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Abstract

Learning automatically the structure of object categories

remains an important open problem in computer vision. In

this paper, we propose a novel unsupervised approach that

can discover and learn landmarks in object categories, thus

characterizing their structure. Our approach is based on

factorizing image deformations, as induced by a viewpoint

change or an object deformation, by learning a deep neu-

ral network that detects landmarks consistently with such

visual effects. Furthermore, we show that the learned land-

marks establish meaningful correspondences between dif-

ferent object instances in a category without having to im-

pose this requirement explicitly. We assess the method qual-

itatively on a variety of object types, natural and man-made.

We also show that our unsupervised landmarks are highly

predictive of manually-annotated landmarks in face bench-

mark datasets, and can be used to regress these with a high

degree of accuracy.

1. Introduction

The appearance of objects in images depends strongly

not only on their intrinsic properties such as shape and ma-

terial, but also on accidental factors such as viewpoint and

illumination. Thus, learning from images about objects as

intrinsic physical entities is extremely difficult, particularly

if no supervision is provided.

Despite these difficulties, the performance of object de-

tection algorithms has been rising steadily, and deep neural

networks now achieve excellent results on benchmarks such

as PASCAL VOC [17] and Microsoft COCO [39]. Still,

it is unclear whether these models conceptualise objects as

intrinsic entities. Early object detectors such as HOG [13]

and DPMs [18] were based on 2D templates applied in a

translation and scale invariant manner to images. Recent

detectors such as SSD [42] make this even more extreme

and learn different templates (filters) for different scales and

even different aspect ratios of objects. Hence, these mod-

els are likely to capture objects as image-based phenomena,

representing them as a collection of weakly-related 2D pat-

Unlabelled images

Viewpoint factorization

Learned landmarks

Figure 1. We present a novel method that can learn viewpoint in-

variant landmarks without any supervision. The method uses

a process of viewpoint factorization which learns a deep landmark

detector compatible with image deformations. It can be applied to

rigid and deformable objects and object categories.

terns.

Achieving a deeper understanding of objects requires

modeling their intrinsic viewpoint-independent structure.

Often this structure is defined manually by specifying en-

tities such as landmarks, parts, and skeletons. Given suffi-

cient manual annotations, it is possible to teach deep neural

networks and other models to recognize such structures in

images. However, the problem of learning such structures

without manual supervision remains largely open.

In this paper, we contribute a new approach to learn

viewpoint-independent representations of objects from im-

ages without manual supervision (fig. 1). We formulate this

task as a factorization problem, where the effects of image

deformations, for example arising from a viewpoint change,

are explained by the motion of a reference frame attached

to the object and independent of the viewpoint.

After describing the general principle (sec. 3.1), we in-
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vestigate a particular instantiation of it. In this model, the

structure of an object is expressed as a set of landmark

points (sec. 3.2) detected by a neural network. Differently

from traditional keypoint detectors, however, the network

is learned without manual supervision. Learning considers

pairs of images related by a warp and requires the detector’s

output to be equivariant with the transformation (sec. 3.3).

Transformations could be induced by real-world viewpoint

changes or object deformations, but we show that meaning-

ful landmarks can be learned even by considering random

perturbations only.

We show that this method works for individual rigid and

deformable object instances (sec. 3.1.1) as well as for object

categories (sec. 3.1.2). This only requires learning a sin-

gle neural network to detect the same set of landmarks for

images containing different object instances of a category.

While there is no explicit constraint that forces landmarks

for different instances to align, we show that, in practice,

this tends to occur automatically.

The method is tested qualitatively on a variety of differ-

ent object types, including shoes, animals, and human faces

(sec. 4). We also show that the unsupervised landmarks are

highly predictive of manually-annotated landmarks, and as

such can be used to detect these with a high degree of ac-

curacy. In this manner, our method can also be used for

unsupervised pretraining of semantic landmark detectors.

