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Abstract

We formulate tracking as an online decision-making pro-
cess, where a tracking agent must follow an object despite
ambiguous image frames and a limited computational bud-
get. Crucially, the agent must decide where to look in the
upcoming frames, when to reinitialize because it believes
the target has been lost, and when to update its appearance
model for the tracked object. Such decisions are typically
made heuristically. Instead, we propose to learn an optimal
decision-making policy by formulating tracking as a par-
tially observable decision-making process (POMDP). We
learn policies with deep reinforcement learning algorithms
that need supervision (a reward signal) only when the track
has gone awry. We demonstrate that sparse rewards al-
low us to quickly train on massive datasets, several orders
of magnitude more than past work. Interestingly, by treat-
ing the data source of Internet videos as unlimited streams,
we both learn and evaluate our trackers in a single, unified
computational stream.

1. Introduction

Object tracking is one of the basic computational build-
ing blocks of video analysis, relevant for tasks such as gen-
eral scene understanding and perception-for-robotics. A
particularly popular formalism is that of model-free track-
ing, where a tracker is provided with a bounding-box ini-
tialization of an unknown object. Much of the recent
state-of-the-art advances make heavy use of machine learn-
ing [23, 54, 40, 56, 20], often producing impressive results
by improving core components such as appearance descrip-
tors or motion modeling.

Challenges: We see two significant challenges that limit
further progress. First, the limited quantity of annotated
video data impedes both training and evaluation. While
image datasets involve millions of images for training and
testing, tracking datasets have hundreds of videos. Lack
of data seems to arise from the difficulty of annotating
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Figure 1. Streaming interactive training: We propose an iterative
procedure for interactively training trackers from data. We down-
load a new video from the Internet and run the current tracker
on it, evaluate the tracker’s performance with interactive rewards,
and then retrain the tracker policy (with reinforcement learning)
with the reward signals. Importantly, rather than requiring interac-
tive labeling of bounding-boxes, we require only binary (incorrect
/ correct) feedback from human users. This scheme allows us to
train and evaluate our tracker on massive streaming datasets, 100X
larger than prior work (Table 1).

videos, as opposed to images. Second, as vision (re)-
integrates with robotics, video processing must be done in
an online, streaming fashion. This requires a tracker to
make on-the-fly decisions such as when to re-initialize it-
self [51, 16, 30,47, 21] or update its appearance model (the
so-called template-update problem [54, 21]). Such deci-
sions are known to be crucial in terms of final performance,
but are typically hand-designed rather than learned.

Contribution 1 (interactive video processing): We
show that reinforcement learning (RL) can be used to ad-
dress both challenges in distinct ways. In terms of data,
rather than requiring videos to be labeled with detailed
bounding-boxes at each frame, we interactively train track-
ers with far more limited supervision (specifying binary re-
wards/penalties only when a tracker fails). This allows us
to train on massive video datasets that are 100x larger than
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prior work. Interestingly, RL also naturally lends itself to
streaming “open-world” evaluation: when running a tracker
on a never-before-seen video, the video can be used for both
evaluation of the current tracker and for training (or refin-
ing) the tracker for future use (Fig. 1). This streaming evalu-
ation allows us to train and evaluate models in an integrated
fashion seamlessly. For completeness, we also evaluate our
learned models on standard tracking benchmarks.

Contribution 2 (tracking as decision-making): In
terms of tracking, we model the tracker itself as an active
agent that must make online decisions to maximize its re-
ward, which is (as above) the correctness of a track. De-
cisions ultimately specify where to devote finite computa-
tional resources at any point of time: should the agent pro-
cess only a limited region around the currently predicted
location (e.g.,“track™), or should it globally search over the
entire frame (“reinitialize”)? Should the agent use the pre-
dicted image region to update its appearance model for the
object being tracked (“update”), or should it be “ignored”?
Such decisions are notoriously complicated when image ev-
idence is ambiguous (due to say, partial occlusions): the
agent may continue tracking an object but perhaps decide
not to update its model of the object’s appearance. Rather
than defining these decisions heuristically, we will ulti-
mately use data-driven techniques to learn good policies for
active decision-making (Fig. 2).

