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Abstract

In this paper, we study an unconventional but practically

meaningful reversibility problem of commonly used image

filters. We broadly define filters as operations to smooth

images or to produce layers via global or local algorithms.

And we raise the intriguingly problem if they are reservable

to the status before filtering. To answer it, we present a

novel strategy to understand general filter via contraction

mappings on a metric space. A very simple yet effective

zero-order algorithm is proposed. It is able to practically

reverse most filters with low computational cost. We present

quite a few experiments in the paper and supplementary file

to thoroughly verify its performance. This method can also

be generalized to solve other inverse problems and enables

new applications.

1. Introduction

Image filtering is a fundamental building block of mod-

ern image processing and computer vision systems. Recent

advances in this field have led to new models to separate

image structure into different layers [18, 33] or to remove

unwanted image structure [10, 11, 13, 27, 29, 30] to satisfy

the need of various tasks. The success provides the commu-

nity deep understanding of the capability of image filter.

In this paper, we broadly define “filter” as the operation,

in either global optimization or local aggregation way, to

smooth images considering edge preserving [4, 9, 10, 11,

13, 18, 20], texture removal [29, 33], or other properties

[3, 6, 22, 30]. Unlike other work, we aim to tackle an un-

conventional problem of

• removing part of or all filtering effect

• without needing to know the exact filter in prior.

We call our method Reverse Filtering or simply DeFilter.

The most related work to DeFilter is probably deconvo-

lution [23, 26]. But this line of research is by nature dif-

ferent – deconvolution is to remove local linear convolution

effect, while our goal is to study the reversibility for even
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Figure 1. (a) Original images. (b) Processed images by unknown

retouching and denoising algorithms. (c) Our restored images.

nonlinear/optimization based process. Another major dis-

crepancy is that we do not need to know the exact filter form

in our method. Therefore, our solver is not related to that of

deconvolution at all.

Unique Property Addressing this DeFilter problem not

only is intellectually interesting, but also enables many

practical applications. Since our method treats the filter-

ing process as a black box, we can use it to recover images

processed by unknown but accessible operations.

Two examples are shown in Fig. 1. In the first row, the

human face is retouched by the Microsoft Selfie App us-

ing its “Natural” mode. We have no idea how it is realized.

In the second row, noise removal (operation “denoise”) in

Photoshop Express is applied. Again, we do not know the

algorithm and its implementation details. Interestingly, our

method is still able to produce two results that are very close

to the original input before processed by the software, as

shown in Fig. 1(c). The lost patterns, i.e., freckles and wrin-

kles on the face and texture of flower, are mostly recovered.

To the best of our knowledge, this ability was not explored

or exhibited before in filter community.

Our Approach and Contribution Our new strategy is to

understand the filtering process in metric space where fil-

ters are considered as mappings. We provide detailed anal-

ysis and propose dividing the image metric space into two

sub ones Ω and Ω̄. In Ω, a filtering operation is strictly
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a contraction mapping (CM), which leads to a very sim-

ple zero-order reverse filtering method to accurately remove

unknown effect of filter with low computation cost. Its the-

oretical correctness and convergence are guaranteed. For

filter in Ω̄ that is theoretically not invertible, our algorithm

is still effective to reduce its effect in practice, given the fact

that most image filters are designed to keep main structure

and energy.

Our extensive study shows that the new DeFilter ap-

proach works very well on many commonly employed local

and global filters, including Gaussian filter, bilateral filter

[4], guided image filter [13], adaptive manifold filter [11],

rolling guidance filter [33], BM3D denoising [6], and many

unknown filters incorporated in commercial software. It

also benefits non-blind deconvolution and super-resolution.

We will present a large amount of experimental results in

the paper and supplementary material.

2. Related Work

Image Filter Filtering is a basic procedure in computer

vision and computational photography. Various filters have

been developed for many purposes, such as removing pe-

riodical/repetitive textures [24, 29], reducing image noise

[3, 6, 30], or scale-aware/edge-aware smoothing [4, 10, 11,

13, 20, 33], to name a few.

Based on the supporting range used, filters can be cate-

gorized into local and global ones. For local filters, a pixel

value in the output image only depends on its close neigh-

bors. Representative methods include bilateral filter [4],

guided filter [13], and anisotropic diffusion [20]. Global

methods optimize energy functions defined over all or many

pixels. Common strategies include total variation (TV) [22]

and weighted least squares [9].

