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Abstract

Recently, very deep convolutional neural networks

(CNNs) have been attracting considerable attention in im-

age restoration. However, as the depth grows, the long-

term dependency problem is rarely realized for these very

deep models, which results in the prior states/layers hav-

ing little influence on the subsequent ones. Motivated by

the fact that human thoughts have persistency, we pro-

pose a very deep persistent memory network (MemNet)

that introduces a memory block, consisting of a recur-

sive unit and a gate unit, to explicitly mine persistent

memory through an adaptive learning process. The re-

cursive unit learns multi-level representations of the cur-

rent state under different receptive fields. The represen-

tations and the outputs from the previous memory blocks

are concatenated and sent to the gate unit, which adap-

tively controls how much of the previous states should be

reserved, and decides how much of the current state should

be stored. We apply MemNet to three image restoration

tasks, i.e., image denosing, super-resolution and JPEG de-

blocking. Comprehensive experiments demonstrate the ne-

cessity of the MemNet and its unanimous superiority on all

three tasks over the state of the arts. Code is available

at https://github.com/tyshiwo/MemNet.

1. Introduction

Image restoration [29] is a classical problem in low-level

computer vision, which estimates an uncorrupted image

from a noisy or blurry one. A corrupted low-quality image

x can be represented as: x = D(x̃) + n, where x̃ is a high-

quality version of x, D is the degradation function and n is
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Figure 1. Prior network structures (a,b) and our memory block (c).

The blue circles denote a recursive unit with an unfolded structure

which generates the short-term memory. The green arrow denotes

the long-term memory from the previous memory blocks that is

directly passed to the gate unit.

the additive noise. With this mathematical model, extensive

studies are conducted on many image restoration tasks, e.g.,

image denoising [2, 5, 9, 37], single-image super-resolution

(SISR) [15, 38] and JPEG deblocking [18, 26].

As three classical image restoration tasks, image de-

noising aims to recover a clean image from a noisy ob-

servation, which commonly assumes additive white Gaus-

sian noise with a standard deviation σ; single-image super-

resolution recovers a high-resolution (HR) image from a

low-resolution (LR) image; and JPEG deblocking removes

the blocking artifact caused by JPEG compression [7].

Recently, due to the powerful learning ability, very deep

convolutional neural network (CNN) is widely used to

tackle the image restoration tasks. Kim et al. construct a

20-layer CNN structure named VDSR for SISR [20], and

adopts residual learning to ease training difficulty. To con-

trol the parameter number of very deep models, the authors

further introduce a recursive layer and propose a Deeply-

Recursive Convolutional Network (DRCN) [21]. To mite-

gate training difficulty, Mao et al. [27] introduce symmetric

skip connections into a 30-layer convolutional auto-encoder
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network named RED for image denoising and SISR. More-

over, Zhang et al. [40] propose a denoising convolutional

neural network (DnCNN) to tackle image denoising, SISR

and JPEG deblocking simultaneously.

The conventional plain CNNs, e.g., VDSR [20],

DRCN [21] and DnCNN [40] (Fig. 1(a)), adopt the single-

path feed-forward architecture, where one state is mainly in-

fluenced by its direct former state, namely short-term mem-

ory. Some variants of CNNs, RED [27] and ResNet [12]

(Fig. 1(b)), have skip connections to pass information

across several layers. In these networks, apart from the

short-term memory, one state is also influenced by a spe-

cific prior state, namely restricted long-term memory. In

essence, recent evidence suggests that mammalian brain

may protect previously-acquired knowledge in neocortical

circuits [4]. However, none of above CNN models has such

mechanism to achieve persistent memory. As the depth

grows, they face the issue of lacking long-term memory.

To address this issue, we propose a very deep persis-

tent memory network (MemNet), which introduces a mem-

ory block to explicitly mine persistent memory through an

adaptive learning process. In MemNet, a Feature Extrac-

tion Net (FENet) first extracts features from the low-quality

image. Then, several memory blocks are stacked with a

densely connected structure to solve the image restoration

task. Finally, a Reconstruction Net (ReconNet) is adopted

to learn the residual, rather than the direct mapping, to ease

the training difficulty.

As the key component of MemNet, a memory block con-

tains a recursive unit and a gate unit. Inspired by neuro-

science [6, 25] that recursive connections ubiquitously ex-

ist in the neocortex, the recursive unit learns multi-level

representations of the current state under different recep-

tive fields (blue circles in Fig. 1(c)), which can be seen as

the short-term memory. The short-term memory generated

from the recursive unit, and the long-term memory gener-

ated from the previous memory blocks 1 (green arrow in

Fig. 1(c)) are concatenated and sent to the gate unit, which

is a non-linear function to maintain persistent memory. Fur-

ther, we present an extended multi-supervised MemNet,

which fuses all intermediate predictions of memory blocks

to boost the performance.