Contribution 3 (deep POMDPs): We learn tracker de-
cision policies using reinforcement learning. Much re-
cent work in this space assumes a Markov Decision Pro-
cess (MDP), where the agent observes the true state of the
world [34, 56], which is the true (possibly 3D) location
and unoccluded appearance of the object being tracked. In
contrast, our tracker only assumes that it receives partial
image observations about the world state. The resulting
partially-observable MDP (POMDP) violates Markov inde-
pendence assumptions: actions depend on the entire his-
tory of observations rather than just the current one [ 19, 43].
As in [15, 22], we account for this partial observability by
maintaining a memory that captures beliefs about the world,
which we update over time (Sec. 3). In our case, beliefs
capture object location and appearance, and action policies
specify how and when to update those beliefs (e.g., how
and when should the tracker update its appearance model)
(Sec. 4). However, policy-learning is notoriously challeng-
ing because actions can have long-term effects on future
beliefs. To efficiently learn policies, we introduce frame-
based heuristics that provide strong clues as to the long-term
effects of taking a particular action (Sec. 5).

2. Related Work

Tracking datasets: Several established benchmarks ex-
ist for evaluating trackers [55, 23]. Interestingly, there is
evidence to suggest that many methods tend to overfit due
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Figure 2. Decisions in tracking: Trackers must decide when to
update their appearance and when to re-initialize. This example
enumerates the four possible outcomes of updating appearance (or
not) over two frames, where blue denotes a good track and red
denotes an error. Given a good track (left), it is important to update
appearance to track through challenging frames with occlusions
(center), but equally important to not update after an occlusion to
prevent drift (right). Though such decisions are typically made
heuristically, we recast tracking as a sequential decision-making
process, and learn a policy with reinforcement learning.

to aggressive tuning [40]. Withholding test data annota-
tion and providing an evaluation server addresses this to
some extent [26, 42]. Alternatively, we propose to eval-
uate on an open-world stream of Internet videos, making
over-fitting impossible by design. It is well-known that al-
gorithms trained on “closed-world” datasets (say, with cen-
tered objects against clean backgrounds [39, 4]) are difficult
to generalize to “in-the-wild” footage [48]. We invite the
reader to compare our videos in the supplementary material
to contemporary video benchmarks for tracking.

Interactive tracking: Several works have explored in-
teractive methods that use trackers to help annotate data.
The computer first proposes a track. Then a human cor-
rects major errors and retrains the tracker using the correc-
tions [8, 2, 50]. Our approach is closely inspired by such ac-
tive learning formalisms but differs in that we make use of
minimal supervision in the form of a binary reward (rather
than a bounding box annotation).

Learning-to-track: Many tracking benchmarks tend
to focus on short-term tracking (< 2000 frames per
video) [55, 23]. In this setting, a central issue appears to
be modeling the appearance of the target. Methods that
use deep features learned from large-scale training data
perform particularly well [51, 52, 29, 27, 36]. Our fo-
cus on tracking over longer time frames poses additional
challenges - namely, how to reinitialize after cuts, oc-
clusions and failures, despite changes in target appear-
ance [14, 54]. Several trackers address these challenges
with hand-designed policies for model updating and reini-
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Dataset # Videos # Frames Annotations Type

OTB-2013 [55] 50 29,134 29,134 AABB
PTB [46] 50 21,551 21,551 AABB
VOT-2016 [23] 60 21,455 21,455 RBB

ALOV++ [44] 315 151,657 30,331 AABB
NUS-PRO [26] 365 135,310 135,310 AABB
Ours 16,384 10,895,762 108,957 Binary

Table 1. Our interactive learning formulation allows us to train
and evaluate on dramatically more videos than prior work. We
annotate binary rewards, while the other datasets provide Axis
Aligned (AABB) or Rotated (RBB) Bounding Boxes.

tialization - TLD [21], ALTAN [41] and SPL [47] explicitly
do so in the context of long-term tracking. On the other
hand, our method takes a data-driven approach and learns
policies for model-updating and reinitialization. Interest-
ingly, such an “end-to-end” learning philosophy is often
embraced by the multi-object tracking community, where
strategies for online reinitialization and data association are
learned from data [24, 56, 28]. Most related to us are [56],
who use an MDP for multi-object tracking, and [22], who
use RL for single target tracking. Both works use heuris-
tics to reduce policy learning to a supervised learning task,
avoiding the need to reason about rewards in the far fu-
ture. Our experimental results show that explicit Q-learning
outperforms such heuristics because it can learn to capture
long-term effects of taking particular actions.