Depending on the property of continuity, most filters are

continuous with respect to the input image. Exception in-

cludes median-based filters [15, 34] and nearest-neighbor-

based methods, such as BM3D [6].

Inverse Problems in Vision DeFilter belongs to the

broad definition of inverse problems in computer vision,

where latent causal factors are estimated from observations.

Typical inverse problems include image denoising, deblur-

ring, dehazing and super-resolution. For these problems,

prior knowledge is often used to regularize the solution

space. For example, the dark channel prior [14] is effec-

tive for image dehazing. Heavy-tail image gradient prior

[21, 25], spectral prior [12] and color prior [17] are used

for deblurring. Learning-based approaches exploit informa-

tion from external data. They include sparse-coding-based

methods for super-resolution [32] and denoising [8], as well

as DNN-based super-resolution [7], denoising [23], and de-

convolution [28].

We note these strategies do not fit our new task of De-

Filter. Different image filters have their respective prop-

erties, making it difficult to apply general image priors or

regularization. Learning-based methods need specific train-

ing for each image filter involving parameters, which is also

not considered in our solution. Unlike all above methods,

we resort to metric space mapping to tackle this new prob-

lem.

3. Reverse Filtering: Method and Conditions

We first investigate the mathematical properties of gen-

eral filters. Without loss of generality, a filtering process

can be described as

J = f(I), (1)

where I and J are the input image and the filtering result.

For joint filtering methods [13, 30], we use I as the guidance

image so that J is still a function of I. Our goal is to estimate

I without the need to compute f−1(·).

Zero-order Reverse Filtering Our method is simple in

terms of programming complexity. The DeFilter results can

be achieved using only a few lines of code. The main proce-

dure is an iterative scheme, which updates recovered images

according to the filtering effect as

X
t+1 = X

t + J
∗ − f(Xt), (2)

where J
∗ is the filtering result of image I

∗, with J
∗ =

f(I∗). Both I
∗ and f(·) are unknown in this case. X

t is

the current estimate of I∗ in the t-th iteration. It is a zero-

order algorithm because it does not require any derivatives.

To understand our algorithm, we use the illustration in

Fig. 2. We start from X
0 = J

∗, which is the filtered image,

as initialization. After re-applying the (unknown) filtering

process to X
0, details are further suppressed. We then ex-

tract the residual J∗ − f(X0), which is the difference in-

volving a level of texture and details. The most unconven-

tional step here (highlighted by orange lines in Fig. 2) is that

we add the residual back to current estimate X
0 to make

resulting X
1 contain these details. Then we enter another

iteration with similar steps. Intriguingly, Xt with increas-

ing t gets closer and closer to I
∗. For this example, only 5

iterations yield a good DeFilter result.

Despite the simple form, the proposed algorithm does

not arbitrarily add back details. Contrarily, in the follow-

ing we prove for many filters this process is mathematically

sound.

3.1. Why Does This Simple Process Work?

The form of Eq. (2) can be considered as a kind of fixed-

point iteration. To facilitate analysis, we construct an auxil-

iary function g(I) as

g(I) = I+ (J∗ − f(I)). (3)
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Figure 2. Illustration of our algorithm regarding operations in each iteration.

Eq. (3) is equivalent to Eq. (2) for X
t+1 = g(Xt). To

understand it better, we need contraction mapping defined

below to find internal relationship.

Definition 3.1 (Contraction Mapping) On a metric space

(M, d), a mapping T : M→M is a contraction mapping, if

there exists a constant c ∈ [0, 1) such that d(T (x), T (y)) ≤
c · d(x, y) for all x, y ∈M.

With this definition, we take the mapping T (·) as g(·) in

Eq. (3). In our case, M = R
m×n is the image space of m×n

pixels and d(x, y) = ‖x−y‖ is the Euclidean distance. It is

easy to verify that (M, d) is a complete metric space. With

this definition, our algorithm can be explained by following

Banach Fixed Point Theorem.

Theorem 3.1 (Banach Fixed Point Theorem) Let (M, d)
be a non-empty complete metric space with a contraction

mapping T : M→ M. T admits a unique fixed-point x∗ in

M (i.e., T (x∗) = x∗).

