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Our model-based deep convolutional face autoencoder enables unsupervised learning of semantic pose, shape, expression,

reflectance and lighting parameters. The trained encoder predicts these parameters from a single monocular image, all at once.

Abstract

In this work we propose a novel model-based deep convo-

lutional autoencoder that addresses the highly challenging

problem of reconstructing a 3D human face from a single

in-the-wild color image. To this end, we combine a convolu-

tional encoder network with an expert-designed generative

model that serves as decoder. The core innovation is the

differentiable parametric decoder that encapsulates image

formation analytically based on a generative model. Our

decoder takes as input a code vector with exactly defined

semantic meaning that encodes detailed face pose, shape, ex-

pression, skin reflectance and scene illumination. Due to this

new way of combining CNN-based with model-based face

reconstruction, the CNN-based encoder learns to extract

semantically meaningful parameters from a single monocu-

lar input image. For the first time, a CNN encoder and an

expert-designed generative model can be trained end-to-end

in an unsupervised manner, which renders training on very

large (unlabeled) real world data feasible. The obtained re-

constructions compare favorably to current state-of-the-art

approaches in terms of quality and richness of representation.

1. Introduction

Detailed, dense 3D reconstruction of the human face from

image data is a longstanding problem in computer vision

and computer graphics. Previous approaches have tackled

this challenging problem using calibrated multi-view data

or uncalibrated photo collections [26, 45]. Robust and de-

tailed three-dimensional face reconstruction from a single

arbitrary in-the-wild image, e.g., downloaded from the Inter-

net, is still an open research problem due to the high degree

of variability of uncalibrated photos in terms of resolution

and employed imaging device. In addition, in unconstrained

photos, faces show a high variability in global pose, facial

expression, and are captured under diverse and difficult light-

ing. Detailed 3D face reconstruction is the foundation for a

broad scope of applications, which range from robust face

recognition, over emotion estimation, to complex image ma-

nipulation tasks. In many applications, faces should ideally

be reconstructed in terms of meaningful low-dimensional

model parameters, which facilitates interpretation and ma-

nipulation of reconstructions (cf. [54]).

Recent monocular reconstruction methods broadly fall

into two categories: Generative and regression-based. Gen-

erative approaches fit a parametric face model to image and

video data, e.g., [3, 2, 12] by optimizing the alignment be-

tween the projected model and the image [14, 54, 51, 52, 25].

State-of-the-art generative approaches capture very detailed

and complete 3D face models on the basis of semantically

meaningful low-dimensional parameterizations [14, 54]. Un-

fortunately, the fitting energies are usually highly non-

convex. Good results thus require an initialization close

to the global optimum, which is only possible with some

level of control during image capture or additional input data,

e.g., detected landmarks.

Only recently, first regression-based approaches for dense

3D face reconstruction based on deep convolutional neural

networks were proposed. Richardson et al. [41] use iterative

regression to obtain a high quality estimate of pose, shape
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and expression, and finer scale surface detail [42] of a face

model. The expression-invariant regression approach of Tran

et al. [55] obtains high-quality estimates of shape and skin

reflectance. Unfortunately, these approaches can only be

trained in a supervised fashion on corpora of densely anno-

tated facial images, the creation of which is a major obstacle

in practice. In particular, the creation of a training corpus

of photo-realistic synthetic facial images that include facial

hair, parts of the upper body and a consistent background is

challenging. While the refinement network of Richardson

et al. [42] can be trained in an unsupervised manner, their

coarse shape regression network requires synthetic ground

truth data for training. Also, the quality and richness of

representation (e.g. illumination and colored reflectance in

addition to geometry) of these methods does not match the

best generative ones. However, trained networks are effi-

cient to evaluate and can be trained to achieve remarkable

robustness under difficult real world conditions.

This paper contributes a new type of model-based deep

convolutional autoencoder that joins forces of state-of-the-

art generative and CNN-based regression approaches for

dense 3D face reconstruction via a deep integration of the

two on an architectural level. Our network architecture is

inspired by recent progress on deep convolutional autoen-

coders, which, in their original form, couple a CNN encoder

and a CNN decoder through a code-layer of reduced dimen-

sionality [18, 33, 61]. Unlike previously used CNN-based

decoders, our convolutional autoencoder deeply integrates an

expert-designed decoder. This layer implements, in closed

form, an elaborate generative analytically-differentiable im-

age formation model on the basis of a detailed parametric

3D face model [3]. Some previous fully CNN-based au-

toencoders tried to disentangle [28, 15], but could not fully

guarantee the semantic meaning of code layer parameters.