Real-time tracking through attention: An interesting
(but perhaps unsurprising) phenomenon is that better track-
ers tend to be slower [23]. Indeed, on the VOT benchmark,
most recent trackers do not run in real time. Generally,
trackers that search locally [45, 49] run faster than those
that search globally [47, 30, 17]. To optimize recognition
efficiency, one can learn a policy to guide selective search
or attention. Inspired by recent work which finds a policy
for selective search using RL [20, 33, 38, 10, 18, 3, 31],
we also learn a policy that decides whether to track (i.e.,
search positions near the previous estimate) or reinitialize
(i.e., search globally over the entire image). But in contrast
to prior work, we additionally learn a policy to decide when
to update a tracker’s appearance model. To ensure that our
tracker operates with a fixed computational budget, we im-
plement reinitialization by searching over a random subset
of positions (equal in number to those examined by track).

3. POMDP Tracking

We now describe our POMDP tracker, using standard no-
tation where possible [43]. For our purposes, a POMDP is
defined by a tuple of states (2, O, A, B): At each frame i,
the world state w; € ) generates a noisy observation o; € O
that is mapped by an agent into an action a; € A, which in
turn generates a reward.

In our case, the state w; captures the true location and

Figure 3. Tracker architecture: At each frame ¢, our tracker
updates a location heatmap h; for the target using the current im-
age observation o;, a location prior given by the previous frames’
heatmap h;_1, and the previous appearance model 6;_,. Cru-
cially, our tracker learns a policy for actions a; that optimally up-
date h; and 6; (2).

appearance of the object being tracked in frame <. To help
build intuition, one can think of the location as 2D pixel co-
ordinates and appearance as a 2D visual template. Instead
of directly observing this world state, the tracking agent
maintains a belief over world states, written as

bi = (6;,h;), where 6; € R">*W*/ p; ¢ RE>XW
where 6; is a distribution over appearances (we use a point-
mass distribution encoded by a single h x w filter defined on
f convolutional features), and h; is a distribution over pixel
positions (encoded as a spatial heatmap of size H x W).
Given the previous belief b;_; and current observed video
frame o;, the tracking agent updates its beliefs about the
current frame b;. Crucially, tracker actions a; specify how
to update beliefs, that is, whether to update the appearance
model and whether to reinitialize by disregarding previous
heatmaps. From this perspective, our POMDP tracker is a
memory-based agent that learns a policy for when and how
to update its own memory (Fig. 3).
Specifically, beliefs are updated as follows:

. _ | TRACK(hi_1,0;1,01) if af’ =1 W
! REINIT(0;_1,0;) otherwise
O

9; = UPDATE(Hifl,hZ',Oi) if a,;
! 0;_1 otherwise

1 @)

where a; = (a; ’,a;”’). Object heatmaps h; are updated
by running the current appearance model 6;_; on image re-
gions o; near the target location previously predicted us-
ing h;—; (“tracking”). Alternatively, if the agent believes
it has lost track, it may globally evaluate its appearance
model (“reinit”). The appearance model is then “updated”
with the currently-predicted image region or possibly un-
changed. In our framework, the tracking, reinitialization,

and appearance-update modules can be treated as black-
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boxes given the above functional form.We will discuss par-
ticular implementations shortly (with copious details in the
supplementary material), but first, we focus on the heart of
our RL approach: a principled framework for learning to
take appropriate actions. To do so, we begin by reviewing
standard approaches for decision-making.

