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Abstract

Part-based trackers are effective in exploiting local de-

tails of the target object for robust tracking. In contrast to

most existing part-based methods that divide all kinds of

target objects into a number of fixed rectangular patches,

in this paper, we propose a novel framework in which a set

of deformable patches dynamically collaborate on tracking

of non-rigid objects. In particular, we proposed a shape-

preserved kernelized correlation filter (SP-KCF) which can

accommodate target shape information for robust track-

ing. The SP-KCF is introduced into the level set framework

for dynamic tracking of individual patches. In this man-

ner, our proposed deformable patches are target-dependent,

have the capability to assume complex topology, and are de-

formable to adapt to target variations. As these deformable

patches properly capture individual target subregions, we

exploit their photometric discrimination and shape varia-

tion to reveal the trackability of individual target subre-

gions, which enables the proposed tracker to dynamically

take advantage of those subregions with good trackability

for target likelihood estimation. Finally the shape informa-

tion of these deformable patches enables accurate object

contours to be computed as the tracking output. Experimen-

tal results on the latest public sets of challenging sequences

demonstrate the effectiveness of the proposed method.

1. Introduction

Visual tracking refers to the task of generating the trajec-

tories of the moving objects in a sequence of images. It is

a fundamental research topic in computer vision and is im-

portant in many applications such as surveillance, human-

computer interfaces, vision-based control, etc. Despite sig-

nificant progress over the past decade [9, 24, 32], it remains

to be very challenging for tracking in complex scenes due to

variations of lighting condition, pose, scale, and view-point
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(a) Regular patches [1] (b) Deformable patches (c) Tracking output

(d)Regular patches [20] (e) Deformable patches (f) Tracking output

(g) Non-rigid subregion (h) Complex topology (i) Variation adaption

Figure 1. Comparison of regular part-based trackers (a,d) with the

proposed deformable patch tracker (b,c,e,f). (g-i) show some ex-

amples of the deformable patches: (g,h) are from the object in (e),

which show the capability in capturing non-rigid target subregions

with complex topology; (i) is from the object in (b), illustrating its

adaptiveness to target variations.

over time. In particular, appearance modeling of the target

is critical, and it directly affects the robustness of the track-

er. A good target model should capture the most distinc-

tive properties between the target object and background,

meanwhile with the ability to adapt to target variations. In

contrast to describing the entire object with a single global

model, dividing the target into patches is effective in cap-

turing local discriminative properties, preserving spatial re-

lationships, and dealing with partial occlusions.

However, most existing part-based methods [28, 15, 31,

1, 20, 18] use a number of fixed rectangular patches to di-

vide the target. They do not adapt to different kinds of ob-

5495



jects and their variations, see Fig.1(a)(d) for examples of t-

wo kinds of patch division approaches. Methods using fixed

rectangular patches have several limitations. For example,

firstly, it is difficult to determine the appropriate patch size

for different kinds of objects. Large patches inevitably incur

background pollution and also lose the spatial information

that resists occlusion, while small patches do not contain e-

nough information for robust tracking and suffer from drift

problem within a large flat image region. Second, the rect-

angular patches provide no mechanism for determining the

shape of the object. They only approximately estimate the

scale of the bounding box that encloses most rectangular

patches to present the tracking results. Thus it is difficult

for these trackers to obtain accurate target region for com-

plex non-rigid objects.