2. Related work

Flow. Matching images up to a motion-induced deforma-

tion links back to the work of Horn and Schunck [26] on

optical flow and to deep learning approaches for its compu-

tation [21, 57, 28]. Flow can also be defined semantically

rather than geometrically [40, 32, 46, 77, 76]. While our

method also establishes geometric and (indirectly) seman-

tic correspondences, it goes beyond that by learning a single

set of viewpoint independent landmarks which are valid for

all images at once.

Parts. A traditional method to describe the structure of

objects is to decompose them into their constituent parts.

Several unsupervised methods to learn parts exist, from the

constellation approach used in [19, 9, 62] to the Deformable

Parts Model (DPM) [18] and many others. More recently,

AnchorNet [48] successfully learns parts that match differ-

ent object instances as well as different object categories

using only image-level supervision; furthermore, they pro-

pose a part orthogonality constraint similar to our own.

While the concepts of landmarks and parts are similar, our

training method differs substantially from these approaches:

rather than learning parts as a byproduct of learning a (de-

formable) discriminator, our landmark points are trained to

fit geometric deformations directly.

Deformation-prediction networks. WarpNet [30] learns a

neural network that, given two images, predicts a Thin Plate

Spline (TPS [6]) that aligns them. While our landmarks

can also be seen as a representation of transformations (as

matching them between image pairs induces one), learning

such landmarks is unique to our method. The Deep De-

formation Network of [69] predicts image transformations

to refine landmarks using a “Point Transformer Network”,

but their landmarks are learned using full manual supervi-

sion, whereas our method is fully unsupervised. Very re-

cently [53] learn a neural network that also aligns two im-

ages by estimating the transformation between them, im-

plicitly learning feature extractors that could be similar to

keypoints; however, our work explicitly trains a network

to output keypoints that are equivariant to such transforma-

tions.

Landmark detection. There is an extensive literature

on landmark detectors, particularly for faces. Exam-

ples include Active Appearance Models [11], along with

subsequent improvements [44, 12] and others using tem-

plates [51] or parts [80]. Other approaches directly regress

the landmark coordinates [59, 14, 10, 52]. Deep learning

methods use cascaded CNNs [56], coarse-to-fine autoen-

coders [70], auxiliary attribute prediction [73, 74], learned

deformations [69] and LSTMs [64]. Beyond faces, there is

work on humans [65, 58], birds [55, 41, 69] and furniture

[63]. More general pose estimation including the case of

landmarks is explored in [16]. Our method can build on any

such detector architecture and can be used as a pretraining

strategy to learn landmarks with less or no supervision.

Equivariance constraint. A variant of the equivariance

constraint used by our method was proposed by [37] to learn

feature point detectors for image matching. We build on a

similar principle, but use it to learn intrinsic landmarks for

object categories instead of generic SIFT-like features with

a robust learning objective and learn to detect a set of com-

plementary landmarks rather than a single one at a time.

Unsupervised pretraining. Unsupervised pretraining has

received significant interest with the popularization of data-

hungry deep networks [5, 24, 23]. Unsupervised learn-

ing is based on training a network to solve auxiliary tasks,

for which supervision can be obtained without manual an-

notations. The most common of such tasks is to gener-

ate the data (autoencoders [7, 4, 25]); or one can remove

some information in images and train a network to recon-

struct it (denoising [60], ordering patches [15, 47], inpaint-

ing [50], analyzing motion [1, 49, 61, 20, 45], and coloriz-

ing [71, 35]). Our method can be seen in this light as trying

to undo a synthetic deformation applied to an image.