Online heuristics: The simplest approach to picking ac-
tions might be to pre-define heuristics functions which esti-
mate the correct action. For example, many trackers reini-
tialize whenever the maximum confidence of the heatmap is
below a threshold. Let us summarize the information avail-
able to the tracker at frame ¢ as a “state” s;, which includes
the previous belief b;_; (the previous heatmap and appear-
ance model) and current image observation o;.

a; = Heur,,(s;), where s; = (bj—1,0;) 2)

Offline heuristics: A generalization of the above is to
use offline training data to build better heuristics. Crucially,
one can now make use of ground-truth training annotations
as well as future frames to better gauge the impact of possi-
ble actions. We can write this knowledge as the true world
state {w;, Vi}. For example, a natural heuristic may be to
reinitialize whenever the predicted object location does not
overlap the ground-truth position for that frame. Similarly,
one may update appearance whenever doing so improves
the confidence of ground-truth object locations across fu-
ture frames:

a; = Heury s (s;, {w; : Vi}) 3)

Crucially, these heuristics cannot be applied at test time be-
cause ground truth is not known! However, they can gen-
erate per-frame target action labels a on training data, ef-
fectively reducing policy learning to a supervised-learning
problem. Though offline heuristics appear to be a simple
and intuitive approach to policy learning, we have not seen
them widely used for learning tracker action policies.
Q-functions: Offline heuristics can be improved by un-
rolling them forward in time: the benefit of a putative action
can be better modeled by applying that action, processing
the next frame, and using the heuristic to score the “good-
ness” of possible actions in that next frame. This intuition is
formalized through the well-known Bellman equations that
recursively define Q-functions to return a goodness score
(the expected future reward) for each putative action a:

Q(si,a;) = R(s;) +713§§Q(8i+1,ai+1), 4)

where s; includes both the tracker belief state and image
observation, and R(s;) is the reward associated with the re-
porting the estimated object heatmap h;. We let R(s;) = 1
for a correct prediction and 0 otherwise. Finally, v € [0, 1]

is a discount factor that trades off immediate vs future per-
frame rewards. Given a tracker state and image observa-
tion s;, the optimal action is readily computed from the Q-
function:

a* = arg max Q(s;,a)

Q-learning: Traditionally, Q-functions are iteratively
learned with Q-learning [43]:

Q(S,‘, ai) <:Q(Si, Cli) ... 5
a(R(si) + vr(gifQ(siH’am) — Q(sq, ai))

where « is a learning rate. To handle continuous belief
states, we approximate the Q-function with a CNNs:

Q(si,ai) ~ CNN(S“ CLz‘)

that processes states s; and binary actions a; to return a
scalar value capturing the expected future reward for tak-
ing that action. Recall that a state s; encodes a heatmap and
an appearance model from previous frames and an image
observation from the current frame.

4. Interactive Training and Evaluation

In this section, we describe our procedure for interac-
tively learning CNN parameters w (that encode tracker ac-
tion policies) from streaming video datasets. To do so, we
gradually build up a database of experience replay memo-
ries [1, 34], which are a collection of state-action-reward-
nextstate tuples D = {(s;, a4, 7, Si+1) }:

2
L(w,D) = (ri + max Quw(8i+1,0i41) — Qu(si, ai)>
(6)

Gradient descent on the above objective is performed as fol-
lows: given a training sample (s;, a;, 7';, S;41), first perform
a forward pass to compute the current estimate @, (s;, a;)
and the target: 7; + maxg,,, Qu(Si+1,ai4+1). Then back-
prop through the weights w to reduce L(w).

The complete training algorithm is written in Alg. 1.
We choose random videos from the Internet by sampling
phrases using WordNet [32]. Given the sampled phrase
and video, an annotator provides an initialization bounding
box and begins running the existing tracker. After tracking,
the annotator marks those frames (in strides of 50) where
the tracker was incorrect using a standard 50% intersection-
over-union threshold. Such binary annotation (“correct” or
“failed”) requires far less time per frame than bounding-box
annotation: we design a real-time interface that simply re-
quires a user to depress a button during tracker failures. By
playing back videos at a (user-selected) sped-up frame rate,
users annotate 1200 frames per minute on average (versus
34 for bounding boxes). Annotating our entire dataset of 10
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while True do