To address above limitations, in this paper, we present

a novel method that dynamically coordinates a set of de-

formable patches for non-rigid object tracking. A shape-

preserved kernelized correlation filter is proposed within

the level set framework for the patches tracking. In con-

trast to traditional KCF tracker that only emphasizes the lo-

cation of the rectangle patch region, the proposed SP-KCF

takes the shape information of the non-rigid patches into ac-

count. By the SP-KCF and level sets manner, the proposed

deformable patches have the capability to assume complex

topology, and are deformable to adapt to target variations

during tracking process (Fig.1). As these patches adaptive-

ly capture individual target subregions, we consider their

photometric discrimination and shape variation to evaluate

the trackability of each individual target subregion, which

enable the proposed tracker to take advantage of the subre-

gions with good trackability in the estimation of the target

likelihood. Finally, the shape information held by these de-

formable patches enables high quality results of accurate

object contours to be computed as the output of the track-

er. Our specific contributions are: (i) We propose a novel

framework that dynamically coordinates a set of deformable

patches for non-rigid object tracking; (ii) We propose a

shape-preserved kernelized correlation filter within a level

set framework for deformable tracking of the patches; (iii)

We propose to determine the trackability of individual target

subregions captured by the adaptive patches using photo-

metric discrimination and shape variation, so as to integrate

the patches for the estimation of object contours; (iv) We

perform experiments with the latest challenging sequences

and comparisons with the state-of-the-art.

2. Related work

Tracking by discriminative appearance modeling.

Target modeling is the most critical technique in visual

tracking. Much effort in the literature has been devoted for

learning discriminative target appearance for robust track-

ing. In [8], the authors map the target and background

into multiple feature spaces, then develop an online fea-

ture ranking mechanism to select the top-ranked discrim-

inative features for tracking. In [5], the authors propose

an online learning method using an incremental linear dis-

criminant analysis for discriminating the appearances be-

tween multiple tracked objects. Another popular catego-

ry [21, 4, 13, 23] is to learn a binary classifier as the implicit

appearance model to distinguish the object from its neigh-

boring background. All of these methods describe the target

object with a single global model, where the valuable local

details and spatial relationship between pixels are ignored.

Part-based trackers. In contrast to global models, K-

won et al. [17] use a patch-based dynamic appearance mod-

el in junction with an adaptive Basin Hopping Monte Car-

lo sampling method to track a non-rigid object. Both T-

ing et al. [20] and Yang et al. [18] propose the patch-based

trackers based on correlation filter and combine the patches

within a particle filter framework. However, these methods

use fixed rectangular patches and provide no mechanism for

determining the shape of the object. In [29], after dividing

the target into rectangular patches, the method selects the

most discriminative one to build the target model, based on

which the active contour procedure is included for extract-

ing the target region. It ignores the contribution of other

patches. As the selected rectangular patch can not properly

fit the target subregion, its tracking robustness and discrim-

ination evaluation are degraded, which results in the overall

tracking performance is sensitive to the patch size.

Segmentation-based methods for dynamic tracking.

For accurately extracting the object region, some attempt-

s in literature have been made to use segmenting tech-

nique for dynamic tracking. In [12], Godec et al. present

a tracking-by-detection approach based on the generalized

Hough-transform. They couple the voting based detection

and back-projection with a rough segmentation based on

GrabCut [25]. Afterwards, Stefan et al. in [10] improve the

above HoughTrack to a faster version by using pixel-based

descriptors. [30] learns a boosting classifier to model the

target and supervise the active contour evolution to obtain

the non-rigid target region. However, they use a single glob-

al target model, which does not exploit the valuable local

properties and spatial relationships of the object parts. [7]

employs the GMM models to segment the entire object and

background region into fragments in each image frame for

dynamic tracking. However, they consider the fragments of

equal importance, and do not adjust contributions of indi-

vidual fragments based on their trackable properties.

3. The deformable patch based tracker

In this section, we describe the proposed deformable

patch based method in detail. First, we introduce the patch

representation using level sets, then propose the shape-

preserved kernelized correlation filter within the level set
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framework for deformable tracking of the patches. We e-

valuate the photometric discrimination and shape variation

of the target subregions captured by the deformable patch-

es to measure their tracking reliability, according which the

proposed method integrates the tracking results of individ-

ual patch trackers for estimation of target object contour.