In our new network, exact semantic meaning of the code

vector, i.e., the input to the decoder, is ensured by design.

Moreover, our decoder is compact and does not need training

of enormous sets of unintuitive CNN weights.

Unlike previous CNN regression-based approaches for

face reconstruction, a single forward pass of our network

estimates a much more complete face model, including pose,

shape, expression, skin reflectance, and illumination, at a

high quality. Our new network architecture allows, for the

first time, combined end-to-end training of a sophisticated

model-based (generative) decoder and a CNN encoder, with

error backpropagation through all layers. It also allows,

for the first time, unsupervised training of a network that

reconstructs dense and semantically meaningful faces on un-

labeled in-the-wild images via a dense photometric training

loss. In consequence, our network generalizes better to real

world data compared to networks trained on synthetic face

data [41, 42].

2. Related Work

In this section, we summarize previous works that are

related to our approach. We focus on parametric model

fitting and CNN approaches in the context of monocular face

reconstruction. For further work on general template-based

mesh tracking, please refer to [25, 26, 51, 52, 31].

Parametric Face Models Active Appearance Models

(AAMs) use a linear model for jointly capturing shape and

texture variation in 2D [9]. Matching an AAM to an image

is a registration problem, usually tackled via energy opti-

mization. A closely related approach to AAMs is the 3D

morphable model of faces (3DMM) [3], which has been used

for learning facial animations from 3D scans [2]. In [12],

a parametric head model has been employed to modify the

relative head pose and camera parameters of portrait photos.

Monocular Optimization-based Reconstruction Many

monocular reconstruction approaches solve an optimization

problem to fit a model to a given image. For example, the

3DMM has been used for monocular reconstruction [43]

and image collection-based reconstruction [45]. In [14],

high-quality 3D face rigs are obtained from monocular RGB

video based on a multi-layer model. Even real-time facial

reconstruction and reenactment has been achieved [54, 20].

Compared to optimization-based approaches, ours differs in

two main regards. First, our network efficiently regresses

model parameters without requiring iterative optimization.

Second, given a cropped face image, our method does not

require an initialization of the model parameters, which is a

significant advantage over optimization-based techniques.

Deep Learning for Coarse Face Reconstruction The de-

tection of facial landmarks in images is an active area of

research [57, 23]. Various approaches are based on deep

learning, including convolutional neural network (CNN) cas-

cades [50, 63], a deep face shape model based on Restricted

Boltzmann Machines [58], a recurrent network with long-

short term memory [61], a recurrent encoder-decoder net-

work for real-time facial landmark detection in video [38], or

a two-stage convolutional part heatmap regression approach

[5]. In [40], a multi-task CNN is trained to predict several

face-related parameters (e.g. pose, gender, age), in addition

to facial landmarks. These deep learning approaches share

common limitations: They are trained in a supervised man-

ner and predict only sparse information. In contrast, our

approach works unsupervised and obtains a dense recon-

struction via regressing generative model parameters.

Deep Learning for Dense Face Reconstruction Apart

from the approaches mentioned above, there exist several

dense deep learning approaches. A multilayer generative
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model based on deep belief networks for the generation of

images under new lighting has been introduced in [53]. The

face identity-preserving (FIP) descriptor has been proposed

for reconstructing a face image in a canonical view [65]. The

Multi-View Perceptron approach for face recognition learns

disentangled view and facial identity parameters based on a

training corpus that provides annotations of these dimensions

[66]. The generation of faces from attributes [30] and dense

shape regression [16] have also been studied. Non-linear

variants of AAMs based on Deep Boltzmann Machines have

been presented in [11, 39]. In [41], a CNN is trained using

synthetic data for extracting the face geometry from a single

image. Unsupervised refinement of these reconstructions has

been proposed in [42]. [55] used photo collections to obtain

the ground truth parameters from which a CNN is trained

for regressing facial identity. In [29], a CNN is trained un-

der controlled conditions in a supervised fashion for facial

animation tasks. A framework for face hallucination from

low-resolution face images has been proposed in [64]. All

the discussed approaches require annotated training data.

Since the annotation of a large image body is extremely ex-

pensive, some approaches (e.g. [41, 42]) resort to synthetic

data. However, synthetic renderings usually lack realistic

features, which has a negative impact on the reconstruction

accuracy. In contrast, our approach uses real data and does

not require ground truth model parameters.