Further, x∗ can be found in the following way. Start with

arbitrary state x0 in M and define a sequence {xn} as xn =
T (xn−1). When it converges, limn→∞ xn = x∗.

With this theorem, our algorithm can be understood as

actually constructing an image sequence {Xt}, defined as

X
t = g(Xt−1). If it satisfies the sufficient condition, it

will converge to the unique value limt→∞ X
t = X

∗. Put

differently, the initial X0 is processed by Eq. (2) iteratively

and finally reaches f(X∗) ≈ J
∗.

Note the sufficient condition that theorem holds is that

g(I) forms a contraction mapping, expressed as

‖g(Ia)− g(Ib)‖ = ‖[Ia − f(Ia)]− [Ib − f(Ib)]‖

≤ t · ‖Ia − Ib‖, t ∈ [0, 1) (4)

For linear filters, the condition further reduces to

‖I− f(I)‖ ≤ t · ‖I‖. t ∈ [0, 1) (5)

We analyze the contraction mapping condition in the fol-

lowing regarding different forms of filters. The conclusion

is vastly beneficial to the community – several filters sat-

isfy this condition completely. For others, even it does not

hold, our zero-order reverse filtering still works to a decent

extend to produce satisfying results empirically.

3.2. Convolutional Filter

We start from commonly employed convolutional filter

expressed as

J = f(I) = I ∗K, (6)

where ∗ is the convolution operator and K is the convolu-

tion kernel. For Gaussian filter with infinitely large support

and Tikhonov-regularized L2-norm image filter, the spec-

trum of the kernel contains only real positive numbers, i.e.,

K̂p ∈ (0, 1]. Therefore,

‖I ∗ (Kδ −K)‖ = ‖Î · (1− K̂)‖ ≤ t · ‖Î‖ = t · ‖I‖ (7)

where x̂ denotes Fourier transform, · is point-wised product,

1 is an all-one matrix and p indexes pixels. The inequality

holds when choosing t = 1 − minp K̂p < 1, which sat-

isfies the condition in Eq. (5). It means these filters can

be strictly reversed using fixed-point iteration, if disregard-

ing small numerical errors. As shown in Fig. 3(a)-(c), the

DeFilter quality improves consistently in iterations.

For other types of kernels, such as line and disk kernels

(Fig. 3(d-f)), K̂ may contain zero, negative or complex val-

ues that make ‖1 − K̂p‖ ≥ 1. In this case, Eq. (5) cannot

satisfy arbitrary I. But for Ω = {p | ‖1− K̂p‖ < 1}, which

is the set of frequency components that satisfy Eq. (5), the

following inequality still holds.

‖ÎΩ · (1Ω − K̂Ω)‖ ≤ t · ‖ÎΩ‖, (8)
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Figure 3. Reversing convolutional filter. Kernels and their power spectrum are shown in the first column. (a) Image blurred by a Gaussian

kernel (σ = 2, kernel size 21× 21). (b)-(c) Results after 5 and 20 fixed-point iterations. (d) Image blurred by a disk kernel (r = 3, kernel

size 21× 21). (e)-(f) Results after 5 and 15 iterations. Note that high-frequency artifacts start to appear in the 15th iteration.

where subscript Ω denotes that subset from the original im-

age, which only contains frequency points in Ω. t is set to

maxp ‖1− K̂p‖ in this case, such that t < 1. Due to the lin-

ear property of convolution filter, fixed point iteration can

be split into two independent sequences as

X
t+1 = X

t+1

Ω
+X

t+1

Ω̄
= g(Xt

Ω) + g(Xt
Ω̄
), (9)

where Ω̄ denotes the complement of Ω. According to pre-

vious analysis, {Xt
Ω} guarantees to converge to the unique

solution X
∗

Ω, while {Xt
Ω̄
} could oscillate or diverge.

Fortunately, if we look at the spectrum of kernels, Ω re-

gion covers almost all low-frequency components. For both

Gaussian and disk kernels in Fig. 3, Ω region corresponds

to the frequency whose power is greater than 0, which is the

majority. Meanwhile, for natural images, the low frequency

components dominate their energy. It means that most of

useful energy of the original image can be recovered using

fixed-point iterations.