1
2 Download random video;
3 01 %*IJPIMXTE(hl,Ol);/* manually init. x/
4 forall © € video do
5 S = ((9171,hi71),0i);

/+ track or reinitialize? */
6 if Qu(si,t) > Qu(s;,r) then
7 | hi ¢ TRACK(hi_1,0;-1,0:); al”) 1
8 else h; < REINIT(6;_1,0;); a") < 0

/+ update or ignore? */
9 if Qu(s;,m) > Q(s;,i) then
10 | 6, « UPDATE(0; 1, hs, 0:); a{”) 1
11 else 0; < 0,1 ;al(?) ~0;

/* manually evaluate the performance =/
12 r; < annotated frame correct? ;

/+ update experience database */
13 DeDU(sha“r“siH)
14 w 4 arg min L(w; D)

Algorithm 1: Our final learning algorithm interactively
labels a streaming dataset of videos while learning a
tracker action policy ),,. Given a video, steps 5 through
11 run a tracker according to the current policy. An an-
notator then assesses the binary reward r; (correctness)
for the highest-scoring bounding box extracted from the
heatmap h; by using an intersection-over-union thresh-
old. Annotated frames (and their associated state-action-
reward tuples) are added to our experience replay database
D. We then sample a minibatch of replay memories and
update the action policy w with backprop (Eq. 6).

million frames (Table 1) requires a little under two-days of
labor, versus the months required for equivalent bounding-
box annotation. After running our tracker and interactively
marking failures, we use the annotation as a reward signal
to update the policy parameters for the next video. Thus
each video is used to both evaluate the current tracker and
train it for future videos.

5. Implementation

TRACK/REINIT: Our TRACK function (Eq. 2) takes
as input the previous heatmap h;_1, appearance model 6; 1,
image observation o;, and produces a new heatmap for the
current frame. We make use of the state-of-the-art fully-
convolutional tracker FCNT [51] and refer to the reader to
that work for precise implementation details, but summa-
rize them here: TRACK crops the current image o; to a
region of interest (ROI) around the most-likely object loca-
tion from the previous frame (the argmax of h;_1). This
ROI is resized to a canonical image size (e.g., 224 x 224)
and processed with a CNN (VGG16) to produce a convo-
lutional feature map. The object appearance model 6;_;

Heatmap: h;

-

Action: a;
Figure 4. Q-CNNs: A Q-function predicts a score (the expected
future reward) as a function of (1) the localization heatmap and (2)
an action encoded using a one-hot encoding.

) Score
Q-Function

is represented as a filter on this feature map, allowing one
to compute a new heatmap with a convolution. When the
tracker believes it has lost track, the REINIT model simply
processes a random ROI.

UPDATE: We update the current filter 6 using positive
and negative patches extracted from the current frame <.
We extract a positive patch from the maximal location in
the reported heatmap h;, and extract negative patches from
adjacent regions with less than 30% overlap. We update
# following the default scheme in the underlying tracker:
for FCNT, 6 is a two-layer convolutional template that is
updated with a fixed number of gradient descent iterations
(10). For CCOT, @ is a multi-resolution set of convolutional
templates that is fit through conjugate gradients.

Q-function CNN: Recall that our Q-functions process
a tracker state s; = ((h;—1,0;-1),0;) and a candidate ac-
tion a;, to return a scalar representing the expected future
reward of taking that action (Fig. 4 and Eq. 6). In practice,
we define two separate Q-functions for our two binary de-
cisions (TRACK/REINIT and UPDATE/IGNORE). To plug
into standard learning approaches, we formally define a sin-
gle @ function as the sum of the two functions, implying
that the optimal decisions can be computed independently
for each. We found it sufficed to condition on the heatmap
h;—1 and implemented each function as a CNN, where the
first two hidden layers are shared across the two functions.
Each shared hidden layer consists of 16 X 16 x 4 convolu-
tion followed by ReLU and 4 x 4 max pooling. For each
decision, an independent fully-connected layer ultimately
predicts the expected future reward. When training the Q-
function using experience-replay, we use v = .95, a learn-
ing rate of le-4, a momentum of .9 and 1e-8 weight decay.