Our method is also related to unsupervised learning for

faces, such as alignment based on a face model [78], learn-

ing meaningful descriptors [67, 22], and learning a part

model [38]. Huang et al. [27] learn joint alignment of faces

using deep features, and Jaiswal et al. [29] use clustering

to discover head modes in order to refine manually-defined

landmarks in an unsupervised manner, both using genera-

5917



Figure 2. Modelling the structure of objects. Points r in the

reference space S0 (conceptually a sphere) index corresponding

points in different object instances. Given an image x, the map

Φ(r;x) detects the location q of the reference point r. The map

must be compatible with warps g of the objects. For different

views of the same (deformable) object instance, the warp g is de-

fined geometrically, whereas for object categories (as shown) it is

defined semantically.

tive principles. None of these methods learns landmarks

from scratch.

3. Method

Sec. 3.1 introduces the method of viewpoint factoriza-

tion for learning an intrinsic reference frame for object in-

stances and categories. Then, sec. 3.2 applies it to learn

object landmarks and sec. 3.3 discusses the details of the

learning formulation.

3.1. Structure from viewpoint factorization

Let S ⊂ R
3 be the surface of a physical object, say a

bird, and let x : Λ → R be an image of the object, where

Λ ⊂ R
2 is the image domain (fig. 2). The surface S is an in-

trinsic property of the object, independent of the particular

image x and of the corresponding viewpoint. We consider

the problem of learning a function q = ΦS(p;x) that maps

object points p ∈ S to the corresponding pixels q ∈ Λ in

the image.

We propose a new method to learn ΦS automatically

through a process of viewpoint factorization. To this end,

consider a second image x′ of the object seen from a differ-

ent viewpoint. Occlusion not withstanding, one can write

x
′ ≈ x ◦ g where g : R2 → R

2 is the image warp induced

by the viewpoint change. Using the map ΦS , the warp g can

be factorised as follows:

g = ΦS(·;x
′) ◦ ΦS(·;x)

−1. (1)

In other words, we can decompose the warp g : q 7→ q′ as

first finding the intrinsic object point p = Φ−1
S (q;x) corre-

sponding to pixel q in image x and then finding the corre-

sponding pixel q′ = ΦS(p;x
′) in image x

′.

The factorization eq. (1) is more conveniently expressed

as the following equivariance constraint:

∀p ∈ S : ΦS(p;x ◦ g) = g(ΦS(p;x)). (2)

This constraint simply states that the points p must be de-

tected in a manner which is consistent with a viewpoint

change.

In order to learn the map ΦS , we express the latter as a

deep neural network and train it to satisfy constraint (2) in

a Siamese configuration, supplying triplets (x,x′, g) to the

learning process. Note that, if we are given two views x

and x
′ of the same object, the viewpoint transformation g

is often unknown. Instead of trying to recover g, inspired

by [30], we propose to synthesize transformations g at ran-

dom and use them to generate x
′ from x. While this ap-

proach only uses unannotated images of the object, it can

still learn meaningful landmarks (sec. 4).1

Discussion. While learning only considers deformations of

the same image, the model still learns to bridge automat-

ically across moderately different viewpoints (see fig. 5).

However we leave very large out-of-plane rotations, which

would require to handle partial occlusions of the landmarks,

to future work.

3.1.1 Deformable objects

The method developed above extends essentially with no

modification to deformable objects. Suppose that the sur-

face S deforms between images according to isomorphisms

w : R3 → R
3. We tie the shape variants wS = {w(p) :

p ∈ S} together by introducing a common reference space

S0, which we call an object frame. Barring topological

changes, we can establish isomorphisms πS mapping ref-

erence points r ∈ S0 to fixed surface points πS(r) ∈ S, in

the sense that ∀w : w(πS(r)) = πwS(r). Then, by using

the substitution Φ(r;x) = ΦS(πS(r);x), we can rewrite

the equivariance constraint (2) as

∀r ∈ S0 : Φ(r;x ◦ g) = g(Φ(r;x)). (3)

This simply states that one expects surface points to be de-

tected equivariantly with viewpoint-induced deformations

as well as with deformations of the object surface.

3.1.2 Object categories

In addition to deformable objects, our formulation can eas-

ily account for shape variations between object instances in

the same category. To do this, one simply makes the as-

sumption that all object surfaces S are isomorphic to the

same reference shape S0 (fig. 2).