In summary, the main contributions of this work include:

⋄ A memory block to accomplish the gating mechanism

to help bridge the long-term dependencies. In each memory

block, the gate unit adaptively learns different weights for

different memories, which controls how much of the long-

term memory should be reserved, and decides how much of

the short-term memory should be stored.

⋄ A very deep end-to-end persistent memory network (80

convolutional layers) for image restoration. The densely

1For the first memory block, its long-term memory comes from the

output of FENet.

connected structure helps compensate mid/high-frequency

signals, and ensures maximum information flow between

memory blocks as well. To the best of our knowledge, it is

by far the deepest network for image restoration.

⋄ The same MemNet structure achieves the state-of-the-

art performance in image denoising, super-resolution and

JPEG deblocking. Due to the strong learning ability, our

MemNet can be trained to handle different levels of corrup-

tion even using a single model.

2. Related Work

The success of AlexNet [22] in ImageNet [31] starts the

era of deep learning for vision, and the popular networks,

GoogleNet [33], Highway network [32], ResNet [12], re-

veal that the network depth is of crucial importance.

As the early attempt, Jain et al. [17] proposed a simple

CNN to recover a clean natural image from a noisy observa-

tion and achieved comparable performance with the wavelet

methods. As the pioneer CNN model for SISR, super-

resolution convolutional neural network (SRCNN) [8] pre-

dicts the nonlinear LR-HR mapping via a fully deep con-

volutional network, which significantly outperforms classi-

cal shallow methods. The authors further proposed an ex-

tended CNN model, named Artifacts Reduction Convolu-

tional Neural Networks (ARCNN) [7], to effectively handle

JPEG compression artifacts.

To incorporate task-specific priors, Wang et al. adopted

a cascaded sparse coding network to fully exploit the nat-

ural sparsity of images [36]. In [35], a deep dual-domain

approach is proposed to combine both the prior knowl-

edge in the JPEG compression scheme and the practice of

dual-domain sparse coding. Guo et al. [10] also proposed

a dual-domain convolutional network that jointly learns a

very deep network in both DCT and pixel domains.

Recently, very deep CNNs become popular for image

restoration. Kim et al. [20] stacked 20 convolutional lay-

ers to exploit large contextual information. Residual learn-

ing and adjustable gradient clipping are used to speed up

the training. Zhang et al. [40] introduced batch normal-

ization into a DnCNN model to jointly handle several im-

age restoration tasks. To reduce the model complexity, the

DRCN model introduced recursive-supervision and skip-

connection to mitigate the training difficulty [21]. Using

symmetric skip connections, Mao et al. [27] proposed a

very deep convolutional auto-encoder network for image

denoising and SISR. Very Recently, Lai et al. [23] pro-

posed LapSRN to address the problems of speed and ac-

curacy for SISR, which operates on LR images directly and

progressively reconstruct the sub-band residuals of HR im-

ages. Tai et al. [34] proposed deep recursive residual net-

work (DRRN) to address the problems of model parameters

and accuracy, which recursively learns the residual unit in a

multi-path model.
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Figure 2. Basic MemNet architecture. The red dashed box represents multiple stacked memory blocks.

3. MemNet for Image Restoration
3.1. Basic Network Architecture

Our MemNet consists of three parts: a feature extraction

net FENet, multiple stacked memory blocks and finally a

reconstruction net ReconNet (Fig. 2). Let’s denote x and y

as the input and output of MemNet. Specifically, a convo-

lutional layer is used in FENet to extract the features from

the noisy or blurry input image,

B0 = fext(x), (1)

where fext denotes the feature extraction function and B0

is the extracted feature to be sent to the first memory block.

Supposing M memory blocks are stacked to act as the fea-

ture mapping, we have

Bm = Mm(Bm−1) = Mm(Mm−1(...(M1(B0))...)),
(2)

where Mm denotes the m-th memory block function and

Bm−1 and Bm are the input and output of the m-th mem-

ory block respectively. Finally, instead of learning the direct

mapping from the low-quality image to the high-quality im-

age, our model uses a convolutional layer in ReconNet to

reconstruct the residual image [20, 21, 40]. Therefore, our

basic MemNet can be formulated as,

y = D(x)

= frec(MM (MM−1(...(M1(fext(x)))...))) + x,
(3)

where frec denotes the reconstruction function and D de-

notes the function of our basic MemNet.