Autoencoders Autoencoders approximate the identity

mapping by coupling an encoding stage with a decoding

stage to learn a compact intermediate description, the so-

called code vector. They have been used for nonlinear dimen-

sionality reduction [18] and to extract biologically plausible

image features [33]. An appealing characteristic is that these

architectures are in general unsupervised, i.e., no labeled

data is required. Closely related are approaches that con-

sider the encoding or decoding stage individually, such as

inverting a generative model [35], or generating images from

code vectors [62]. Autoencoders have been used to tackle

a wide range of face-related tasks, including stacked pro-

gressive autoencoders for face recognition [24], real-time

face alignment [60], face recognition using a supervised

autoencoder [13], learning of face representations with a

stacked autoencoder [10], or face de-occlusion [61]. The

Deep Convolutional Inverse Graphics Network (DC-IGN)

learns interpretable graphics codes that allow the reproduc-

tion of images under different conditions (e.g. pose and

lighting) [28]. This is achieved by using mini-batches where

only a single scene parameter is known to vary. The disentan-

glement of code variables, such as shape and scene-related

transformations has been considered in [15]. Our proposed

approach stands out from existing techniques, since we con-

sider the full set of meaningful parameters and do not need

to group images according to known variations.

Deep Integration of Expert Layers Inspired by Spatial

Transformer Networks [21], the gvvn library implements low-

level geometric computer vision layers [17]. Unsupervised

volumetric 3D object reconstruction from a single-view by

Perspective Transformer Nets has been demonstrated in [59].

Unlike these approaches, we tackle a higher level computer

vision task, namely the monocular reconstruction of semanti-

cally meaningful parameters for facial geometry, expression,

illumination, and camera extrinsics.

3. Overview

Our novel deep convolutional model-based face autoen-

coder enables unsupervised end-to-end learning of meaning-

ful semantic face and rendering parameters, see Fig. 1. To

this end, we combine convolutional encoders with an expert-

designed differentiable model-based decoder that analyti-

cally implements image formation. The decoder generates

a realistic synthetic image of a face and enforces seman-

tic meaning by design. Rendering is based on an image

formation model that enforces full semantic meaning via a

parametric face prior. More specifically, we independently

parameterize pose, shape, expression, skin reflectance and

illumination. The synthesized image is compared to the in-

put image using a robust photometric loss Eloss that includes

statistical regularization of the face. In combination, this

enables unsupervised end-to-end training of our networks.

2D facial landmark locations can be optionally provided to

add a surrogate loss for faster convergence and improved

reconstructions, see Sec. 6. Note, both scenarios require no

supervision of the semantic parameters. After training, the

encoder part of the network enables regression of a dense

face model and illumination from a single monocular image,

without requiring any other input, such as landmarks.

4. Semantic Code Vector

The semantic code vector x ∈ R
257 parameterizes the

facial expression δ ∈ R
64, shape α ∈ R

80, skin reflectance

β ∈ R
80, camera rotation T ∈ SO(3) and translation t ∈

R
3, and the scene illumination γ ∈ R

27 in a unified manner:

x = (α, δ, β
︸ ︷︷ ︸

face

, T, t, γ
︸ ︷︷ ︸

scene

) . (1)

In the following, we describe the parameters that are asso-

ciated with the employed face model. The parameters that

govern image formation are described later on in Sec. 5.

The face is represented as a manifold triangle mesh with

N = 24k vertices V = {vi ∈ R
3|1 ≤ i ≤ N}. The

associated vertex normals N = {ni ∈ R
3|1 ≤ i ≤ N} are

computed using a local one-ring neighborhood. The spatial

embedding V is parameterized by an affine face model:

V = V̂(α, δ) = As +Esα+Eeδ . (2)
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Figure 1. Our deep model-based face autoencoder enables unsupervised end-to-end learning of semantic parameters, such as pose, shape,

expression, skin reflectance and illumination. An optional landmark-based surrogate loss enables faster convergence and improved

reconstruction results, see Sec. 6. Both scenarios require no supervision of the semantic parameters during training.

Here, the average face shape As has been computed based

on 200 (100 male, 100 female) high-quality face scans [3].