Differently from the case of deformable objects, geome-

try alone does not force the mappings πS for different object

1If x and x
′ are given but g is unknown, one can rewrite eq. (2) by

expressing the warp g as a function of the predicted landmarks (as the

solution of the equation ∀p : ΦS(p;x
′) = gΦS(p;x)), and then by mea-

suring the alignment quality in appearance space as ‖x′−x◦g‖. However,

this approach provides a weaker supervisory signal and is somewhat more

complex to implement.
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instances S to be related. Nevertheless, we would like to

choose such mappings to be semantically consistent; for ex-

ample, if πS(r) is the right eye of face S, then we would like

πS′(r) to be the right eye of face S′. An important contri-

bution of this work is to show that semantically-meaningful

correspondences emerge automatically by simply sharing

the same learned mapping Φ between all object instances

in a given category. The idea is that, by learning a sin-

gle rule that detects object points consistently with defor-

mations, these points tend to align between different object

instances as this is the smoothest solution.

3.2. Landmark detection networks

In this section we instantiate concretely the method

of sec. 3.1. First, one needs to decide how to represent

the maps Φ(·;x) : S0 → Λ as the output of a neural net-

work or other computational model. Our approach is to

sample this function at a set of K discrete reference loca-

tions Φ(x) = (Φ(r1;x), . . . ,Φ(rK ;x)). In this manner, the

function Φ(x) can be thought of as detecting the location

pk = Φ(rk;x) of K object landmarks. We do not attach

particular constraints to the set of landmarks, which can be

thought of as an index set rk = k, k = 1, 2, . . . ,K.

If Φ is implemented as a neural network, one can use

any of the existing architectures for keypoint detection

(sec. 2). Most such architectures are based on estimating

score maps Ψ(x) ∈ R
H×W×K , associating a score Ψ(x)uk

to each landmark rk and image location u ∈ {1, . . . , H} ×
{1, . . . ,W} ⊂ R

2. The score maps can be transformed into

probability maps by using the softmax operator σ:

p(u|x, r) = σ[Ψ(x)]ur =
eΨ(x)ur

∑

v e
Ψ(x)vr

.

Following [66], it is then possible to extract a landmark lo-

cation by using the soft argmax operator, which computes

the expected value of this density:

u∗

r = σarg[Ψ(x)]r =
∑

u

u p(u|x, r) =

∑

u ue
Ψ(x)ur

∑

v e
Ψ(x)vr

.

The overall network, computing the location of the K land-

marks, can then be expressed as

Φ(x) = σarg[Ψ(x)]. (4)

Discussion. An alternative approach for representing the

maps S0 → Λ is to predict the parameters of a parametric

transformation t. Assuming that the reference set S0 ⊂ R
2

is a space of continuous coordinates, the transformation t

could be an affine one [37] or a thin plate spline (TPS) [30].

This has the advantage of capturing in one step a dense set

of object points and can be used to impose smoothness on

the map.

However, using discrete landmarks is more robust and

general. For example, individual landmarks may be un-

detectable when occluded, and this model can handle this

case more easily without disrupting the estimate of the vis-

ible landmarks. Furthermore, one does not need to make

assumptions on the family of allowable transformations,

which could be difficult in general.

3.3. Learning formulation

In this section, we show how the equivariance con-

straint (3) can be used to learn Φ from examples. The idea

is to setup the learning problem as a Siamese configuration,

in which the output of Φ on two images x and x
′ is assessed

for compatibility with respect to the deformation g and the

equivariance constraint (3). We can express this condition

as the loss term:

Lalign =
1

K

K
∑

r=1

‖Φ(x ◦ g)r − g(Φ(x)r)‖
2. (5)

In the rest of the section, we discuss two extensions

to eq. (5) that allow the system to train better landmarks:

formulating the loss directly in terms of the keypoint prob-

abilities and adding a diversity term.

