution. Multi-scale fusion ex-

ploits the information at different scales. More details are

introduced in the Section 3.4.

3.4. Implementation Details

Network architectures. The proposed network architec-

ture contains three main parts: the base network for joint

detection, the normalization network, and the refinement

network.

Joint detection network: We use fully convolutional net-

work as our joint detector. For fairness of comparison, we

use architectures similar to the compared methods as the

joint detectors. We demonstrate the effectiveness of our

normalization scheme on top of different joint detectors: the

improved FCN as showed in Figure 6, ResNet-152 similar

to [14, 5] and Hourglass [22]. The FCN generates three

sets of score maps (FCN 32s, FCN 16s, and FCN 8s), at

different resolutions, corresponding to the last three decon-

volution layers with strides 32, 16, and 8 respectively. The

cFCN_32s cFCN_16s cFCN_8s

cFusion

Feature maps

(High resolution)

Feature maps

(Middle resolution)

Feature maps

(Low resolution) ��ଶ ��ଷ
��ଶ Final output

cFusion ��ଵ
…

��ଵ

Figure 6: Architecture of the improved FCN. We utilize

multi-scale supervision and fusion.

Joint position 
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Output 
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Input 
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Parameter 
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Spatial 

Transform

Figure 7: Normalization module. Based on the score maps,

a module derives the joint positions. Then the spatial trans-

form parameters can be calculated directly.

fusion is an ensemble of different scales with a 1×1 convo-

lutional layer. We introduce multi-scale supervision (with

losses LD1, LD2, and LD3) and multi-scale fusion (with

losses LF1, LF2) (see Figure 6). The architecture of Hour-

glass is the same as [22] and ResNet is similar to [14].

Normalization network: In Figure 7, we show the

flowchart of the normalization module. The spatial trans-

form is performed on the score maps with the calculated

transform parameters. End-to-end training is supported

with the error back propagation along the transform path (as

denoted by the green line). For the joint position determi-

nation module, a Gaussian blur is performed on the mapped

score maps, with the mapping corresponding to the Sigmoid

like operation or no operation, depending the loss design of

the joint detection network. Then, the position correspond-

ing to the maximal value in each processed score map is

estimated as the position of that joint. The network calcu-

lates the rotation center c and the rotation angle θ based

on the estimated positions of joints. All the operations are

incorporated into the network as layers.

Refinement network: The refinement network consists of

four convolutional layers. The convolutional kernel sizes

and channel numbers for the four layers are 9×9× (K+1)
with 128 output channels, 15 × 15 × 128 with 128 output

channels, 15× 15× 128 with 128 output channels, and 1×
1×128 with J output channels, where J denotes the number

of output joints. Large kernel sizes of 9×9 and 15×15 are

beneficial for capturing spatial information of each joint.
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Loss functions. The groundtruth is generated to be K score

maps. When FCN or ResNet detector is utilized, the pix-

els in a circled region with radius of r centered at a joint

are labeled by 1 while other pixels are set by 0. We de-

fine the radius r as 0.15 times of the distance between left

shoulder and right hip. When Hourglass detector is uti-

lized, 2D Gaussian centered on the joint location is used for

groundtruth labeling [22]. For the spatial refinement stages,

both visible and occluded joints are labeled.

For the FCN joint detector, softmax function is utilized

to estimate the probability of being some joint for the visible

joints. For spatial refinement, after the several convolution

layers, sigmoid-like operation 1/(1 + e−(wx+b)) is used to

map the score x to the estimation of the probability of being

some joint (both visible and occluded joints). Here, w and

b are two learnable parameters which transform the scores

to be in a suitable range of the domain of sigmoid function.

For other joint detectors, i.e. ResNet and Hourglass, we use

their designed loss.

Optimization. We pretrain the network by optimizing joint

detector, global and local refinement model, and then fine-

tune the whole framework.