Given a training set {x(i), x̃(i)}Ni=1, where N is the num-

ber of training patches and x̃(i) is the ground truth high-

quality patch of the low-quality patch x(i), the loss function

of our basic MemNet with the parameter set Θ, is

L(Θ) =
1

2N

N
∑

i=1

∥x̃(i) −D(x(i))∥2, (4)

3.2. Memory Block

We now present the details of our memory block. The

memory block contains a recursive unit and a gate unit.

Recursive Unit is used to model a non-linear function that

acts like a recursive synapse in the brain [6, 25]. Here,

we use a residual building block, which is introduced in

ResNet [12] and shows powerful learning ability for object

recognition, as a recursion in the recursive unit. A residual

building block in the m-th memory block is formulated as,

Hr
m = Rm(Hr−1

m ) = F(Hr−1
m ,Wm) +Hr−1

m , (5)

where Hr−1
m , Hr

m are the input and output of the r-th resid-

ual building block respectively. When r = 1, H0
m = Bm−1.

F denotes the residual function, Wm is the weight set to

be learned and R denotes the function of residual build-

ing block. Specifically, each residual function contains two

convolutional layers with the pre-activation structure [13],

F(Hr−1
m ,Wm) = W 2

mτ(W 1
mτ(Hr−1

m )), (6)

where τ denotes the activation function, including batch

normalization [16] followed by ReLU [30], and W i
m, i =

1, 2 are the weights of the i-th convolutional layer. The bias

terms are omitted for simplicity.

Then, several recursions are recursively learned to gen-

erate multi-level representations under different receptive

fields. We call these representations as the short-term mem-

ory. Supposing there are R recursions in the recursive unit,

the r-th recursion in recursive unit can be formulated as,

H
r

m = R(r)
m (Bm−1) = Rm(Rm(...(Rm

︸ ︷︷ ︸

r

(Bm−1))...)), (7)

where r-fold operations of Rm are performed and

{Hr
m}Rr=1 are the multi-level representations of the re-

cursive unit. These representations are concatenated as

the short-term memory: Bshort
m = [H1

m, H2
m, ..., HR

m].
In addition, the long-term memory coming from the pre-

vious memory blocks can be constructed as: Blong
m =

[B0, B1, ..., Bm−1]. The two types of memories are then

concatenated as the input to the gate unit,

Bgate
m = [Bshort

m , Blong
m ]. (8)

Gate Unit is used to achieve persistent memory through

an adaptive learning process. In this paper, we adopt a 1 ×
1 convolutional layer to accomplish the gating mechanism

that can learn adaptive weights for different memories,

Bm = fgate
m (Bgate

m ) = W gate
m τ(Bgate

m ), (9)
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Figure 3. Multi-supervised MemNet architecture. The outputs with purple color are supervised.

where fgate
m and Bm denote the function of the 1 × 1 con-

volutional layer (parameterized by W gate
m ) and the output

of the m-th memory block, respectively. As a result, the

weights for the long-term memory controls how much of

the previous states should be reserved, and the weights for

the short-term memory decides how much of the current

state should be stored. Therefore, the formulation of the

m-th memory block can be written as,

Bm = Mm(Bm−1)

= fgate([Rm(Bm−1), ...,R
(R)
m (Bm−1), B0, ..., Bm−1]).

(10)

3.3. Multi­Supervised MemNet

To further explore the features at different states, inspired

by [21], we send the output of each memory block to the

same reconstruction net f̂rec to generate

ym = f̂rec(x, Bm) = x+ frec(Bm), (11)

where {ym}Mm=1 are the intermediate predictions. All of

the predictions are supervised during training, and used

to compute the final output via weighted averaging: y =
∑M

m=1 wm · ym (Fig. 3). The optimal weights {wm}Mm=1

are automatically learned during training and the final out-

put from the ensemble is also supervised. The loss function

of our multi-supervised MemNet can be formulated as,

L(Θ) =
α

2N

N
∑

i=1

∥x̃(i) −
M
∑

m=1

wm · y(i)
m ∥2

+
1− α

2MN

M
∑

m=1

N
∑

i=1

∥x̃(i) − y(i)
m ∥2,

(12)

where α denotes the loss weight.