Probability maps loss. Equation (5) uses the soft argmax

operator in order to localise and then compare landmarks.

We show here that one can skip this step by writing a loss

directly in terms of the probability maps, which provides a

more direct and stable gradient signal. The idea is to re-

place eq. (5) with the loss term

L′

align =
1

K

K
∑

r=1

∑

uv

‖u− g(v)‖2p(u|x, r)p(v|x′, r) (6)

where p(u|x, r) = σ[Ψ(x)]ur and p(v|x′, r) = σ[Ψ(x′)]vr
are the landmark probability maps extracted from images x

and x
′.

Minimizing loss (6) has two desirable effects. First, it

encourages the two probability maps to overlap and, second,

it encourages them to be highly concentrated. In fact, the

loss is zero if, and only if, both p and q are delta functions

and if the corresponding landmark locations match up to g.

While a naive implementation of (6) requires to visit all

pairs of pixels u and v in both images, with a quadratic com-

plexity, a linear-time implementation is possible by decom-

posing the loss as:

∑

u

‖u‖2p(u|x, r) +
∑

v

‖g(v)‖2p(v|x′, r)

− 2

(

∑

u

u p(u|x, r)

)⊤

·

(

∑

v

g(v)p(v|x′, r)

)

.
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Diversity loss. The equivariance constraint eq. (3) and its

corresponding losses eqs. (5) and (6) ensure that the net-

work learns at least one landmark aligned with image defor-

mations. However, there is nothing to prevent the network

from learning K identical copies of the same landmark.

In order to avoid this degenerate solution, we add a di-

versity loss that requires probability maps of different land-

marks to fire in different parts of the image. The most ob-

vious approach is to penalize the mutual overlap between

maps for different landmarks r and r′:

Ldiv(x) =
1

K2

K
∑

r=1

K
∑

r′=1

∑

u

p(u|x, r)p(u|x, r′). (7)

This term is zero only if, and only if, the support of the

different probability maps is disjoint.

The disadvantage of this approach is that it is quadratic

in the number of landmarks. An alternative and more effi-

cient diversity loss is:

L′

div(x) =
∑

u

(

K
∑

r=1

p(u|x, r)− max
r=1,...,K

p(u|x, r)

)

.

(8)

Just like eq. (7), this loss is zero only if the support of the

distributions is disjoint. In fact the sum of probability values

at a given point u is always greater than the max unless all

but one probability are zero. Note that we can rewrite (8)

more compactly as:

L′

div(x) = K −
∑

u

max
r=1,...,K

p(u|x, r).

In practice, we found it beneficial to apply the diversity loss

after downsampling (by m×m sum pooling) the probability

maps as this encourages landmarks to be extracted farther

apart. Thus we consider:

L′′

div(x) = K −
∑

u

max
r=1,...,K

∑

δu

p(mu+ δu|x, r).

where δu ∈ {0, . . . ,m− 1}2.

Learning objective. The learning objective considers

triplets (xi,x
′

i, gi) of images xi and x
′

i related by a view-

point warp gi and optimizes:

min
Ψ

λR(Ψ) +
1

N

N
∑

i=1

(

L′

align(xi,x
′

i, gi; Ψ)+

γL′′

div(xi; Ψ) + γL′′

div(x
′

i; Ψ)
)

, (9)

where R is a regulariser (weight shrinkage for a neural net-

work). As noted before, if triplets are not available, they

can be synthesized by applying a random transformation gi
to an image xi to obtain x

′

i = xi ◦ g. Note that all functions

are easily differentiable for backpropagation.

4. Experiments

In this section, we first describe the implementation de-

tails (sec. 4.1) and then report both qualitative (sec. 4.2) and

quantitative (sec. 4.3) results demonstrating the power of

our unsupervised landmark learning method.