The linear PCA bases Es ∈ R
3N×80 and Ee ∈ R

3N×64

encode the modes with the highest shape and expression

variation, respectively. We obtain the expression basis by

applying PCA to the combined set of blendshapes of [1] and

[6], which have been re-targeted to the face topology of [3]

using deformation transfer [49]. The PCA basis covers more

than 99% of the variance of the original blendshapes.

In addition to facial geometry, we also parameterize per-

vertex skin reflectance R = {ri ∈ R
3|1 ≤ i ≤ N} based

on an affine parametric model:

R = R̂(β) = Ar +Erβ . (3)

Here, the average skin reflectance Ar has been computed

based on [3] and the orthogonal PCA basis Er ∈ R
3N×80

captures the modes of highest variation. Note, all basis

vectors are already scaled with the appropriate standard de-

viations σ•
k such that ET

• E• = diag(· · · , [σ•
k]

2, · · · ).

5. Parametric Model-based Decoder

Given a scene description in the form of a semantic code

vector x, our parametric decoder generates a realistic syn-

thetic image of the corresponding face. Since our image

formation model is fully analytical and differentiable, we

also implement an efficient backward pass that inverts im-

age formation via standard backpropagation. This enables

unsupervised end-to-end training of our network. In the

following, we describe the used image formation model.

Perspective Camera We render realistic facial imagery

using a pinhole camera model under a full perspective pro-

jection Π : R3 → R
2 that maps from camera space to screen

space. The position and orientation of the camera in world

space is given by a rigid transformation, which we parameter-

ize based on a rotation T ∈ SO(3) and a global translation

t ∈ R
3. Hence, the functions ΦT,t(v) = T

−1(v − t) and

Π ◦ ΦT,t(v) map an arbitrary point v from world to camera

space and further to screen space.

Illumination Model We represent scene illumination us-

ing Spherical Harmonics (SH) [34]. Here, we assume distant

low-frequency illumination and a purely Lambertian surface

reflectance. Thus, we evaluate the radiosity at vertex vi with

surface normal ni and skin reflectance ri as follows:

C(ri,ni,γ) = ri ·

B2

∑

b=1

γbHb(ni) . (4)

The Hb : R3 → R are SH basis functions and the B2 = 9
coefficients γb ∈ R

3 (B = 3 bands) parameterize colored

illumination using the red, green and blue channel.

Image Formation We render realistic images of the scene

using the presented camera and illumination model. To this

end, in the forward pass F , we compute the screen space

position ui(x) and associated pixel color ci(x) for each

vertex vi:

Fi(x) = [ui(x), ci(x)]
T ∈ R

5 , (5)

ui(x) = Π ◦ ΦT,t

(
V̂i(α, δ)

)
,

ci(x) = C
(
R̂i(β),Tni(α, δ),γ

)
.

Here, Tni transforms the world space normals to camera

space and γ models illumination in camera space.

Backpropagation To enable training, we implement a

backward pass that inverts image formation:

Bi(x) =
dFi(x)

d(α, δ, β, T, t, γ)
∈ R

5×257 . (6)

This requires the computation of the gradients of the image

formation model (see Eq. 5) with respect to the face and

scene parameters. For high efficiency during training, we

evaluate the gradients in a data-parallel manner, see Sec. 7.
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6. Loss Layer

We employ a robust dense photometric loss function that

enables efficient end-to-end training of our networks. The

loss is inspired by recent optimization-based approaches

[14, 54] and combines three terms:

Eloss(x) = wlandEland(x) + wphotoEphoto(x)
︸ ︷︷ ︸

data term

+wregEreg(x)
︸ ︷︷ ︸

regularizer

.

(7)

Here, we enforce sparse landmark alignment Eland, dense

photometric alignment Ephoto and statistical plausibility Ereg

of the modeled faces. Note, Eland is optional and implements

a surrogate loss that can be used to speed up convergence,

see Sec. 7. The binary weight wland ∈ {0, 1} toggles this

constraint. The constant weights wphoto = 1.92 and wreg =
2.9× 10−5 balance the contributions of the objectives.

Dense Photometric Alignment The goal of the encoder

is to predict model parameters that lead to a synthetic face

image that matches the provided monocular input image. To

this end, we employ dense photometric alignment, similar to

[54], on a per-vertex level using a robust ℓ2,1-norm:

Ephoto(x) =
1

N

∑

i∈V

∥
∥
∥I

(
ui(x)

)
− ci(x)

∥
∥
∥
2

. (8)

Here, I is an image of the training corpus and we iterate

over the set of front facing vertices V , which we compute

based on the current forward pass, for occlusion awareness.