3.4. Dense Connections for Image Restoration

Now we analyze why the long-term dense connections

in MemNet may benefit the image restoration. In very

deep networks, some of the mid/high-frequency informa-

tion can get lost at latter layers during a typical feedfor-

ward CNN process, and dense connections from previ-

ous layers can compensate such loss and further enhance

MemNet_4 MemNet_6MemNet_NL_6MemNet_NL_4

27.29/0.9070 27.71/0.914227.45/0.910127.31/0.9078

(a)

(b)

MemNet_4-MemNet_NL_4 MemNet_6-MemNet_NL_6MemNet_4-MemNet_6MemNet_NL_4-MemNet_NL_6

(c)

Low frequency High frequency

Figure 4. (a) ×4 super-resolved images and PSNR/SSIMs of dif-

ferent networks. (b) We convert 2-D power spectrums to 1-D spec-

tral densities by integrating the spectrums along each concentric

circle. (c) Differences of spectral densities of two networks.

high-frequency signals. To verify our intuition, we train

a 80-layer MemNet without long-term connections, which

is denoted as MemNet NL, and compare with the original

MemNet. Both networks have 6 memory blocks leading to

6 intermediate outputs, and each memory block contains 6
recursions. Fig. 4(a) shows the 4th and 6th outputs of both

networks. We compute their power spectrums, center them,

estimate spectral densities for a continuous set of frequency

ranges from low to high by placing concentric circles, and

plot the densities of four outputs in Fig. 4(b).

We further plot differences of these densities in Fig. 4(c).

From left to right, the first case indicates the earlier layer

does contain some mid-frequency information that the latter

layers lose. The 2nd case verifies that with dense connec-

tions, the latter layer absorbs the information carried from

the previous layers, and even generate more mid-frequency

information. The 3rd case suggests in earlier layers, the

frequencies are similar between two models. The last case

demonstrates the MemNet recovers more high frequency

than the version without long-term connections.
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4. Discussions

Difference to Highway Network First, we discuss how

the memory block accomplishes the gating mechanism and

present the difference between MemNet and Highway Net-

work – a very deep CNN model using a gate unit to regulate

information flow [32].

To avoid information attenuation in very deep plain net-

works, inspired by LSTM, Highway Network introduced

the bypassing layers along with gate units, i.e.,

b = A(a) · T (a) + a · (1− T (a)), (13)

where a and b are the input and output, A and T are two

non-linear transform functions. T is the transform gate to

control how much information produced by A should be

stored to the output; and 1 − T is the carry gate to decide

how much of the input should be reserved to the output.

In MemNet, the short-term and long-term memories are

concatenated. The 1 × 1 convolutional layer adaptively

learns the weights for different memories. Compared to

Highway Network that learns specific weight for each pixel,

our gate unit learns specific weight for each feature map,

which has two advantages: (1) to reduce model parameters

and complexity; (2) to be less prone to overfitting.

Difference to DRCN There are three main differences be-

tween MemNet and DRCN [21]. The first is the design of

the basic module in network. In DRCN, the basic module

is a convolutional layer; while in MemNet, the basic mod-

ule is a memory block to achieve persistent memory. The

second is in DRCN, the weights of the basic modules (i.e.,

the convolutional layers) are shared; while in MemNet,

the weights of the memory blocks are different. The third

is there are no dense connections among the basic mod-

ules in DRCN, which results in a chain structure; while in

MemNet, there are long-term dense connections among the

memory blocks leading to the multi-path structure, which

not only helps information flow across the network, but

also encourages gradient backpropagation during training.

Benefited from the good information flow ability, MemNet

could be easily trained without the multi-supervision strat-

egy, which is imperative for training DRCN [21].

Difference to DenseNet Another related work to MemNet

is DenseNet [14], which also builds upon a densely con-

nected principle. In general, DenseNet deals with object

recognition, while MemNet is proposed for image restora-

tion. In addition, DenseNet adopts the densely connected

structure in a local way (i.e., inside a dense block), while

MemNet adopts the densely connected structure in a global

way (i.e., across the memory blocks). In Secs. 3.4 and 5.2,

we analyze and demonstrate the long-term dense connec-

tions in MemNet indeed play an important role in image

restoration tasks.

Methods MemNet NL MemNet NS MemNet

×2 37.68/0.9591 37.71/0.9592 37.78/0.9597

×3 33.96/0.9235 34.00/0.9239 34.09/0.9248

×4 31.60/0.8878 31.65/0.8880 31.74/0.8893

Table 1. Ablation study on effects of long-term and short-term con-

nections. Average PSNR/SSIMs for the scale factor ×2, ×3 and

×4 on dataset Set5. Red indicates the best performance.