4.1. Implementation details

In all the experiments, the detector Φ contains six con-

volutional layers with 20, 48, 64, 80, 256, K filters respec-

tively, where K is the number of object landmarks. Each

convolutional layer is followed by a batch normalization

and a ReLU layer. This network is proposed in [74] for

supervised facial keypoint estimation. Differently, instead

of downsampling the feature map after each convolutional

layer, we use only one 2 × 2 max pooling layer with a

stride of 2 after the first convolutional layer (conv1). Thus,

given an input size of H ×W × 3, the network outputs an
H
2 × W

2 ×K feature map. We apply a spatial softmax op-

erator to the output of the last convolutional layer to obtain

K probability maps, one for each landmark.

During training, we supply a set of triplets of (xi,x
′
i, gi)

as input to the network. In order to generate them, given an

example image I, one can naively sample a random TPS

and warp the image accordingly. However, as the input

images are typically centered and at most very slightly ro-

tated, the learned weights can be biased towards such a set-

ting. Instead, we randomly sample two TPS transformations

(g1, g2) and consecutively warp the given image to generate

an image pair i.e. x = I ◦ g1 and x
′ = x ◦ g2 (computed us-

ing inverse image warping as x ◦ (g2 ◦ g1)). The TPS warps

are parametrized as in [6] which can be decomposed into

affine and deformation parts. To render realistic and diverse

warps, we randomly sample scale, rotation angle and trans-

lation parameters within the pre-determined ranges. Exam-

ples of the transformations are shown in figs. 3 to 5.

We initialize the weights of convolutions with random

gaussian noise and optimize the objective function (eq. (9))

(weight decay λ = 5 · 10−4, γ = 500) by using Adam [33]

with an initial learning rate 10−4 until convergence, then

reduce it by one tenth until no further improvement is seen.

4.2. Qualitative results

We train our unsupervised landmarks from scratch on

three different domains: shoes (fig. 3), cat faces (fig. 4),

and faces (fig. 5), and assess them qualitatively. We train

landmark detectors on 49525 shoes from the UT Zappos50k

dataset of [68] and 8609 images from the cat heads dataset

of [72] and keep the rest for validation. Facial landmarks

are learned on the CelebA dataset [43] which contains more

than 200k celebrity images for 10k identities with 5 anno-

tated landmarks. We use the provided cropped face images,

which are roughly centered and scaled to the same size.

We train an 8 or 10 landmark network for each of the

tasks to allow for clearer visualization. In addition, we show
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Figure 3. Unsupervised landmarks on shoes (8 landmark network). Top: synthetic TPS deformations (original image leftmost). Bottom:

different instances. Note that landmarks are consistently detected despite the significant variation in pose, shape, materials, etc.

Figure 4. Unsupervised landmarks on cat faces (10 landmark network). Top-left quintuple: synthetic deformations (original image leftmost)

transformed by rotation (images 2,3) and TPS warps (images 4,5). Remaining examples: different instances.

n landmarks Regressor training Mean error

10 MAFL 7.95

30 MAFL 7.15

50 MAFL 6.67

10 CelebA 6.32

30 CelebA 5.76

50 CelebA 5.33
Table 1. Results on MAFL test set in terms of the inter-ocular dis-

tance as in [74, 52]. For each setting, n unsupervised landmarks,

that is learned on the CelebA training set, are regressed into 5

manually-defined landmarks. The regressor is learnt on CelebA

or MAFL training set.

examples of a 30-landmark network for faces in fig. 6. In

all cases we observe that: i) landmarks are detected con-

sistently up to synthetic warps (affine or TPS) of the corre-

sponding images and that ii) as a byproduct of learning to

be consistent with such transformations, landmarks are very

consistent across different object instances as well.

4.3. Quantitative results

In this section we evaluate the performance of our unsu-

pervised landmarks quantitatively by testing how well they

Method Mean Error

TCDCN [74] 7.95

Cascaded CNN [56] 9.73

CFAN [70] 15.84

Our Method (50 points) 6.67
Table 2. Comparison to state-of-the-art supervised landmark de-

tectors on MAFL.