In the algorithm level, for the first a few iterations, re-

verse filtering adds back a lot of details with {Xt
Ω}, which

is the majority, dominating the process. Excessive iterations

(over 10) does not change {Xt
Ω} much for its near conver-

gence and contrarily amplifies {Xt

Ω̂
} with high-frequency

artifacts (Fig. 3(d-f)). It is worth mentioning that the diver-

gent part contains filter-specific information.

3.3. General Linear Filters

Similar analysis holds for general linear filter of

J = f(I) = AI, (10)

where I is the vectorized image I, and A is a square matrix

corresponding to linear filter. Singular value decomposition

of (I−A) gives

I−A = USV
∗, (11)

where I is an identity matrix, superscript ∗means conjugate

transpose, U and V are unitary matrices, and S is a diagonal

matrix containing singular values. We put these singular

values with their squares less than 1 into set Ω where Ω =
{p | |diag(S)p|

2 < 1}. We further project vectorized image

X into two orthogonal subspaces as

XΩ = VDΩV
∗X, XΩ̄ = VDΩ̄V

∗X, (12)

where DΩ is a diagonal matrix, and diag(DΩ)p is 1 if p ∈
Ω, otherwise it is set to 0. DΩ̄ = I−DΩ. We thus have

‖(I−A)XΩ‖ = X∗
VD

∗

ΩS
∗
SDΩV

∗X

= X∗
VΛΩV

∗X ≤ t · ‖X‖, (13)

where ΛΩ = D
∗

ΩS
∗
SDΩ is a diagonal matrix con-

taining only squared singular values in Ω. It is easy

to verify that the inequality holds when choosing t =
maxp∈Ω |diag(S)p|

2 < 1. Therefore, similar to Eq. (9),

iterations can be considered as sum of two independent sub-

sequences in orthogonal subspaces, and subsequent {Xt
Ω}

can strictly converge to optimal values. In fact, the two

separated regions in frequency domain (Fig. 3) are special

forms of the orthogonal subspaces we derive in Eq. (12).

The observation that Ω subspace contains the major en-

ergy of a natural image is not by chance. Since most com-

monly used linear filters are designed to suppress or remove

unwanted components like noise and texture while retaining

main structures, original structure is mostly included in Ω,

whose reversibility is ensured by Eq. (13). We will validate

it extensively in experiments.

3.4. Other Common Filters

We extend the idea of considering filter as operations

in two separate subspaces. For most image smoothing fil-

ters, they are designed to remove the “noise” component.
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Figure 4. Visualization of reversibility. (a)-(b) Input and filtered images by WLS [9], where the same scan-line pixels are selected as 1D

signals. (c)-(d) 1D signals of input (blue), filtered (red) and their difference (yellow). (d) Difference between noise components (yellow)

and difference between input images (red).

In natural images, noise and texture are small-scale com-

ponents compared to dominant structure and edges. Tak-

ing weighted-least-square [9] as an example, we apply it

to two random images shown in Fig. 4. The “noise” com-

ponents Ia − f(Ia) and Ib − f(Ib) are the yellow curves

in Fig. 4(c-d), respectively. In Fig. 4(e), the absolute differ-

ence between the two noise components (in yellow) is much

smaller than the absolute difference between the two unfil-

tered images (in red), which make the filter nearly satisfy

the contraction mapping condition in Eq. (4) in practice. In

the experiment section, we will verify this on lots of filters

that are widely used today.

3.5. Zeroorder Reverse Filtering Algorithm

Adopting fixed-point iterations for defiltering, our zero-

order reverse filter algorithm is summarized in Alg. 1.

Algorithm 1: Zero-order Reverse Filtering

INPUT : J∗, f(·), N iter

OUTPUT: X∗

X
0 ← J

∗ ;

for t:= 1 to N iter do

X
t ← X

t−1 + (J∗ − f(Xt−1))

X
∗ ← X

N iter

Implementation Remarks Implementation of the

method is simple without the need to take derivatives.

There are two parameters in configuration, i.e., f and N iter.

We note setting f is a bit sensitive. For instance, applying

a Gaussian filter with a small spatial support may lead to

inappropriate results, since Eq. (7) no longer holds for a

truncated Gaussian. As we will present in Sec. 4.1, there is

no single optimal iteration number for all filters. It needs to

be set empirically.