Sparse Landmark Alignment In addition to dense pho-

tometric alignment, we propose an optional surrogate loss

based on detected facial landmarks [46]. We use a subset

of 46 landmarks (out of 66), see Fig. 1. Given the subset

L = {(sj , cj , kj)}
46

j=1
of detected 2D landmarks sj ∈ R

2,

with confidence cj ∈ [0, 1] (1 confident) and correspond-

ing model vertex index kj ∈ {1, ..., N}, we enforce the

projected 3D vertices to be close to the 2D detections:

Eland(x) =

46∑

j=1

cj ·
∥
∥
∥ukj

(x)− sj

∥
∥
∥

2

2

. (9)

Please note, this surrogate loss is optional. Our networks can

be trained fully unsupervised without supplying these sparse

constraints. After training, landmarks are never required.

Statistical Regularization During training, we further

constrain the optimization problem using statistical regu-

larization [3] on the model parameters:

Ereg(x) =

80∑

k=1

α2

k + wβ

80∑

k=1

β2

k + wδ

64∑

k=1

δ2k . (10)

Figure 2. Our approach enables the regression of high quality pose,

shape, expression, skin reflectance and illumination from just a

single monocular image (images from CelebA [32]).

Figure 3. Sample images of our real world training corpus.

This constraint enforces plausible facial shape α, expression

δ and skin reflectance β by preferring values close to the

average (the basis of the linear face model is already scaled

by the standard deviations). The parameters wβ = 1.7 ×
10−3 and wδ = 0.8 balance the importance of the terms.

Note, we do not regularize pose (T, t) and illumination γ.

Backpropagation To enable training based on stochastic

gradient descent, during backpropagation, the gradient of the

robust loss is passed backward to our model-based decoder

and is combined with Bi(x) using the chain rule.

7. Results

We demonstrate unsupervised learning of our model-

based autoencoder in the wild and also show that a surrogate

loss during training improves accuracy. We test encoders

based on AlexNet [27] and VGG-Face [37], where we modi-

fied the last fully connected layer to output our 257 model

parameters. The reported results have been obtained using

AlexNet [27] as encoder and without the surrogate loss, un-

less stated otherwise. After training, the encoder regresses

pose, shape, expression, skin reflectance and illumination at

once from a single image, see Fig. 2. For training we use an

image corpus (see Fig. 3), which is a combination of four

datasets: CelebA [32], LFW [19], Facewarehouse [7], and

300-VW [8, 48, 56]. The corpus is automatically annotated

using facial landmark detection (see Sec. 6) and cropped to
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Figure 4. Comparison to Richardson et al. [41, 42] (coarse network without refinement) on 300-VW [8, 48, 56] (left) and LFW [19] (right).

Our approach obtains higher reconstruction quality and provides estimates of colored reflectance and illumination. Note, the greyscale

reflectance of [41, 42] is not regressed, but obtained via optimization, we on the other hand regress all parameters at once.

Figure 5. Comparison to Tran et al. [55] on LFW [19]. Our

approach obtains visually similar quality. Here, we show the full

face model, but training only uses the frontal part (cf. Fig 1, right).

a bounding box using Haar Cascade Face Detection [4]. We

prune frames with bad detections. The crops are scaled to

a resolution of 240 × 240 pixels. In total, we collect 147k

images, which we randomize and split into 142k for training

and 5k for evaluation. We train our network using the Caffe

[22] deep learning framework. For efficiency, we implement

our model-based decoder and the robust photometric loss

in a single CUDA [36] layer. We train our networks using

AdaDelta and perform 200k batch iterations (batch size of 5).

The base learning rate is 0.1 for all parameters, except for

the Z-translation, for which we set it to 0.0005. At test time,

regressing all parameters using a TitanX Pascal graphics card

is fast and takes only 4ms (AlexNet) or 14ms (VGG-Face).

Training takes 13 hours (AlexNet) or 20 hours (VGG-Face).

The encoder is initialized based on the provided pre-trained

weights. All weights in the last fully connected layer are

initialized to zero. This guarantees that the initial prediction

is the average face placed in the middle of the screen and lit

by ambient light, which is a good initialization. Note, the

ambient coefficients of our renderer have an offset of 0.7 to

guarantee that the scene is initially lit.

Next, we compare to state-of-the-art optimization- and

learning-based monocular reconstruction approaches, and

evaluate all components of our approach.