Method Mean Error

RCPR [8] 11.6

Cascaded CNN [56] 8.97

CFAN [70] 10.94

TCDCN [74] 7.65

RAR [64] 7.23

Our Method (51 points) 10.53
Table 3. Comparison to state-of-the-art supervised landmark de-

tectors on AFLW (5 pts) in terms of inter-ocular distance.

correlate with and predict manually-labelled landmarks. To

do this, we consider standard facial landmark benchmarks

containing manual annotations for semantic landmarks (e.g.

eyes, corner of the mouth, etc). We first learn a detector for

K landmarks without supervision, freeze its weights, and
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Figure 5. Unsupervised landmarks on CelebA faces (10 landmarks network). Top: synthetic rigid and TPS deformations (original image

leftmost). Bottom: different instances. We observe landmarks highly aligned with facial features such as the mouth corners and eyes. Note

that, being unsupervised, it needn’t prefer the centers of the eyes, but consistently localizes points on the eye boundary.

Figure 6. Regression of supervised landmarks form 30 unsupervised ones (left in each pair) on MAFL. The green dot is the predicted

annotation and a small blue dot marks the ground-truth. A failure case is shown to the right.

Supervised training images Mean Error

All (19,000) 7.15

20 8.06

10 8.49

5 9.25

1 10.82
Table 4. Localization results for different number of training im-

ages from MAFL used for supervised training.

Method Mean Error (68 pts)

DRMF [2] 9.22

CFAN [70] 7.69

ESR [10] 7.58

ERT [31] 6.40

LBF [52] 6.32

CFSS [79] 5.76

cGPRT [36] 5.71

DDN [69] 5.65

TCDCN [74] 5.54

RAR [64] 4.94

Ours (50 landmarks) 9.30

Ours (50 landmarks, finetune) 7.97
Table 5. Comparison to state-of-the-art supervised landmark de-

tectors on 300-W.

then use the supervised training data in the benchmark to

learn a linear regressor mapping the unsupervised landmark

to the manually defined ones. The regressor takes as input

the 2K coordinates of the unsupervised landmarks, stacks

them in a vector x ∈ R
2K , and maps the latter to the corre-

sponding coordinates of the manually-defined landmarks as

y = Wx. Learning W can be seen as a fully connected

layer with no bias, and is trained similarly to the unsu-

pervised network, using our warps as data augmentation.

Note that there is no backpropagation to the unsupervised

weights, which remain fixed. W is visualized in fig. 7.

Benchmark data. We first report results on the MAFL

dataset [74], a subset of CelebA with 19k training images

and 1k test images annotated with 5 facial landmarks (cor-

ners of mouth, eyes and nose). We follow the standard eval-

uation procedure in [74] and report errors in inter-ocular

distance (IOD) in table 1. Since the MAFL test set and the

CelebA training set overlap partially, we remove the MAFL

test images from CelebA when the latter is used for training.

We also consider the more challenging 300-W

dataset [54] containing 68 landmarks, obtained by merging

and re-annotating other benchmarks. We follow [52] and

use 3148 images from AFW [80], LFPW-train [3] and

Helen-train [75] as training set, and 689 images from

IBUG, LFPW-test and Helen-test as test set.

Finally we use the AFLW [34] dataset, which contains
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24,386 faces from Flickr. Although it contains up to 21 an-

notated landmarks, we follow [74, 64] in only evaluating

five and testing on the same 2995 faces cropped and dis-

tributed in the MTFL set of [73]. For training we use 10,122

faces that have all five points labelled and whose images are

not in the test set.

MAFL results. First, we train the unsupervised landmarks

on the CelebA training set and learn a corresponding regres-

sor on the MAFL training set. The accuracy of the regressor

on the MAFL test data is reported in table 1 and qualitative

results are shown in fig. 6.