In Fig. 5, we show the intermediate results of this itera-

tive process for reversing adaptive-manifold filter [11]. Ap-

plying this filter reduces PSNR to 27.98dB compared to the

(a) Input image (b) Filtered (PSNR 27.98) (c) Iter #1 (PSNR 33.10)

(d) Iter #5 (PSNR 40.72) (e) Iter #10 (PSNR 44.20) (f) Iter #15 (PSNR 46.15)

Figure 5. Results from iterations of reversing adaptive-manifold

filter [11].

original image. Applying our DeFilter with 15 iterations

raises the PSNR to 46.15dB – there is almost no notice-

able difference between the original and defiltered images.

Many more examples are provided in the paper and in the

supplemental material to manifest its generality.

Our proposed method also has other advantages besides

simplicity. It is parameter free. The only parameter is the

number of iterations, which can be fixed in prior. It also

works well on many nonlinear and complicated filters, such

as bilateral filter [4] and guided filter [13]. Even global-

optimization-based methods [9] can be reversed effectively.

Differences from Other Residual Strategies Residual-

based enhancement was used for other tasks before – un-

sharp mask enhances images by adding edge residuals. In

super-resolution, the well-known back-projection technique

[16] iteratively refines high-res images by back projecting

errors. Our method is fundamentally different from these

strategies. Unsharp mask is a single-step process and does

not recover true details. On the other hand, back-projection

is more like a gradient descent method based on the imag-

ing model. Our method does not need to know exact filter

model, as illustrated in Fig. 1 and following examples.
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Table 1. Evaluation Results on BSD 300 dataset (PSNR)

Filter GS BF BFG BFPL GF AMF RF TF RGF MF WMF BM3D L0 RTV WLS LE

Init GT 27.75 25.50 25.67 27.85 28.21 27.36 27.80 28.75 30.06 26.01 33.00 32.27 26.86 25.34 24.80 29.30

Final GT 41.70 45.28 35.78 32.97 51.05 47.82 28.63 27.61 44.20 N/A 22.98 38.84 28.32 30.27 28.64 7.96

Best GT 41.70 45.28 37.70 36.92 51.05 48.10 31.16 29.21 44.20 26.07 35.43 38.84 28.99 30.27 29.71 44.21

Init DT 36.62 33.12 32.72 33.36 32.49 30.66 29.11 26.85 37.27 37.08 35.72 38.61 31.70 34.84 29.08 37.27

Final DT 79.07 80.50 64.21 54.32 87.94 53.02 60.22 36.00 45.67 N/A 35.65 57.98 36.51 45.38 62.20 45.55

Best DT 79.07 80.50 66.39 54.82 87.94 53.26 60.22 36.28 45.67 38.49 39.16 57.98 38.04 45.38 62.28 45.67

GS: Gaussian Filter, BF: Bilateral Filter [4], BFG: Bilateral Grid [5], BFPL: Permutohedral Lattice [1], GF: Guided Filter [13], AMF: Adaptive Manifold Filter [11], RF:

Domain Transform [10], TF: Tree Filter [2], RGF: Rolling Guidance Filter with AMF [33], MF: Median Filter, WMF: Weighted Median Filter [34], BM3D: BM3D Denoise

[6], L0: L0 Smooth [27], RTV: Relative Total Variation [29], WLS: Weighted Least Square [9], LE: Local Extrema [24].
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Figure 6. Curves of (a) PSRN vs. iteration and (b) Standard devi-

ation (SD) of mean square error (MSE) vs. iteration for common

filters.

4. Experiments

We conduct many experiments to evaluate the effective-

ness and the generality of our method on various common

filters. Our experiments are conducted on a PC with an In-

tel Xeon E5 3.7GHz CPU. We use the authors’ implemen-

tations for all filters. In order to demonstrate the restoration

ability, parameters of these filters are purposely set to large

values to produce strong filtering effect. Both qualitative

and quantitative results are provided for comparison.

4.1. Quantitative Evaluation

To quantitatively evaluate the restoration accuracy, we

build a dataset of 300 images with large appearance and

structural variation based on BSD300 from Berkeley seg-

mentation dataset [19]. We apply our method to reverse 16

famous filters, which we believe cover the majority of prac-

tical ones. We fix the number of iterations to 50, relatively

large for the purpose of analyzing convergence. Our method

is initialized as J∗.