3.1. Patch representation

Patches are crucial to the performance of part-based

trackers. We expect the patches to preserve target shape

information, seizing the distinctive information of individ-

ual subregions of the tracked object as tracking basis, and

meanwhile with the ability of adapting to object variation-

s. Level set methods, first proposed by Osher and Sethian

[22, 26, 6], offer a very effective representation of contours.

The basic idea of the level set approach is to embed the

contour C as the zero level set of the graph of a higher di-

mensional function ϕ(x, τ), that isC(τ) = {x|ϕ(x, τ) = 0}
where τ is an artificial time-marching parameter, and then

evolve the graph so that this level set moves according to

the prescribed flow. In this manner, the level set may devel-

op singularities and change topology while ϕ itself remains

smooth and maintains the form of a graph.

Based on the competitive properties described above, we

propose to use the level set to represent the expected de-

formable patches. We implement an essential segmentation

procedure on the target region initialized in the first frame of

the image sequence to automatically obtain the subregions

of the target object. Then in order to prevent over-division

and ensure the patch tracking robustness, we group the sub-

regions with similar appearance and close distance into one

patch. Therefore, the patches may keep complex topology.

Fig.2 shows an example of using the signed distance level

set function to represent the deformable patch in Fig.1(h)

containing four image subregions.

3.2. Patch tracking via SP­KCF within level set

Let Ct−1 = {C1
t−1, · · · , C

Nt−1

t−1 } and Φt−1 =

{ϕ1t−1, · · · , ϕ
Nt−1

t−1 } denote the set of the patch curves at

time t − 1 and their corresponding level set representation,

Nt−1 is the patch number at time t−1. The task of tracking

the patches Ct−1 is to estimate the corresponding patch set

Ĉt = {Ĉ1
t , · · · , Ĉ

Nt−1

t } and Φ̂t = {ϕ̂1t , · · · , ϕ̂
Nt−1

t } from

the new observed image It at time t.
Here we propose to use a shape-preserved KCF track-

er within the level set framework to track the patches in-

dividually. In conventional KCF tracker (readers may re-

fer to [14] for more detials), the classifier is trained in the

Fourier domain, using an image patch x centred around the

target with sizeW ×H . The KCF considers all cyclic shifts

xw,h, (w, h) ∈ {0, ...,W −1}×{0, ..., H−1} as the train-

ing examples for the classifier. The expected label of xw,h,

y(w, h) follow a Gaussian function, which takes a value of

Figure 2. Level set representation of an example patch containing

four image subregions. (a) shows the curve of the example patch

from Fig.1(h), and (b)(c) show the level set function that represents

the patch curve.

1 for a centered target, and smoothly decays to 0 for any

other shifts. However, this conventional tracker uses a fixed

size of bounding box and only focus on locating the target

center. They do not consider the scale, rotation, shape in-

formation of the target object, which might lead to drifting

when the object changed significantly. Differently, based on

the deformable patches, we propose a shape-preserved KCF

tracker, that defines the shape-preserved regression targets

y to take the non-rigid patch shape into account for robust

patch tracking.

Specifically, for each patch Ci
t−1 in Ct−1, an image win-

dow of size W i×Hi (4 times the size of the minimum out-

connected rectangle of Ci
t−1) is placed around the patch,

which contains all the training examples xw,h, (w, h) ∈
{0, ...,W i − 1} × {0, ..., Hi − 1}. Then, for the regression

targets, we calculate the signed distance function of patch

curve Ci
t−1

D(x) =







d(x, Ci
t−1), if x inside Ci

t−1

0, if x at Ci
t−1

−d(x, Ci
t−1), if x outside Ci

t−1

(1)

where d(x, Ci
t−1) is the Euclidean distance from x to its n-

earest point on Ci
t−1. Then we normalize the matrix D(x)

by mapping its elements to the range of [0 1] to obtain the

regression targets y(w, h). Therefore, y(w, h) takes values

of 1 at the center ridge of the non-rigid patch, and smoothly

decays to 0 along its boundary direction. In this way, dif-

ferent from using the Gaussian function to emphasize on-

ly the center position, the proposed tracker accommodates

non-rigid shape information of the tracked patch.