(a) Image denoising

(b) Super-resolution

(c) JPEG deblocking

Figure 5. The norm of filter weights vlm vs. feature map index l.

For the curve of the mth block, the left (m× 64) elements denote

the long-term memories and the rest (Lm − m × 64) elements

denote the short-term memories. The bar diagrams illustrate the

average norm of long-term memories, short-term memories from

the first R− 1 recursions and from the last recursion, respectively.

E.g., each yellow bar is the average norm of the short-term mem-

ories from the last recursion in the recursive unit (i.e., the last 64
elements in each curve).

5. Experiments

5.1. Implementation Details

Datasets For image denoising, we follow [27] to use

300 images from the Berkeley Segmentation Dataset

(BSD) [28], known as the train and val sets, to generate

image patches as the training set. Two popular benchmarks,

a dataset with 14 common images and the BSD test set with

200 images, are used for evaluation. We generate the input

noisy patch by adding Gaussian noise with one of the three

noise levels (σ = 30, 50 and 70) to the clean patch.

For SISR, by following the experimental setting in [20],

we use a training set of 291 images where 91 images are

from Yang et al. [38] and other 200 are from BSD train set.

For testing, four benchmark datasets, Set5 [1], Set14 [39],
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Dataset VDSR [20] DRCN [21] RED [27] MemNet

Depth 20 20 30 80

Filters 64 256 128 64

Parameters 665K 1, 774K 4, 131K 677K

Traing images 291 91 300 91 91 291

Multi-supervision No Yes No No Yes Yes

PSNR 33.66 33.82 33.82 33.92 33.98 34.09

Table 2. SISR comparisons with start-of-the-art networks for scale factor ×3 on Set5. Red

indicates the fewest number or best performance.

MemNet_M6

MemNet_M5

MemNet_M4

MemNet_M3

VDSR

DRCN

(sec.)

Figure 6. PSNR, complexity vs. speed.

BSD100 [28] and Urban100 [15] are used. Three scale fac-

tors are evaluated, including ×2, ×3 and ×4. The input LR

image is generated by first bicubic downsampling and then

bicubic upsampling the HR image with a certain scale.

For JPEG deblocking, the same training set for image de-

noising is used. As in [7], Classic5 and LIVE1 are adopted

as the test datasets. Two JPEG quality factors are used, i.e.,

10 and 20, and the JPEG deblocking input is generated by

compressing the image with a certain quality factor using

the MATLAB JPEG encoder.

Training Setting Following the method [27], for image

denoising, the grayscale image is used; while for SISR and

JPEG deblocking, the luminance component is fed into the

model. The input image size can be arbitrary due to the

fully convolution architecture. Considering both the train-

ing time and storage complexities, training images are split

into 31 × 31 patches with a stride of 21. The output of

MemNet is the estimated high-quality patch with the same

resolution as the input low-quality patch. We follow [34]

to do data augmentation. For each task, we train a single

model for all different levels of corruption. E.g., for image

denoising, noise augmentation is used. Images with differ-

ent noise levels are all included in the training set. Similarly,

for super-resolution and JPEG deblocking, scale and quality

augmentation are used, respectively.

We use Caffe [19] to implement two 80-layer MemNet

networks, the basic and the multi-supervised versions. In

both architectures, 6 memory blocks, each contains 6 recur-

sions, are constructed (i.e., M6R6). Specifically, in multi-

supervised MemNet, 6 predictions are generated and used

to compute the final output. α balances different regulariza-

tions, and is empirically set as α = 1/(M + 1).

The objective functions in Eqn. 4 and Eqn. 12 are opti-

mized via the mini-batch stochastic gradient descent (SGD)

with backpropagation [24]. We set the mini-batch size of

SGD to 64, momentum parameter to 0.9, and weight decay

to 10−4. All convolutional layer has 64 filters. Except the

1 × 1 convolutional layers in the gate units, the kernel size

of other convolutional layers is 3 × 3. We use the method

in [11] for weight initialization. The initial learning rate is

set to 0.1 and then divided 10 every 20 epochs. Training a

80-layer basic MemNet by 91 images [38] for SISR roughly

takes 5 days using 1 Tesla P40 GPU. Due to space constraint

and more recent baselines, we focus on SISR in Sec. 5.2,

5.4 and 5.6, while all three tasks in Sec. 5.3 and 5.5.