Two similarity measures based on PSNR are used.

Ground truth (GT) error measures the difference between

the recovered image and the unfiltered original image.

Data-term (DT) error calculates the difference between in-

put filtered image and refiltered version of the recovery re-

sult. We calculate initial PSNRs before the first iteration

(Init), final PSNRs after 50th iteration (Final). Consider-

ing that complicated filters may violate the “reversible con-

dition”, we also report the best PSNRs (Best) achieved in

the entire process. The results are listed in Table 1.

(a) Input (b) BM3D (25.60 dB) (c) Reversed (33.53 dB)

Figure 7. Image detail recovery. (a) Original noisy input im-

age. (b) Filtered image by BM3D. (c) Defiltered image using our

method. Note that the noise patterns between input and our recov-

ered images are very close.

4.2. Result Analysis

We make several important observations from the results

in Table 1. First, DT PSNRs are generally larger than GT

ones, which complies with the fact that our method is ba-

sically a feedback system based on DT errors. Second, a

larger DT PSNR does not necessarily correspond to a larger

GT PSNR. For lossy filters, such as median filter (MF) and

local extrema filter (LE), the same output can be obtained

from different inputs. Thus the defiltered image may not be

the same as the original one, which makes perfect sense.

To analyze the convergence of our method on different

filters, we plot the PSNR-vs-iteration curves and the curves

of standard deviation (SD) of mean square error (MSE) vs.

iteration in Fig. 6. For filters that are well reversible, in-

cluding Gaussian filter (GS), bilateral filter (BF), guided fil-

ter (GF), adaptive manifold filter (AMF), rolling guidance

filter (RGF), BM3D and relative total variation (RTV), the

PSNRs consistently increase.

For filters that are partially reversible, such as bilateral

grid (BFG), permutohedral lattice (BFPL), domain trans-

form (RF), tree filter (TF), L0 smooth (L0) and weighted

least square (WLS), PSNRs increase in early iterations, and

then decrease or oscillate in later ones. This complies with

our previous theoretical analysis that reversible components

dominate images. Thus a good number of, by default 10, it-

erations can yield satisfying results for most filters.

Finally, for filters that are discontinuous in many places,

such as median filter (MF), weighted median filter (WMF),

and local extrema filter (LE), our method does not work

very well with slightly increased PSNRs in the first a few

iterations. For these filters, we claim them as not reversible
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(a) Input (b) RTV (c) Reversed

(d) Input (e) RGF+BF (f) Reversed

Figure 8. Our method can recover even small-scale image texture

by reversing detail-removal filters.

by our algorithm.

4.3. Recovered Detail Verification

Are the details recovered by our method true signals? In

Fig. 7, we apply BM3D denoising on an image, and then

use our method to reverse it. Visual inspection indicates

that the noise patterns of the defiltered image in Fig. 7(c) is

very similar to those of the original image in Fig. 7(a).

In Fig. 8, we first apply RTV and RGF+BG filters to

remove small scale texture and a level of image structures

from the input images, then use our method to recover them.

Again, our method takes back the small-scale details, con-

sistent with the input. This is because most image filters

largely suppress, but do not completely remove these de-

tails. The signal residual, albeit not visually prominent,

can still help recover the original input. Naturally, if some

image structures are completely destroyed in filtering, they

cannot be recovered well. This explains the difference of

the tablecloth patterns in Fig. 8(f) and (d).

4.4. Robustness

We also evaluate the robustness of our method against

lossy JPEG compression applied to the filtered image. In

Fig. 9, we first apply AMF to suppress weak edges and tex-

ture, followed by standard JPEG compression (MATLAB

JPEG encoder with quality 60%, 80%, 90%). The DeFilter

results shown in Fig. 9(c)-(e) contain sufficiently recovered

image details even under lossy compression.