Offline heuristics: Deep Q-learning is known to be un-
stable, and we found good initialization was important for
reliable convergence. We initialize the Q-functions in Eq. 6
(which specify the goodness of particular actions) with the
offline heuristics from Eq. 3. Specifically, the heuristic ac-
tion a; has a goodness of 1 (scaled by future discount re-
wards), while other actions have a goodness of 0:

Qinit(84,a;) < I[ai = (lﬂ Z,yj—i 7
j>i

where I denotes the identity function. In practice, we
found it useful to minimize a weighted average of the true
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Figure 5. OTB-2013: Our p-tracker (solid line) compared to FCN [51], MUSTe

30], TLD [21] and SPL [47] (dashed lines).

o), 1

In general, many videos are easy for modern trackers, implying that a method’s rank is determined by a few challenging videos (such as the
confetti celebration and fireworks on the bottom left). Our tracker learns an UPDATE and REINIT policy that does well on such videos.

Figure 6. Internet videos contain new challenges, such as cuts,
strange and interesting behaviors, fast motion and complex illumi-
nation. We show select results for our p-tracker plus FCNT [51],
MUSTer [16], [30], TLD [21] and SPL [47].

loss in Eq. 6 and a supervised loss (Q,, — Qinit)%, an ap-
proach related to heuristically-guided Q-learning [20, 7].
Defining a heuristic for TRACK vs REINIT is straight-
forward: a; should TRACK whenever the peak of the re-
ported heatmap overlaps the ground-truth object on frame
1. Defining a heuristic for UPDATE vs IGNORE is more
subtle. Intuitively, a; should UPDATE appearance with
frame ¢ whenever doing so improves the confidence of fu-
ture ground-truth object locations in that video. To opera-
tionalize this, we update the current appearance model 6;
on samples from frame ¢ and compute A, the number
of future frames where the updated appearance increases
confidence of ground-truth locations (and similarly A_, the
number of frames where the update decreases confidence of
track errors). We set a to update when Ay + A_ > 5N,
where N is the total number of future frames.

=OOT-PS [0.58]
== =TLD [0.44]
FCNT [0.60]
== =MUSTer [0.58]
== =LTCT [0.60]
SPL [0.30]
=== p-track-long (ours) [0.55]
=== p-track-short (ours) [0.73]

Precision

0 50 100
Threshold (bb overlap)

Figure 7. OTB-2013 [55] results: Our learned policy tracker
(p-track) performs competitively on standard short-term tracking
benchmarks. We find that a policy learned for long-term track-
ing (p-track-long) tends to select the IGNORE action more often
(appropriate during occlusions, which tend be more common in
long videos). Learning a policy from short-term videos signif-
icantly improves performance, producing state-of-the-art results:
compare our p-track-short vs OOT-PS [17], TLD [21], FCNT [51],
MUSTer [16], LTCT [30], and SPL [47]

o g ¥ & ¢ p-track(ours) ¢ FCNT
CCOT [12] ¢ TCNN [35]
§ ¢ SSAT [37] MLDF [53]
510 W Staple [5] B DDC [23]
3 M EBT[57] SRBT [23]
< BSTAPLEp[5]  «DNT[9]
20 SSKCF [25] e SiamRN [6]
20 10 0 e DeepSRDCF[11] e SHCT [13]

Robustness
Figure 8. VOT-2016 [23] results: Our learned policy tracker (p-

track-short) is as accurate as the state-of-the-art but is considerably
more robust. Robustness is measured by a ranking of trackers ac-
cording to the number of times they fail, while accuracy is the
rank of a tracker according to its average overlap with the ground
truth. Notably, p-track significantly outperforms FCNT [51] and
CCOT [12] in terms of robustness, even though its TRACK and
UPDATE modules follow directly from those works.

6. Experiments

Evaluation metrics: Following established protocols
for long-term tracking [21, 47], we evaluate F'1 = jﬂl,
where precision (p) is the fraction of predicted locations

that are correct and recall (r) is the fraction of ground-
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0 0.2 0.4 0.6 0.8 1
Figure 9. Vs state-of-the-art: Our learned policy (p-track) per-
forms better than state-of-the-art baselines [51, 16, 30, 21, 47] on
a held-out test set. See Sec. 6.1 for discussion.

truth locations that are correctly predicted. Because Inter-
net videos vary widely in difficulty, we supplement averages
with boxplots to better visualize performance skew. When
evaluating results on standard benchmarks, we use the de-
fault evaluation criteria for that benchmark.