We initialize the parameters of the refinement model

randomly with a Gaussian distributed variable of variance

0.001. When the network of joint detector converges, we fix

it and train the body refinement network with a base learn-

ing rate of 0.001. Afterwards, we fix the former networks

and train the limb refinement network. Finally, we fine-tune

the entire network with learning rate 0.0002.

For FCN, we initialize it with the model weights from

PASCAL VOC [21]. During training, we progressively

minimize the loss function: first minimize LD1 then LD1 +
LD2 + LF1, then LD1 + LD2 + LD3 + LF1 + LF2 (see

Figure 6). FCN detector is implemented based on Caffe

and SGD is taken as the optimization algorithm. The initial

learning rate is set to 0.001. For other joint detectors, such

as ResNet-152 and Hourglass, we adopt the same settings

as proposed by the authors in their papers.

4. Experiments

Datasets. We evaluate the proposed method on four

datasets: Leeds Sports Pose (LSP) [16], extended LSP

(LSPET) [17], Frames Labeled in Cinema (FLIC) [28] and

MPII Human Pose [2]. The LSP dataset contains 1000

training and 1000 testing images from sports activities, with

14 full body joints annotated. The LSPET dataset adds

10,000 more training samples to the LSP dataset. The

FLIC dataset contains 3987 training and 1016 testing im-

ages with 10 upper body joints annotated. The MPII Human

Pose dataset includes about 25k images with 40k annotated

poses. Existing works evaluate the performance on the LSP

dataset with different training data, which we follow for per-

formance comparisons respectively.

Evaluation criteria. The metrics “Percentage of Correct

Keypoints (PCK)” and the “Area Under Curve (AUC)” are

utilized for evaluation [39, 25]. A joint is correct if it falls

within α · lr pixels of the groundtruth position, with α de-

noting a threshold and lr a reference length. lr is the torso

length for the LSP, FLIC, and the head size for the MPII.

Data Augmentation. For the LSP dataset, we augment the

training data by performing random scaling with a scaling

factor between 0.80 and 1.25, horizontal flipping, and rotat-

ing the data across 360 degrees, in consideration of its un-

balanced distribution of pose orientations. All input images

are resized to 340× 340 pixels. For the FLIC and the MPII

dataset, we randomly rotate the data across +/- 30 degrees

and resize images into 256× 256 pixels.

4.1. Results

We denote our final model as Ours(detector+Refine),

and the scheme with only detector as Ours(detector). All

the experiments are conducted without any post-processing.

LSP OC. With the LSP dataset as training data, Table 2

shows the comparisons with the OC annotation for per-

joint PCK results, the overall results at threshould α = 0.2
(@PCK0.2), and the AUC. Our method achieves the best

performance, where the AUC is 4.3% higher than Chu et al.

[9], even though the layer number of their additional net-

work (180 conv layers) is much larger than our refinement

network (24 conv layers). Our refinement provides 1% im-

provement in the overall accuracy.

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

Kiefel et al. [19] 83.5 73.7 55.9 36.2 73.7 70.5 66.9 65.8 38.6

Ramakrishna et al. [27] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 69.0 35.2

Pishchulin et al. [24] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 71.0 45.0

Ouyang et al. [23] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.0 43.1

Chen&Yuille [8] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.5 44.8

Yang et al. [37] 90.6 89.1 80.3 73.5 85.5 82.8 68.8 81.5 43.4

Chu et al. [9] 93.7 87.2 78.2 73.8 88.2 83.0 80.9 83.6 50.3

Ours(FCN) 94.3 87.8 77.1 69.8 87.1 83.7 79.7 82.8 54.2

Ours(FCN+Refine) 94.9 88.8 77.6 70.7 88.9 84.8 80.5 83.7 54.6

Table 2: Performance comparison on the LSP testing set

with the OC annotation (@PCK0.2) trained on the LSP

training set.