4.5. More Results and Applications
Zero-order Super-resolution Single image super-

resolution is ill-posed due to information loss. Interestingly,

if we define the low-res image generation process as a

special down-sampling filter with scale factor σ = 2:

fSR(I) = resize(resize(I, 1/σ), σ), (14)

(a) Input (b) AMF (28.11dB) (c) 60% (26.77dB/ dB)27.77

(d) 80% (27.35dB/ dB)28.76 (e) 90% (27.73dB/ dB)29.19 (f) No-JPEG ( dB)43.45

Figure 9. Reverse filtering under JPEG compression. (a) Orig-

inal image. (b) Filtered image using AMF. (c)-(e) Our recovered

images in 20 iterations under different levels of JPEG compres-

sion. Compressed input PSNR (left) and recovered result PSNR

(right). (f) Our DeFilter result of (b).

we can apply our reverse filtering to rebuild the high-res im-

age. One example is shown in Fig. 10. Bicubic and Lanc-

zos3 interpolation (×2) achieves PSNRs of 28.99dB and

29.57dB, respectively. Directly applying our method using

the Bicubic result as initialization achieves 30.50dB, which

is on par with more sophisticated learning-based methods,

such as ScSR [31] and SRCNN [7]. Note that our method

does not rely on external data or parameter tweaking. More-

over, if we use the results of ScSR [31] and SRCNN [7] as

our initialization, we can further improve them as shown in

Fig. 10(f)(h). Therefore, our method can be used as a gen-

eral low-cost post-processing for improving existing super-

resolution methods. The amount of improvement that can

be achieved is image-structure dependent, varying accord-

ing to image content.

Zero-order Nonblind Deconvolution Image convolution

is in the common linear form fConv(I) = I ⊗ K that our

method can handle. In Fig. 11, we apply our method to

image deconvolution. Different from other non-blind de-

convolution methods, the blur kernel may not be known as

long as blur effect can be re-applied. Our method works

well for kernels with few zero/negative components in fre-

quency domain to avoid severe information loss and to sat-

isfy Eq. (8).

Applications Against Visual Deceiver Post-process for

hand-held device Apps to beautify human faces and im-

prove image quality is ubiquitous. These filters hide a lot

of information that a picture originally capture, which can
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(a) Ground truth (b) Bicubic (PSNR 28.99) (c) Lanczos3 (PSNR 29.57) (d) Ours (PSNR 30.50)

(f) ScSR + Ours (PSNR 30.76) (g) SRCNN (PSNR 30.83) (h) SRCNN + Ours (PSNR 31.49)(e) ScSR (PSNR 30.41)

Figure 10. Zero-order super-resolution. (a) Ground truth. (b)-(c) Bicubic and Lanczos3 interpolation. (e)&(g) Results of ScSR [31] and

SRCNN [7]. (d)&(f)&(h) Ours results with (b)&(e)&(g) as initialization, respectively.

(a) Input (b) Our result

Figure 11. Zero-order nonblind deconvolution. (a) Input im-

age with known blur kernel. (b) Recovered sharp image using our

method.

be sometimes regarded as “visual deceiver”. Our method

is the first in its kind to reverse this post-process and show

the original look without needing to know the filter that the

Apps implemented. Two examples are shown in Fig. 1 and

more in our supplementary material due to page limit.

Reversal of Other Operators Previous discussions

mostly focus on image smoothing processes. Our method

can also work well on some different operators. Fig. 12(a)-

(c) show an example of gamma correction reverse. Since

gamma correctin is basically an element-wise monotonous

operation (invertible), it can be easily verified using our

iterative method. Fig. 12(d)-(f) show the reversed effect

of unsharp mask sharpening method. With mild sharpen-

(a) Input (b) Gamma correction (c) Reversed

(d) Input (e) Unsharp mask (f) Reversed

Figure 12. Zero-order restoration for gamma correction and un-

sharp mask.

ing parameters, this process also keeps main structures and

energies unchanged, which ensures the correctness of our

method.

5. Concluding Remarks

We have tackled an unconventional problem of reversing

general filter. We have analyzed the condition that a filter

can be reversed, and proposed a zero-order reverse filtering

method based on fixed-point iterations. Extensive experi-

ments show that this simple method works very well for a

wide range of filters.

While our method has demonstrated its notable simplic-

ity and generality, it has several limitations. Firstly, depend-

ing on filter complexity, the effectiveness may vary. For in-

stance, reversing the median filter is not easy, as reported

in Table 1. Secondly, our method cannot bring back de-

tails that are completely lost during filtering, as shown in

Figs. 8(f) and 9(c).
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