6.1. Comparative Evaluation

Short-term benchmarks: While our focus is long-
term tracking, we begin by presenting results on existing
benchmarks that tend to focus on the short-term setting —
the Online Tracker Benchmark (OTB-2013) [55] and Vi-
sual Object Tracking Benchmark (VOT-2016) [23]. Our
policy tracker (p-track-long), trained on Internet videos,
performs competitively (Fig. 7), but tends to over-predict
occlusions (which rarely occur in short-term videos). But
fortunately, we can learn a dedicated policy for short-term
tracking (p-track-short) by applying reinforcement learning
(Alg. 1) on short-term training videos. For each test video
in OTB-2013, we learn a policy using the 40 most dissimilar
videos in VOT-2016 (and vice-versa). We define similarity
between videos to be the correlation between the average
(ground-truth) object image in RGB space. This ensures
that, for example, we do not train using Tiger! when test-
ing on Tiger2. Even under this controlled scenario, p-track-
short significantly outperforms prior work on both OTB-
2013 (Figs. 5 and 7) and VOT-2016 (Fig. 8).

Long-term baselines: For the long-term setting, we
compare to two classic long-term trackers: TLD [21] and
SPL [47]. Additionally, we also compare against short-
term trackers with public code that we were able to adapt:
FCNT [51], MUSTer [16], and LTCT [30]. Notably, all
these baselines use hand-designed heuristics for deciding
when to appearance update and reinitialize.

Long-term videos: Qualitatively speaking, long term
videos from the internet are much more difficult than stan-
dard benchmarks (c.f. Fig 5 and Fig. 6). First, many stan-
dard benchmarks tend to contain videos that are easy for
most modern tracking approaches, implying that a method’s
rank is largely determined by performance on a small num-
ber of challenging videos. The easy videos focus on
iconic [39, 4] views with slow motion and stable light-

track
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Figure 10. System diagnostics: Beginning with the initial policy
of FCNT [51], we evolve towards our final data-driven policy ob-
jective. As shown, each component of our objective measurably
improves performance on the hold-out test-data. See Sec. 6.2 for
discussion.

ing conditions [26], featuring no cuts or long-term occlu-
sions [14]. Internet videos are significantly more complex.
One major reason is the presence of frequent cuts. We think
that Internet videos with multiple cuts provide a valuable
proxy for occlusions, particularly since they are a scalable
data source. In theory, long-term trackers must be able to re-
detect the target after an occlusion (or cut), but there is still
much room for improvement. Also, many strange things
happen in the wild world of Internet videos. For exam-
ple, in Transform the car transforms into a robot, confusing
all trackers (including ours). In SnowTank the tracker must
contend with many distractors (tanks of different colors and
type) and widely varying viewpoint and scale. Meanwhile,
JohnWick contains poor illumination, fast motion, and nu-
merous distractors.

Long-term results: To evaluate results for “in-the-
wild” long-term tracking, we define a new 16-video held-
out test set of long-term Internet videos that is never used
for training. Each of our test videos contains at least 5,000
frames, a common definition of “long-term” [47, 30, 16,

]. We compare our method to various baselines in Fig. 9.
Comparisons to FCNT [51] and CCOT [12] are particu-
larly interesting since we can make use of their TRACK
and UPDATE modules. While FCNT performs quite well
in the short-term (Fig. 7), it performs poorly on long-term
sequences (Fig. 9). However, by learning a policy for updat-
ing and reinitialization, we produce a state-of-the-art long-
term tracker. We visualize the learned policy in Fig. 12.

6.2. System Diagnostics

We now provide a diagnostic analysis of various compo-
nents of our system. We begin by examining several alter-
native strategies for making sequential decisions (Fig. 10).