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

Pishchulin et al. [25] 97.4 92.0 83.8 79.0 93.1 88.3 83.7 88.2 65.0

Ours(FCN) 96.2 90.7 83.3 77.5 91.2 89.3 85.0 87.6 61.8

Ours(FCN+Refine) 96.7 91.8 84.4 78.3 93.3 90.7 85.8 88.7 63.0

Table 3: Performance comparison on the LSP testing

set with the OC annotation (@PCK0.2) trained on the

MPII+LSPET+LSP training set.
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Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

Tompson et al. [32] 90.6 79.2 67.9 63.4 69.5 71.0 64.2 72.3 47.3

Fan et al. [12] 92.4 75.2 65.3 64.0 75.7 68.3 70.4 73.0 43.2

Carreira et al. [6] 90.5 81.8 65.8 59.8 81.6 70.6 62.0 73.1 41.5

Chen&Yuille [8] 91.8 78.2 71.8 65.5 73.3 70.2 63.4 73.4 40.1

Yang et al. [37] 90.6 78.1 73.8 68.8 74.8 69.9 58.9 73.6 39.3

Ours(FCN) 93.8 80.3 69.7 64.7 81.0 78.1 73.1 77.2 50.5

Ours(FCN+Refine) 94.0 80.9 70.6 65.3 82.3 78.5 73.7 77.9 50.7

Table 4: Performance comparison on the LSP testing set

with PC (@PCK0.2) trained on the LSP training set.

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

Bulat et al. [5] 98.4 86.6 79.5 73.5 88.1 83.2 78.5 83.5 –

Wei et al. [34] – – – – – – – 84.32 –

Rafi et al. [26] 95.8 86.2 79.3 75.0 86.6 83.8 79.8 83.8 56.9

Yu et al. [40] 87.2 88.2 82.4 76.3 91.4 85.8 78.7 84.3 55.2

Ours(FCN) 95.2 86.2 78.1 72.8 87.0 85.7 81.3 83.7 56.1

Ours(FCN+Refine) 95.5 88.5 80.0 73.9 89.8 85.8 81.5 85.0 58.5

Table 5: Performance comparison on the LSP testing set

with PC (@PCK0.2) trained on the LSP+LSPET training

set.

Another work [25] incorporates the MPII and LSPET

dataset for training. The results with the same training set

are shown in Table 3. Our refinement achieves 1.1% im-

provement in overall accuracy and outperforms the start-

of-the-art even though our detector does not use location

refinement and an auxiliary task as used by [25].

LSP PC. Table 4 shows the comparisons with PC annota-

tion. Compared with the result of Yang et al. [37] on the

LSP dataset, our method significantly improves the perfor-

mance by 4.3% in overall accuracy and 11.4% in AUC.

We incorporate the LSPET dataset into the training data

and evaluate the performance with PC annotation. From Ta-

ble 5, we can see that our scheme achieves the best perfor-

mance. Yu et al. [40] extracts many pose bases to represent

various human poses. In contrast, our method normalizes

various poses. Our method outperforms theirs by 3.3% in

AUC and 0.7% in the overall accuracy.

To verify the effectiveness of our normalization scheme,

we connect our refinement model at the end of those deeper

joint detectors, i.e., ResNet-152 (152 layers) [14, 5] and

Hourglass (about 300 layers) [22]. The results are shown in

Table 6. Without using the location refinement and auxiliary

task [14], our baseline scheme Ours(ResNet-152) drops

about 1% than [14]. With the proposed refinement added,

our scheme Ours(ResNet+Refine) improves over the base-

line by 1% in the overall accuracy and is comparable to [14].