Given the training samples xw,h and their correspond-

ing labels y(w, h), the goal of training is to find a function

f i(z) = wT z that minimizes the squared error over samples

xw,h and regression targets y(w, h)

min
w

∑

w,h

|⟨ψ(xw,h), w⟩ − y(w, h)|2 + λ∥w∥2 (2)

where ψ represents the mapping to the Hilbert space in-

duced by the kernel κ. The inner product of x and x′ is

computed as ⟨ψ(x), ψ(x′)⟩ = κ(x, x′). λ is a parameter for

the regularization term. After mapping the inputs to a non-

linear feature-space ψ(x), the solution w can be expressed
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as w =
∑

w,h α(w, h)ψ(xw,h). The coefficients vector

α = F−1(
F (y)

F (kx) + λ
) (3)

where F and F−1 denote the Fourier transform and its in-

verse, respectively; kx = κ(xw,h, xw,h). So far, the target

model is learnt by the target appearance xw,h and the trans-

formed classifier coefficients α.

In the new arriving frame It, a patch z with the same size

of x is cropped out as the search region around the patch

region of previous frame. The confidence score is calculated

as

f̂ i(z) = F−1(F (kz)⊙ F (α)) (4)

where ⊙ is the element-wise product; kz = κ(zw,h, xw,h).
We introduce above confidence score of the shape-

preserved KCF tracker into the level set framework to e-

volve the patch curve Ci
t−1 to the new curve Ĉi

t in frame

It. We formulate our patch tracking problem as seeking the

patch curve Ĉi
t that maximizes the probability

p(Ĉi
t |It, f̂

i
t ) ∝ p(f̂ it |Ĉ

i
t)p(It|Ĉ

i
t)p(Ĉ

i
t) (5)

where p(f̂ it |Ĉ
i
t) denotes the likelihood of the observed con-

fidence score enclosed by curve Ĉi
t ; p(It|Ĉ

i
t) is for pho-

tometric segmentation, measuring the photometric consis-

tence of the image region enclosed by Ĉi
t ; p(Ĉi

t) is for s-

mooth constrain.

Based on above formulation, we define the following

level set energy, minimizing which is equivalent to maxi-

mizing the probability of (5)

E(Ĉi
t ,m) =

∫

R+

−f̂ it (x)dx +

∫

R−

f̂ it (x)dx

+ ξ

∫

R+

|I(x)−m|2dx + µℓ(Ĉi
t)x (6)

where R+ denotes the image region inside curve Ĉi
t and

R− the region outside the curve; |I(x)−m|2 measures the

photometric consistency of the image region, m is the mean

intensity of the region; ℓ(C) is the length of the curve; ξ and

µ are the coefficients. Therefore, the expected curve Ĉi
t is

that encloses a smooth image region with maximum patch

confidences.

For the consideration of efficiency, a simple form of two-

valued level set function [19] is used to replace the tradition-

al signed distance function, i.e. ϕ̂it(x, τ) = 1 for x inside Ĉi
t

and ϕ̂it(x, τ) = −1 for x outside Ĉi
t . Employing the bi-

nary level set function to represent the patch curve Ĉi
t and

unify the integral region, the above energy function can be

rewritten as

E(ϕ̂it,m) =

∫

Ω

−
1

2
f̂ it (x)(1 + ϕ̂it) +

1

2
f̂ it (x)(1− ϕ̂it)

+ ξ|I(x)−m|2(1 + ϕ̂it)+µ|∇ϕ̂
i
t|+

1

τ
W (ϕ̂it)dx (7)

where Ω = R+
∪

R− is the search region; m =∫
Ω
I(x)(1+φ)dx∫
Ω
(1+φ)dx

; the last item is for binary constraining ϕ̂i2t =

1 and W can be defined as (ϕ̂i2t − 1)2. Then the associat-

ed Euler-Lagrange equation for this function can be imple-

mented by the following gradient descent:

∂ϕ̂it
∂τ

= f̂ it (x)−ξ|I(x)−m|2+µdiv(
∇ϕ̂it

|∇ϕ̂it|
)−

1

τ
W ′(ϕ̂it) (8)

where div is the divergence operator.