Comparison to Richardson et al. [41, 42] We com-

pare our approach to the CNN-based iterative regressor of

Richardson et al. [41, 42]. Our results are compared quali-

tatively (Fig. 4) and quantitatively (Fig. 11) to their coarse

regression network. Note, the refinement layer of [42] is

Figure 6. Comparison to the monocular reconstruction approach

of [54] on CelebA [32]. Our approach obtains similar or higher

quality, while being orders of magnitude faster (4ms vs. ∼ 500ms).

orthogonal to our approach. Unlike [41, 42], our network is

trained completely unsupervised on real images, while they

use a synthetic training corpus that lacks realistic features. In

contrast to [41, 42], we also regress colored skin reflectance

and illumination, which is critical for many applications,

e.g., relighting. Note, the greyscale reflectance of [41, 42] is

not regressed, but obtained via optimization.

Comparison to Tran et al. [55] We compare qualitatively

(Fig. 5) and quantitatively (Fig. 11) to the CNN-based iden-

tity regression approach of Tran et al. [55]. Our reconstruc-

tions are of visually similar quality, however, we additionally

obtain high quality estimates of the facial expression and

illumination. We also performed a face verification test on

LFW. Our approach obtains an accuracy of 77%, which is

higher than the monocular 3DMM baseline [44] (75%). Tran

et al. [55] report an accuracy of 92%. Our approach is not

designed for this scenario, since it is trained unsupervised on

in-the-wild images. Tran et al. [55] require more supervision

(photo collection) to train their network.

Comparison to Thies et al. [54] We compare our ap-

proach qualitatively (Fig. 6) and quantitatively (Fig. 11)

to the state-of-the-art optimization-based monocular recon-

struction approach of Thies et al. [54]. Our approach obtains

similar or even higher quality, while being orders of magni-
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Figure 7. We compare to our implementation of the high quality off-

line monocular reconstruction approach of [14]. We obtain similar

quality without requiring landmarks as input. Without landmarks,

[14] often gets stuck in a local minimum.

Figure 8. We evaluate different encoders in combination with our

model-based decoder. In average VGG-Face [37] leads to slightly

better results than AlexNet [27], but the results are comparable.

tude faster (4ms vs. ∼ 500ms). Note, while [54] tracks at

real-time after identity estimation, it requires half a second

to fit all parameters starting from the average model. While

our approach only requires face detection at test time, Thies

et al. [54] require detected landmarks.

Comparison to Garrido et al. [14] We compare to our

implementation (coarse layer, photometric + landmark +

regularization terms, 50 Gauss-Newton steps) of the high

quality off-line monocular reconstruction approach of [14],

which requires landmarks as input. Our approach obtains

comparable quality, while requiring no landmarks, see Fig. 7.

Without sparse constraints as input, optimization-based ap-

proaches often get stuck in a local minimum.

Evaluation of Different Encoders We evaluate the im-

pact of different encoders. VGG-Face [37] leads to slightly

better results than AlexNet [27], see Fig. 8. On average

VGG-Face [37] has a slightly lower landmark (4.9 pixels

vs. 5.3 pixels) and photometric error (0.073 vs. 0.075, color

distance in RGB space, each channel in [0, 1]), see Fig. 9.

Quantitative Evaluation of Unsupervised Training Un-

supervised training decreases the dense photometric and

landmark error (on a validation set of 5k real images), even

when landmark alignment is not part of the loss function,

see Fig. 9. The landmark error is computed based on 46
detected landmarks [46]. Training with our surrogate loss

Figure 9. Quantitative evaluation on real data: Both landmark and

photometric error are decreased during unsupervised training, even

though landmark alignment is not part of the loss function.

Table 1. Quantitative evaluation on real data.
Geometry Photometric Landmark

Ours (w/o surrogate) 1.9mm 0.065 5.0px

Ours (w/ surrogate) 1.7mm 0.068 3.2px

Garrido et al. [14] 1.4mm 0.052 2.6px

Figure 10. Quantitative evaluation on synthetic ground truth data:

Training decreases the geometric, photometric and landmark error.

improves landmark alignment (AlexNet: 3.7 pixels vs. 5.3
pixels, VGG-Face: 3.4 pixels vs. 4.9) and leads to a similar

photometric error (AlexNet: 0.078 vs. 0.075, VGG-Face:

0.078 vs. 0.073, color distance in RGB space, each channel

in [0, 1]). We also evaluate the influence of our landmark-

based surrogate loss qualitatively, see Fig. 12. Training with

landmarks helps to improve robustness to occlusions and the

quality of the predicted expressions. Note that both scenarios

do not require landmarks, at test time.