Regressing from K = 10, 30, 50 unsupervised land-

marks improves the results. This can be explained by

the fact that more unsupervised landmarks means a higher

chance of finding some highly correlated with the five

manually-labelled ones and thus a more robust mapping

(fig. 7). This can also increase accuracy since our land-

marks are detected with a resolution of two pixels (due to

the downsampling in the network). Table 2 compares these

results to state-of-the-art fully supervised landmark local-

ization methods. Encouragingly, our best regressor outper-

forms the supervised methods (6.67 error rate vs 7.95 of

TCDCN [74]). This shows that our unsupervised training

method is indeed able to find meaningful landmarks.

Next, in Table 4 we assess how many manual landmark

annotations are required to learn the regressor. We consider

the problem of regressing from K = 30 unsupervised land-

marks and we observe that the regressor performs well even

if only 10 or 20 images are considered (errors 8.5 and 8.06).

By comparison, using all 19,000 training samples reduces

the error to 7.15, which shows that most of the required in-

formation is contained in the unsupervised landmarks from

the outset. This indicates that our method is very effec-

tive for unsupervised pretraining of manually annotated

landmarks as well, and can be used to learn good semantic

landmarks with few annotations.

300-W results. We use our best performing model, the 50

point network, trained unsupervised on CelebA, and report

results in table 5 for two settings. In the first one, the un-

supervised landmarks are learned on CelebA and only the

regressor is learned on the 300-W training set; we obtain an

error of 9.30. In the second setting, the unsupervised de-

tector is fine-tuned (also without supervision) on the 300-W

data to adapt the features to the target dataset. The fine-

tuning lowers the error to 7.97 and yields a comparable

result with the state-of-the-art supervised methods. This

shows another strength of our method: our unsupervised

learner can be used to adapt an existing network to new

datasets, also without using labels.

AFLW results. Due to tighter face crops, we adapt our 50-

landmark CelebA network, fine-tuning it first on similarly

cropped CelebA images and then on the AFLW training

set. The adapted network has 51 landmarks. We compare

against other methods in table 3. Once more, landmarks

Figure 7. Unsupervised ↔ supervised landmark correlation.

The thickness of each arrow from our unsupervised landmarks

(crosses) to the supervised ones (circles) represents the averaged

magnitude of each contribution in the learned linear regressor.

linearly-regressed from the unsupervised ones are compet-

itive with fully supervised detectors (10.53 vs 7.23). The

regressor can be trained with as low as 1 or 5 labelled im-

ages almost saturating performance (errors 14.79 and 12.94

respectively). By comparison, the same architecture trained

supervised from scratch using 5 and 10 labelled images with

TPS data augmentation but no unsupervised pretraining has

substantially higher 23.85 and 22.31 errors (achieved essen-

tially by predicting the average landmark locations which

has error 24.40).

We also visualize what the regressor learns and which of

the source (discovered) landmarks contribute to the target

(semantic) ones in fig. 7. To do so, for each target land-

mark, we take the corresponding column of the regressor,

compute the absolute value of its coefficients, ℓ1 normalize

it, remove the entries smaller than 0.2. We show this map-

ping as a directional graph with arrows between the target

landmarks (green circular nodes) and the source ones (col-

ored crosses). We observe that the contributions are propor-

tional to the distance between source and target points. In

addition, the landmark on the forehead, not in the convex

hull of the target points is ignored, as expected.

5. Conclusions

In this paper we have presented a novel approach to learn

the structure of objects in an unsupervised manner. Our key

contribution is to reduce this problem to the one of learn-

ing landmark detectors that are equivariant, i.e. compatible,

with image deformations. This can be seen as a particular

instantiation of the more general idea of factorizing defor-

mations by learning an intrinsic reference frame for the ob-

ject. We have shown that this technique works for rigid and

deformable objects as well as object categories, it results

in landmarks highly-predictive of manually annotated ones,

and can be used effectively for pretraining.
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