3.3. Patch evaluation

As the deformable patches adaptively capture individual

target subregions, we consider their photometric discrimi-

nation and shape variation to evaluate their tracking relia-

bility, so as to determine their importance weights in the

contribution for the overall tracking task.

We firstly use the augmented variance ratio (AVR) [8],

the ratio of the between class variance to the within class

variance, to measure the discriminative power of each patch

against its local background. For each patch Ci
t−1 in Ct−1,

a larger ring of neighboring pixels within a local window are

chosen to represent the patch background. By normalizing

the image value histograms, we obtain a discrete probabil-

ity density pi(j) for the patch Ci
t−1, and density qi(j) for

its background. Then the log likelihood of an image val-

ue j can be computed by Li(j) = log max{pi(j),δ}
max{qi(j),δ} , where

δ is a small value that prevents dividing by zero. The log

likelihood maps the region into positive for image values

associated with the patch region, and negative for values

from the background. Then the variance ratio of Li(j) can

be computed as:

VR(Li; pi, qi) =
var(Li; (pi + qi)/2)

var(Li; pi) + var(Li; qi)
(9)

where var(L; a) =
∑

j a(j)L
2(j) − [

∑

j a(j)L(j)]
2 de-

fines the variance of L(j) with respect to a discrete proba-

bility density function a(j). The denominator is small when

the log likelihood values of pixels in the patch and back-

ground classes are tightly clustered, while the numerator is

large when the two clusters are widely separated. Therefore,

patches with large variance ratio show stronger discrimi-

native power for visual tracking. Fig.3 shows the discrim-

ination values of different patches from the singer object

shown in Fig.1(e).

Moreover, shape variation of target subregions captured

by each individual patch is considered to prevent the error

caused by a significant outlier of a false tracked and drift

patch. Given the patch set Ct−1 and its corresponding track-

ing output Ĉt, for each patch, we calculate the Hausdorf-

f distance, DH(C
i
t−1, Ĉ

i
t), of the two corresponding patch

curves to measure its shape variation.
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Figure 3. Discrimination degrees of different patches from the

singer object (left). Each bar in the right figure corresponds to

the patch with the same color in the middle image.

3.4. Dynamically collaboration

Based on above patch tracking and evaluation, we dy-

namically coordinate the deformable patches for estimation

of target object contour Γt. For each tracking result of in-

dividual patch tracker, the proposed method weight it by a

reliable confidence Ri
t, to dynamically determine its contri-

bution made in the overall tracking task

Ri
t = VR(Li; pi, qi) +

1

ηDH(Ci
t−1, Ĉ

i
t)

(10)

where η is the trade off coefficients. This weight is ap-

plied on the SP-KCF response f̂ i(z) within the patch re-

gion. Through this adaptive weighting, the target likeli-

hood map Rt =
∑Nt−1

i=1 Ri
tf̂

i(z) puts more emphasis on

the discriminative and reliable patches and suppresses the

responses of those falsely tracked ones. The object contour

Γt that encloses maximum target likelihood, i.e. maximiz-

ing p(Γt|Rt), can be obtained by implementing the level set

evolution on map Rt according to the energy function

E(ϕΓt )=

∫

Ω

−
1

2
Rt(x)(1+ϕ

Γ
t )+

1

2
Rt(x)(1−ϕ

Γ
t )+µ|∇ϕ

Γ
t |+

1

τ
W(ϕΓt )dx

(11)

with the object contour Γt−1 of previous frame as initial-

ization. ϕΓt is the level set representation of Γt. Fig.4 and

Algorithm 1 show the tracking framework of the proposed

method.