Bulat et al. [5] added a modified hourglass network [22] (90

layers, with parameters being three times larger than our re-

finement model) after ResNet-152. Ours(ResNet+Refine)

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

Insafutdinov et al. [14] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1 66.1

Wei et al. [34] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5 65.4

Bulat et al. [5] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7 63.4

Ours(ResNet-152) 97.0 91.5 86.2 82.8 89.4 89.9 87.5 89.2 63.5

Ours(ResNet+Refine) 97.3 92.2 87.1 83.5 92.1 90.6 87.8 90.1 64.8

Ours(Hourglass) 97.7 93.0 88.3 84.8 92.3 90.2 90.0 90.9 65

Ours(Hg+Refine) 97.9 93.6 89.0 85.8 92.9 91.2 90.5 91.6 65.9

Table 6: Performance comparison on the LSP testing

set with the PC annotation (@PCK0.2) trained on the

MPII+LSPET+LSP training set.

Head Shoulder Elbow Wrist AUC

Toshev et al. [33] – – 92.3 82 –

Tompson et al. [32] – – 93.1 89 –

Chen&Yuille.[8] – – 95.3 92.4 –

Wei et al. [34] – – 97.6 95 –

Newell et al. [22] – – 99.0 97.0 –

ResNet-152 99.7 99.7 99.1 97 75.3

Ours(Refine) 99.9 99.8 99.5 97.7 76.9

Table 7: Performance comparison on the FLIC dataset with

OC annotation (@PCK0.2).

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Hourglass [22] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Ours(Hourglass+Refine) 98.1 96.2 91.2 87.2 89.8 87.4 84.1 91.0

Table 8: Performance comparison on the MPII test set

(@PCKh0.5) trained on the MPII training set.

is 1.4% better than that of Bulat et al. [5] in AUC. When

we take Hourglass as our detector, the proposed refinement

brings 0.5% improvement in the overall accuracy.

FLIC dataset. We evaluate our method on the FLIC dataset

with the OC annotation. We take ResNet-152 [13] as our

joint detection network. Table 7 shows that our refinement

improves over the baseline model by 0.4% for elbow, 0.7%

for wrist, and 1.6% in AUC.

MPII dataset. We take Hourglass [22] as our joint detec-

tor and evaluate our method on the MPII dataset. Table 8

shows that our refinement performs similarly on the test set

in overall accuracy. On the validation set, we obtains 0.4%

improvement. To check the reason for small gains, we ana-

lyze the relative position distribution on the MPII validation

dataset. We found that the original distribution without nor-

malization is already compact, being similar to the distribu-

tion after the normalization on the LSP dataset. Unlike the

poses in the LSP dataset (sport poses), the majority of poses

are upright and normal, as shown in Figure 8. Our nor-

malization scheme presents its advantages on the datasets

including high diverse poses. In reality, these complicated

postures are inevitable.
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Figure 8: Body pose clusters on the MPII test set. The

maker of MPII dataset clusters body poses into 45 types

on the test set. Note the figure is from http://

human-pose.mpi-inf.mpg.de./#results.

Head Shoulder Elbow Wrist Hip Knee Ankle Total

FCN 94.3 87.8 77.1 69.8 87.1 83.7 79.7 82.8

Stage-1 w/o body norm. 93.5 88.2 77.2 69.8 87.5 83.8 80.2 82.9

Stage-1 w body norm. 94.2 88.5 77.8 69.8 88.2 83.8 80.2 83.2

Stage-2 w/o limb norm. 94 88.3 77.7 69.4 88 83.8 80.3 83

Stage-2 w limb norm. 94.2 88.4 77.7 70.4 88.8 84.7 80.5 83.5

Table 9: Evaluation of body normalization and limb nor-

malization on the LSP test dataset with the OC annotation

(@PCK0.2) trained on the LSP training dataset.