5.2. Ablation Study

Tab. 1 presents the ablation study on the effects of long-

term and short-term connections. Compared to MemNet,

MemNet NL removes the long-term connections (green

curves in Fig. 3) and MemNet NS removes the short-term

connections (black curves from the first R− 1 recursions to

the gate unit in Fig. 1. Connection from the last recursion

to the gate unit is reserved to avoid a broken interaction

between recursive unit and gate unit). The three networks

have the same depth (80) and filter number (64). We see

that, long-term dense connections are very important since

MemNet significantly outperforms MemNet NL. Further,

MemNet achieves better performance than MemNet NS,

which reveals the short-term connections are also useful for

image restoration but less powerful than the long-term con-

nections. The reason is that the long-term connections skip

much more layers than the short-term ones, which can carry

some mid/high frequency signals from very early layers to

latter layers as described in Sec. 3.4.

5.3. Gate Unit Analysis

We now illustrate how our gate unit affects different

kinds of memories. Inspired by [14], we adopt a weight

norm as an approximate for the dependency of the current

layer on its preceding layers, which is calculated by the cor-

responding weights from all filters w.r.t. each feature map:

vlm =
√

∑64
i=1(W

gate
m (1, 1, l, i))2, l = 1, 2, ..., Lm, where

Lm is the number of the input feature maps for the m-th

gate unit, l denotes the feature map index, W gate
m stores the

weights with the size of 1 × 1 × Lm × 64, and vlm is the

weight norm of the l-th feature map for the m-th gate unit.

Basically, the larger the norm is, the stronger dependency

it has on this particular feature map. For better visualiza-

tion, we normalize the norms to the range of 0 to 1. Fig. 5

presents the norm of the filter weights {vlm}6m=1 vs. fea-

ture map index l. We have three observations: (1) Different

tasks have different norm distributions. (2) The average and

variance of the weight norms become smaller as the mem-

ory block number increases. (3) In general, the short-term

memories from the last recursion in recursive unit (the last

64 elements in each curve) contribute most than the other

two memories, and the long-term memories seem to play a

more important role in late memory blocks to recover useful

signals than the short-term memories from the first R − 1
recursions.
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Dataset Noise BM3D [5] EPLL [41] PCLR [2] PGPD [37] WNNM [9] RED [27] MemNet

14 images

30 28.49/0.8204 28.35/0.8200 28.68/0.8263 28.55/0.8199 28.74/0.8273 29.17/0.8423 29.22/0.8444

50 26.08/0.7427 25.97/0.7354 26.29/0.7538 26.19/0.7442 26.32/0.7517 26.81/0.7733 26.91/0.7775

70 24.65/0.6882 24.47/0.6712 24.79/0.6997 24.71/0.6913 24.80/0.6975 25.31/0.7206 25.43/0.7260

BSD200

30 27.31/0.7755 27.38/0.7825 27.54/0.7827 27.33/0.7717 27.48/0.7807 27.95/0.8019 28.04/0.8053

50 25.06/0.6831 25.17/0.6870 25.30/0.6947 25.18/0.6841 25.26/0.6928 25.75/0.7167 25.86/0.7202

70 23.82/0.6240 23.81/0.6168 23.94/0.6336 23.89/0.6245 23.95/0.6346 24.37/0.6551 24.53/0.6608

Table 3. Benchmark image denoising results. Average PSNR/SSIMs for noise level 30, 50 and 70 on 14 images and BSD200. Red color

indicates the best performance and blue color indicates the second best performance.

Dataset Scale Bicubic SRCNN [8] VDSR [20] DRCN [21] DnCNN [40] LapSRN [23] DRRN [34] MemNet

Set5

×2 33.66/0.9299 36.66/0.9542 37.53/0.9587 37.63/0.9588 37.58/0.9590 37.52/0.959 37.74/0.9591 37.78/0.9597

×3 30.39/0.8682 32.75/0.9090 33.66/0.9213 33.82/0.9226 33.75/0.9222 −/− 34.03/0.9244 34.09/0.9248

×4 28.42/0.8104 30.48/0.8628 31.35/0.8838 31.53/0.8854 31.40/0.8845 31.54/0.885 31.68/0.8888 31.74/0.8893

Set14

×2 30.24/0.8688 32.45/0.9067 33.03/0.9124 33.04/0.9118 33.03/0.9128 33.08/0.913 33.23/0.9136 33.28/0.9142

×3 27.55/0.7742 29.30/0.8215 29.77/0.8314 29.76/0.8311 29.81/0.8321 −/− 29.96/0.8349 30.00/0.8350