3.5. Model update

In order to accommodate target variations, after obtain-

ing the new target region, we accordingly update the target

model, including generating an updated target patch set Ct,

and accordingly updating each patch tracker. One option

is to segment the new target region to get the new patches.

However, this operation increases computational complex-

ity and discards the reference patch distribution from the

initial frame. Instead, to keep relatively stable patch dis-

tribution as the first reference frame, and balance between

adaptiveness to new observations and resistance to accumu-

lated error, we generate the new patch set based on the cur-

rent set Ĉt = {Ĉ1
t , · · · , Ĉ

Nt−1

t }. For each patch region of

each patch in Ĉt (note that one patch may consist of several

patch regions), we truncate its outside target boundary por-

tion, then group into one patch for the regions whose mean

Algorithm 1 The Deformable Patch Tracker

Require:

The patch set Ct−1 and new observed image It
Ensure:

The new target contour Γt for time t
The updated patch set Ct

1: for each patch Ci
t−1 ∈ Ct−1 do

2: Track Ci
t−1 in It with the proposed SP-KCF within

the level set framework to obtain the patch curve Ĉi
t .

3: end for

4: for each patch Ci
t−1 ∈ Ct−1 and Ĉi

t ∈ Ĉt do

5: Calculate the photometric discrimination and the

shape variances to estimate the importance weight

Ri
t for patch Ĉi

t by Equ.10

6: end for

7: Integrate the tracking results of each individual patch

tracker to obtain the new target contour Γt by Equ.11

8: Update the patch set Ĉt to Ct as well as the correspond-

ing patch trackers

9: return Γt and Ct.

feature values are within a threshold Tf and spatial distance

within threshold Ts. Moreover, for the patch regions be-

longing to one patch that have large appearance difference

or large spatial distance, we separate them into two or more

patches. With these operations, we obtain the new patch set

Ct = {C1
t , · · · , C

Nt

t }, Nt denotes the updated patch num-

ber of time t. Then for each new patch Ci
t in Ct, we update

its corresponding SP-KCF patch tracker using the new ob-

servation of the patch with the learning rate proportional to

the patch weight. Then tracking repeats for time t+ 1.

4. Experimental results

In this section, we evaluate the proposed method us-

ing two latest public sets of challenging video sequences,

and compare it to several state-of-the-art tracking meth-

ods. The first dataset is VOT20141 [16] which comprises

25 sequences (an overall size of more than 10,000 frames)

and the second is the new released VOT20162 (same as

VOT2015) which consists of 60 sequences. These se-

quences show various objects with different challenges for

visual tracking, including large shape deformations, scale

variations, illumination variations, occlusion and so on.

The parameters are set as following: λ = 1e − 4; ξ =
0.5 × 255−2; µ = 0.15; and η = 0.03. The neighborhood

for calculating the variance ratio is selected as the region

that surrounds the patch and within the rectangle of two

times the size of the minimum out-connected rectangle of

the patch. The initial curve of a target in the first frame was

a manually drawn polygon that simulates the target contour

1http://www.votchallenge.net/vot2014/dataset.html
2http://www.votchallenge.net/vot2016/dataset.html
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Figure 4. Tracking framework of the proposed method. (a) shows the target region derived from the previous tracking result of time t− 1;

(b)(c) shows the deformable patch set of the target. These patches are tracked individually by a SP-KCF and level set manner in the new

arrived image It. By exploiting the photometric discrimination and shape variation of the individual target subregions, the proposed method

estimate the patch likelihood (d) by Ri

tf̂
i(z) within each tracked patch region, and dynamically coordinates them to obtain the joint target

likelihood (e), based on which the level set evolution returns the object contour (f) as tracking output of time t.