Head Shoulder Elbow Wrist Hip Knee Ankle Total

FCN 94.9 90.5 82.2 74.8 89 88.2 83.5 86.2

Stage-1 w/o body norm. 94.8 90.1 81.6 75.2 90 87.7 83 86

Stage-1 w body norm. 94.9 90.8 83.8 76.3 89.7 88.3 84 86.8

Stage-2 w/o limb norm. 95 88.3 80.6 75.7 88.5 86.2 82.8 85.3

Stage-2 w limb norm. 95.4 91.1 84 76.8 90.9 89 84.4 87.4

Table 10: Evaluation of body normalization and limb nor-

malization on the LSP test dataset with the OC annotation

(@PCK0.2) trained on the LSP+LSPET training dataset.

4.2. Ablation Study

We analyze the effectiveness of the proposed compo-

nents, including the two pose normalization and refinement

stages, and the multi-scale supervision and fusion.

Global and local normalization. To verify the effective-

ness of body and limb normalization, we compare the re-

sults of the network with normalization versus that without

normalization on the two stages separately.

Table 9 shows the comparisons on the LSP dataset. With

body normalization, the shoulder is 0.7% higher than that of

FCN and the hip estimation is improved by 1.1%. In con-

trast, the model without the body normalization introduces

much smaller improvement. With limb normalization, the

accuracy of wrist, knee, and ankle is improved by 0.6%,

Head Shoulder Elbow Wrist Hip Knee Ankle Total AUC

FCN 32s 93.7 85.2 74.4 65.2 86.2 81.2 77 80.4 50

FCN 16s 93.9 85.9 75.1 68.3 86.3 83.4 78.5 81.6 52.1

FCN 8s 94.2 86.2 75.8 68.8 86.5 83.8 78.3 82 53.7

FCN 16s (Extra) 94.2 87.5 76.8 69.2 87.5 82.8 78.4 82.4 53.2

FCN 16s (Fusion) 94.3 87.7 77.0 69.5 87.6 83.4 78.6 82.6 53.2

FCN 8s (Extra) 94.2 87.5 77.2 69.6 87.2 83.5 79.7 82.6 54.2

FCN 8s (Fusion) 94.3 87.8 77.1 69.8 87.7 83.7 79.7 82.8 54.2

Table 11: Evaluation of multi-scale supervision and multi-

scale fusion on top of FCN on the LSP testing set with the

OC annotation (@PCK0.2) trained on the LSP training set.

0.9%, and 0.3% respectively. Without pose normalization,

the subnetwork tends to preserve the results of the former

stage. Similar phenomena are observed when we use the

LSP+LSPET dataset for training as shown in Table 10. We

notice that the performance of Stage-1 without body nor-

malization even provides interior performance than FCN.

In contrast, when body normalization is utilized, consistent

performance improvement can be achieved.

Multi-scale supervision and fusion. For FCN, we add

multi-scale supervision and multi-scale score map fusion to

improve accuracy. Here, we evaluate the efficiency of the

extra supervision and fusion respectively. Table 11 shows

the experiment results. FCN 16s and FCN 8s denote the

results of the original FCN without extra loss and fusion at

the middle and high resolution respectively. FCN 16s (Ex-

tra) and FNC 8s (Extra) denote the results after adding su-

pervision. FCN 16s (Fusion) and FCN 8s (Fusion) denote

the results after adding both supervision and fusion. From

Table 11, we have the following two observations. First,

with extra supervision, the accuracy of most joints improves

by more than 1% and the AUC increases noticeably at the

same resolution level. Note that FCN 8s (Extra) achieves

similar accuracy as FCN 16s (Extra) but its AUC is much

higher. Second, we fuse the score maps together with differ-

ent weights to exploit their respective advantages. We can

see the overall accuracy improves by a further 0.2%.

5. Conclusion

In this paper, considering that the distributions of the

relative locations of joints are very diverse, we propose a

two-stage normalization scheme: human body normaliza-

tion and limb normalization, making the distributions com-

pact and facilitating the learning of spatial refinement mod-

els. To validate the effectiveness of our method, we con-

nect the refinement model to various state-of-the-art joint

detectors. Experiment results demonstrate that our method

consistently improves the performance on different bench-

marks.
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