Quantitative Evaluation We perform a ground truth eval-

uation based on 5k rendered images with known parame-

ters. Our model-based autoencoder (AlexNet, unsupervised)

is trained on a corpus of 100k synthetic images with back-

ground augmentation, see Fig. 10. We measure the geometric

error as the point-to-point 3D distance (including the esti-

mated rotation, we compensate for translation and isotropic

scale) between the estimate and the ground truth mesh. This

error drops from 21.6mm to 4.5mm. The photometric error

in RGB space also decreases (0.33 to 0.05) and so does the

landmark error (31.6 pixels to 3.9 pixels). Overall, we obtain

good fits. We also performed a quantitative comparison for

9 identities (180 images) on Facewarehouse, see Tab. 1 and
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Figure 11. Quantitative evaluation on three images of Facewarehouse [7]: We obtain a low error that is comparable to optimization-based

approaches. For this test, we trained our network using the intrinsics of the Kinect.

Figure 12. We evaluate the influence of the proposed surrogate task.

The surrogate task leads to improved reconstruction quality and

increases robustness to occlusions and strong expressions.

Figure 13. Our model-based autoencoder gives results of higher

quality than convolutional autoencoders. In addition, it provides

access to dense geometry, reflectance, and illumination.

Figure 14. Our model-based decoder provides higher fidelity in

terms of image quality than a learned convolutional decoder.

Fig. 11. Our approach obtains low errors, which are on par

with optimization-based techniques, while being much faster

(4ms vs. 1min) and not requiring landmarks at test time.

Comparison to Autoencoders and Learned Decoders

We compare our model-based with a convolutional autoen-

coder in Fig. 13. The autoencoder uses four 3×3 convolution

layers (64, 96, 128, 256 channels), a fully connected layer

(257 outputs, same as number of model parameters), and

four 4 × 4 deconvolution layers (128, 96, 64, 3 channels).

Our model-based approach obtains sharper reconstruction

results and provides fine granular semantic parameters allow-

ing access to dense geometry, reflectance, and illumination,

see Fig. 13 (middle). Explicit disentanglement [28, 15] of

a convolutional autoencoder requires labeled ground truth

data. We also compare to image formation based on a trained

decoder. To this end, we train the decoder (similar param-

eters as above) based on synthetic imagery generated by

our model to learn the parameter-to-image mapping. Our

model-based decoder obtains renderings of higher fidelity

compared to the learned decoder, see Fig. 14.

Figure 15. Facial hair and occlusions are challenging to handle.

8. Limitations

We have demonstrated compelling monocular reconstruc-

tions using a novel model-based autoencoder that is trained

unsupervised. Similar to other regression approaches, im-

plausible reconstructions are possible outside the span of

training data. This can be alleviated by enlarging the train-

ing corpus, which is easy to achieve in our unsupervised

setting. Since we employ a face model, reconstructions are

limited to the modeled subspace. Similar to optimization-

based approaches, strong occlusions, e.g., by facial hair or

external objects, cause our approach to fail, see Fig. 15. Un-

supervised occlusion-aware training is an interesting open

research problem. Similar to related approaches, strong head

rotations are challenging. Since we do not model the back-

ground, our reconstructions can slightly shrink. Shrinking is

discussed and addressed in [47].

9. Conclusion

We have presented the first deep convolutional model-

based face autoencoder that can be trained in an unsuper-

vised manner and learns meaningful semantic parameters.

Semantic meaning in the code vector is enforced by a para-

metric model that encodes variation along the pose, shape,

expression, skin reflectance and illumination dimensions.

Our model-based decoder is fully differentiable and allows

end-to-end learning of our network.

We believe that the fundamental technical concepts of

our approach go far beyond the context of monocular face

reconstruction and will inspire future work.
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[47] S. Schönborn, B. Egger, A. Forster, and T. Vetter. Background

modeling for generative image models. Comput. Vis. Image

Underst., 136(C):117–127, July 2015. 8

[48] J. Shen, S. Zafeiriou, G. G. Chrysos, J. Kossaifi, G. Tz-

imiropoulos, and M. Pantic. The first facial landmark tracking

in-the-wild challenge: Benchmark and results. In ICCVW,

December 2015. 5, 6
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