#038 #086 #103 #145 #187 #208

#038 #086 #103 #145 #187 #208

#038 #086 #103 #145 #187 #208

#070 #070 #093 #093 #080 #080

#294 #294 #155 #155 #085 #085

Figure 5. Comparison results of the proposed method with regular bounding box trackers: yellow: the DF tracker [27]; red: the Pixel-

Track [10]; blue: the reliable patch tracker [18]; green: the groundtruth. The second row shows the examples of the proposed deformable

patches, which enable the proposed tracker to extract the accurate target contour as tracking output, shown by red contours in the images.

while the subsequent ones were fed by the result of previ-

ous frame. Grabcut [25] can also be used as an alternative

to produce a good quality initial contour from a bounding

box annotation. We perform region-growing to segment the

initial target region. After discarding small fragments, we

group the local regions with similar mean value and within

a distance of 15 pixels into one patch, then select up to 6

patches of larger size as the initial patch set C0.
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4.1. Comparisons with bounding box trackers

Firstly, we compare the proposed method with several

related bounding box trackers that also make use of the divi-

sion or segmentation techniques for the tracked target mod-

eling: a) the DF tracker in [27], which divides the image

into several layers that present the probabilities of a pixel

taking each feature value to define the distribution field as

image descriptor for target modeling. b) PixelTrack in [10],

which combines a generalised Hough transform based de-

tector with a probabilistic segmentation method in a co-

training manner to track deformable objects; c) reliable

patch tracker in [18], which divides the target into rectan-

gular patches and tracks them with the kernelized correla-

tion filters [14], then integrates them within a particle filter

framework [2]. Fig.5 shows the tracking results of these

compared methods. From the diving sequence shown in

the upper row, we can see it is a challenge for the bound-

ing box trackers to accurately locate the target during it un-

dergoes dramatic shape deformation. As the bounding box

inevitably introduce a lot of background pixels, the estab-

lished target model can not provide accurate information

to better distinguish between the target and background,

which result in deviation from the ground truth. Similar

phenomenons of tracking drift or poor target location can

be observed in other more targets, lower rows in Fig.5. In

contrast, the proposed algorithm, dynamically coordinating

the deformable patches (second row), extracts the accurate

contours to describe the target as well as qualified samples

to establish the appearance model.