Online vs offline heuristics: We begin by analyzing
the online heuristic actions of our baseline tracker, FCNT.
FCNT updates an appearance model when the predicted
heatmap location is above a threshold, and always tracks
without reinitialization. This produces a F1 score of .09.
Next, we use offline heuristics to learn the best action to
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Figure 11. Our p-tracker’s performance increases as it learns
its policy using additional Internet videos. Above, we plot the dis-
tribution of F1 scores on our hold-out test data, at various stages
of training. At initialization, the average F1 score was 0.08. After
seeing 16,000 videos, it achieves an average F1 score of 0.30. Our
results suggest that large-scale training, made possible through in-
teractive annotation, is crucial for learning good decision policies.

take. These correspond to tracking when the predicted
object location is correct, and updating if the appearance
model trained on the new patch produces higher scores for
ground-truth locations. We train a classifier to predict these
actions using the current heatmap. When this offline trained
classifier is run at test-time, F1 improves to .13 with the
track heuristic and .14 with the update heuristic, and .20 if
both are used.

FCNT vs CCOT: We use FCNT for our ablative analy-
sis; initializing p-track using CCOT’s more complex online
heuristics proved difficult. However our final system uses
only our proposed offline heuristics, so we can nonethe-
less train it using CCOT’s TRACK, REINIT, and UPDATE
functions. In Fig. 9 we compare the final p-trackers built
using FCNT’s functions against those built using CCOT’s
functions. As consistent with prior work, we find that
CCOT improves overall performance (from .30 to .36).

Q-learning: Finally, we use Q-learning to refine our
heuristics (Eq. 6), noticeably improving the F1 score to .30.
Learning the appearance update action seems to have the
most significant effect on performance, producing an F1
score of .28 by itself. During partial occlusions, the tracker
learns to delicately balance between appearance update and
drift while accepting a few failures to avoid the cost and
risk of reinitialization. Overall, the learned policy dramati-
cally outperforms the default online heuristics, tripling the
F1 score from 9% to 30%!

Training iterations: In theory, our tracker can be inter-
actively trained on a never-ending stream. However, in our
experiments, Q-learning appeared to converge after seeing
between 8,000 and 12,000 videos. Thus, we choose to stop
training after seeing 16,000 videos. In Fig. 11, we plot per-
formance vs training iteration.

Computation:  As mentioned previously, compara-
tively slower trackers typically perform better [23]. On a
Tesla K40 GPU, our tracker runs at approximately 10 fps.
While computationally similar to [51], we add the ability
to recover from tracking failures by reinitializing through

‘ Ground Truth ‘ ‘ Tracker’s Localization ‘ ——1
Figure 12. What does p-track learn? We show the actions taken

by our tracker given four heatmaps. P-track learns to track and up-
date appearance even in cluttered heatmaps with multiple modes
(a). However, if the confidence of other modes becomes high, p-
track learns not to update appearance to avoid drift due to distrac-
tors (b). If the target mode is heavily blurred, implying the target
is difficult to localize (because of a transforming robot), p-track
also avoids model update (c¢). Finally, the lack of mode suggests
p-track will reinitialize (d).

detection. To do so, we learn an attention policy that ef-
ficiently balances tracking vs reinitialization. Tracking is
fast because only a small region of interest (ROI) need be
searched. Rather than searching over the whole image dur-
ing reinitialization, we select a random ROI (which ensures
that our trackers operate at a fixed frame rate). In practice,
we find that target is typically found in ~ 15 frames.
Conclusions: We formulate tracking as a sequential
decision-making problem, where a tracker must update its
beliefs about the target, given noisy observations and a
limited computational budget. While such decisions are
typically made heuristically, we bring to bear tools from
POMDPs and reinforcement learning to learn decision-
making strategies in a data-driven way. Our framework al-
lows trackers to learn action policies appropriate for differ-
ent scenarios, including short-term and long-term tracking.
One practical observation is that offline heuristics are an
effective and efficient way to learn tracking policies, both
by themselves and as a regularizer for Q-learning. Finally,
we demonstrate that reinforcement learning can be used
to leverage massive training datasets, which will likely be
needed for further progress in data-driven tracking.
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