×4 26.00/0.7027 27.50/0.7513 28.01/0.7674 28.02/0.7670 28.04/0.7672 28.19/0.772 28.21/0.7721 28.26/0.7723

BSD100

×2 29.56/0.8431 31.36/0.8879 31.90/0.8960 31.85/0.8942 31.90/0.8961 31.80/0.895 32.05/0.8973 32.08/0.8978

×3 27.21/0.7385 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.85/0.7981 −/− 28.95/0.8004 28.96/0.8001

×4 25.96/0.6675 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.29/0.7253 27.32/0.728 27.38/0.7284 27.40/0.7281

Urban100

×2 26.88/0.8403 29.50/0.8946 30.76/0.9140 30.75/0.9133 30.74/0.9139 30.41/0.910 31.23/0.9188 31.31/0.9195

×3 24.46/0.7349 26.24/0.7989 27.14/0.8279 27.15/0.8276 27.15/0.8276 −/− 27.53/0.8378 27.56/0.8376

×4 23.14/0.6577 24.52/0.7221 25.18/0.7524 25.14/0.7510 25.20/0.7521 25.21/0.756 25.44/0.7638 25.50/0.7630

Table 4. Benchmark SISR results. Average PSNR/SSIMs for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, BSD100 and Urban100.

Dataset Quality JPEG ARCNN [7] TNRD [3] DnCNN [40] MemNet

Classic5
10 27.82/0.7595 29.03/0.7929 29.28/0.7992 29.40/0.8026 29.69/0.8107

20 30.12/0.8344 31.15/0.8517 31.47/0.8576 31.63/0.8610 31.90/0.8658

LIVE1
10 27.77/0.7730 28.96/0.8076 29.15/0.8111 29.19/0.8123 29.45/0.8193

20 30.07/0.8512 31.29/0.8733 31.46/0.8769 31.59/0.8802 31.83/0.8846

Table 5. Benchmark JPEG deblocking results. Average PSNR/SSIMs for quality factor 10 and 20 on datasets Classic5 and LIVE1.

5.4. Comparision with Non­Persistent CNN Models

In this subsection, we compare MemNet with three

existing non-persistent CNN models, i.e., VDSR [20],

DRCN [21] and RED [27], to demonstrate the superior-

ity of our persistent memory structure. VDSR and DRCN

are two representative networks with the plain structure

and RED is representative for skip connections. Tab. 2

presents the published results of these models along with

their training details. Since the training details are differ-

ent among different work, we choose DRCN as a baseline,

which achieves good performance using the least training

images. But, unlike DRCN that widens its network to in-

crease the parameters (filter number: 256 vs. 64), we deepen

our MemNet by stacking more memory blocks (depth: 20
vs. 80). It can be seen that, using the fewest training images

(91), filter number (64) and relatively few model parameters

(667K), our basic MemNet already achieves higher PSNR

than the prior networks. Keeping the setting unchanged,

our multi-supervised MemNet further improves the perfor-

mance. With more training images (291), our MemNet sig-

nificantly outperforms the state of the arts.

Since we aim to address the long-term dependency prob-

lem in networks, we intend to make our MemNet very deep.

However, MemNet is also able to balance the model com-

plexity and accuracy. Fig. 6 presents the PSNR of different

intermediate predictions in MemNet (e.g., MemNet M3 de-

notes the prediction of the 3rd memory block) for scale ×3
on Set5, in which the colorbar indicates the inference time

(sec.) when processing a 288 × 288 image on GPU P40.

Results of VDSR [20] and DRCN [21] are cited from their

papers. RED [27] is skipped here since its high number of

parameters may reduce the contrast among other methods.

We see that our MemNet already achieve comparable re-

sult at the 3rd prediction using much fewer parameters, and

significantly outperforms the state of the arts by slightly in-

creasing model complexity.

5.5. Comparisons with State­of­the­Art Models

We compare multi-supervised 80-layer MemNet with the

state of the arts in three restoration tasks, respectively.

Image Denoising Tab. 3 presents quantitative results on

two benchmarks, with results cited from [27]. For BSD200
dataset, by following the setting in RED [27], the origi-

nal image is resized to its half size. As we can see, our

MemNet achieves the best performance on all cases. It

should be noted that, for each test image, RED rotates and

mirror flips the kernels, and performs inference multiple

times. The outputs are then averaged to obtain the final

result. They claimed this strategy can lead to better perfor-

mance. However, in our MemNet, we do not perform any

post-processing. For qualitative comparisons, we use public

codes of PCLR [2], PGPD [37] and WNNM [9]. The results

are shown in Fig. 7. As we can see, our MemNet handles

Gaussian noise better than the previous state of the arts.