4.2. Comparisons with dynamic contour trackers

In this section, we compare the proposed method to oth-

er relevant contour trackers, which also exploit segmenta-

tion technique to extract the target object contour for dy-

namic tracking. The first method is HoughTrack (HT) pro-

posed by Godec et al. [12], where the authors proposed a

patch-based voting algorithm with Hough forests [11]. By

back-projecting the patches that voted for the object centre,

the authors initialise a graph-cut algorithm to segment fore-

ground from background. The second method is the SLSM

in [30], in which a single boosting target model is learnt to

guide the level set curve evolution to obtain the interested

target region. Fig.6 presents some tracking results of the

three methods on Jogging sequence. Both the HoughTrack

and the SLSM tracker lose the target after frame 85 when

the target passed the street lamp and occlusion occurred, s-

ince they use a single global model to represent the target

which is easily polluted by the similar background. Unlike-

ly, the proposed method tracks the individual patches with-

in their own local background and evaluate their trackabil-

ity to emphasis the contributions of the discriminative and

reliable patches made in the overall target likelihood esti-

mation, thus can achieve robust tracking. Moreover, we ac-

Sequence Pix[10] DF[27] HT[12] SLSM[30] RPT[18] Proposed

1 ball 100 37.31 15.12 100 99.50 100

2 basketball 41.79 4.00 9.10 37.43 96.55 97.24

3 bicycle 1.49 98.52 63.43 96.27 83.39 87.82

4 bolt 10.00 2.57 1.14 2.29 1.43 3.43

5 car 65.87 39.68 64.68 65.48 100 87.30

6 david 91.69 89.22 72.34 78.57 100 78.57

7 diving 35.16 27.40 0.46 100 15.98 100

8 drunk 4.13 18.02 3.14 3.72 100 100

9 fernando 33.56 62.67 2.05 16.10 65.41 64.04

10 fish1 1.61 2.29 1.15 6.65 2.29 21.79

11 fish2 24.19 23.24 5.81 18.06 10.65 13.55

12 gymnastics 72.46 44.93 9.66 100 42.04 100

13 hand1 17.43 95.90 100 20.75 21.31 16.80

14 hand2 19.48 20.60 47.57 48.69 16.85 17.23

15 jogging 2.28 21.50 80.78 22.15 22.48 100

16 motocross 6.71 11.59 100 18.29 18.90 12.20

17 polarbear 100 100 100 100 100 100

18 skating 9.25 38.00 85.50 53.75 90.00 88.75

19 sphere 100 9.95 100 100 100 100

20 sunshade 10.06 50.58 100 68.60 100 100

21 surfing 98.57 100 100 100 100 100

22 torus 80.46 20.83 100 100 98.86 100

23 trellis 87.70 53.08 72.93 39.72 100 39.72

24 tunnel 1.78 58.55 39.67 25.03 57.73 51.98

25 woman 17.59 94.47 18.43 88.78 93.80 96.65

average 41.3304 44.996 51.7184 56.4132 65.4868 71.0828

Table 1. Evaluation results of the compared methods on VOT2014

dataset: Percentage of correctly tracked frames (score > 0.5).

Methods Pix[10] DF[27] HT[12] SLSM[30] RPT[18] Proposed

average 40.3302 42.0626 45.7331 47.8365 54.0174 56.7567

Table 2. Evaluation results of the compared methods on VOT2016

dataset: Percentage of correctly tracked frames (score > 0.5).

cordingly use the patches’ trackability to adjust the learning

rate of the corresponding patch trackers, enables the pro-

posed tracker to slow down the update speed and keep con-

servative to deal with abnormal situations, allowing track-

ing to resume when the target reappears.

For the quantitiative analysis, for each video, we deter-

mine the percentage of frames in which the object is correct-

ly tracked. Since the ground truth annotation included in the

datasets is represented by a rotated bounding box, and to let

the contour trackers be compared fairly with other bound-

ing box trackers, we measure the tracking accuracy using

the Agarwal-criterion [3] as in [12] and [30]. It is defined

as score = RT

∩
RGT

RT
, where RT is the output target region

from the tracking algorithm and RGT the ground truth. In

each image frame, the tracking is considered correct if the

Agarwal overlap measure is above a threshold (set to 0.5).

Since the VOT2016 dataset contains 60 sequences and for

the consideration of space, we select the VOT2014 dataset
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Figure 6. Comparison results of the proposed method with other dynamic contour trackers: upper row: the HoughTrack (HT) [12]; middle

row: the SLSM [30]; bottom row: the proposed deformable patch tracker.

#020 #040 #019 #078 #005 #089
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#015 #147 #106 #125 #043 #100

#050 #164 #030 #200 #150 #252

Figure 7. Tracking results of the proposed method on the VOT2016 dataset.

to show the entire evaluation results of the compared meth-

ods (see Table I). As we can see, for 13 out of 25 video se-

quences the proposed method outperforms the others, and

also the average of correct tracking. Table II summaris-

es the quantitiative analysis of the compared methods on

VOT2016 dataset and Fig.7 gives some visible tracking re-

sults of the proposed method on the VOT2016 dataset.

5. Conclusion

We have presented a novel framework in which a set of

deformable patches dynamically collaborate on tracking of

non-rigid objects. By applying a shape-preserved kernel-

ized correlation filter within the level set framework for de-

formable tracking, the proposed patches can assume com-

plex topology and are adaptive to target variations. Further-

more, we exploit the photometric discrimination and shape

variation of each captured target subregion to evaluate the

tracking reliability of each patch tracker, which enables the

proposed system to dynamically take advantage of those

subregions with good trackability for target likelihood esti-

mation. Shape information held by these deformable patch-

es enables accurate object contours to be computed as the

tracking output. Experimental results on latest public set-

s of challenging sequences verified the effectiveness of the

proposed method.
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