Super-Resolution Tab. 4 summarizes quantitative results

on four benchmarks, by citing the results of prior methods.

MemNet outperforms prior methods in almost all cases.
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(PSNR/SSIM) (18.56/0.2953) (29.89/0.8678) (29.80/0.8652) (29.93/0.8702) (30.48/0.8791)

Ground Truth Noisy PCLR PGPD WNNM MemNet (ours)

(PSNR/SSIM) (11.19/0.1082) (24.67/0.6691) (24.49/0.6559) (24.50/0.6632) (25.37/0.6964)

Figure 7. Qualitative comparisons of image denoising. The first

row shows image “10” from 14-image dataset with noise level 30.

Only MemNet recovers the fold. The second row shows image

“206062” from BSD200 with noise level 70. Only MemNet cor-

rectly recovers the pillar. Please zoom in to see the details.

(PSNR/SSIM) (26.43/0.7606) (27.74/0.8194) (28.18/0.8341) (28.19/0.8349) (28.35/0.8388)

Ground Truth Bicubic SRCNN VDSR DnCNN MemNet (ours)

(PSNR/SSIM) (21.68/0.6491) (22.85/0.7249) (23.91/0.7859) (23.89/0.7838) (24.62/0.8167)

Figure 8. Qualitative comparisons of SISR. The first row shows

image “108005” from BSD100 with scale factor ×3. Only

MemNet correctly recovers the pattern. The second row shows

image “img 002” from Urban100 with scale factor ×4. MemNet

recovers sharper lines.

Since LapSRN doesn’t report the results on scale ×3, we

use the symbol ’−’ instead. Fig. 8 shows the visual compar-

isons for SISR. SRCNN [8], VDSR [20] and DnCNN [40]

are compared using their public codes. MemNet recovers

relatively sharper edges, while others have blurry results.

JPEG Deblocking Tab. 5 shows the JPEG deblocking re-

sults on Classic5 and LIVE1, by citing the results from [40].

Our network significantly outperforms the other methods,

and deeper networks do improve the performance compared

to the shallow one, e.g., ARCNN. Fig. 9 shows the JPEG

deblocking results of these three methods, which are gen-

erated by their corresponding public codes. As it can be

seen, MemNet effectively removes the blocking artifact and

recovers higher quality images than the previous methods.

(PSNR/SSIM) (25.79/0.7621) (26.92/0.7971) (27.24/0.8104) (27.59/0.8161) (28.15/0.8353)

Ground Truth JPEG ARCNN TNRD DnCNN MemNet (ours)

(PSNR/SSIM) (28.29/0.7636) (29.63/0.7977) (29.76/0.8018) (29.82/0.8008) (30.13/0.8088)

Figure 9. Qualitative comparisons of JPEG deblocking. The first

row shows image “barbara” from Classic5 with quality factor 10.

MemNet recovers the lines, while others give blurry results. The

second row shows image “lighthouse” from LIVE1 with quality

factor 10. MemNet accurately removes the blocking artifact.

Network M4R6 M6R6 M6R8 M10R10

Depth 54 80 104 212

PSNR (dB) 34.05 34.09 34.16 34.23
Table 6. Comparison on different network depths.

5.6. Comparison on Different Network Depths

Finally, we present the comparison on different network

depths, which is caused by stacking different numbers of

memory blocks or recursions. Specifically, we test four net-

work structures: M4R6, M6R6, M6R8 and M10R10, which

have the depth 54, 80, 104 and 212, respectively. Tab. 6

shows the SISR performance of these networks on Set5 with

scale factor ×3. It verifies deeper is still better and the pro-

posed deepest network M10R10 achieves 34.23 dB, with

the improvement of 0.14 dB compared to M6R6.

6. Conclusions

In this paper, a very deep end-to-end persistent mem-

ory network (MemNet) is proposed for image restoration,

where a memory block accomplishes the gating mechanism

for tackling the long-term dependency problem in the previ-

ous CNN architectures. In each memory block, a recursive

unit is adopted to learn multi-level representations as the

short-term memory. Both the short-term memory from the

recursive unit and the long-term memories from the previ-

ous memory blocks are sent to a gate unit, which adaptively

learns different weights for different memories. We use the

same MemNet structure to handle image denoising, super-

resolution and JPEG deblocking simultaneously. Compre-

hensive benchmark evaluations well demonstrate the supe-

riority of our MemNet over the state of the arts.
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