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Abstract

We present a novel approach to 6DOF pose estima-

tion and segmentation of rigid 3D objects using a single

monocular RGB camera based on temporally consistent, lo-

cal color histograms. We show that this approach outper-

forms previous methods in cases of cluttered backgrounds,

heterogenous objects, and occlusions. The proposed his-

tograms can be used as statistical object descriptors within

a template matching strategy for pose recovery after tem-

porary tracking loss e.g. caused by massive occlusion or if

the object leaves the camera’s field of view. The descriptors

can be trained online within a couple of seconds moving

a handheld object in front of a camera. During the train-

ing stage, our approach is already capable to recover from

accidental tracking loss. We demonstrate the performance

of our method in comparison to the state of the art in dif-

ferent challenging experiments including a popular public

data set.

1. Introduction

Visually estimating the pose, meaning 3D orientation

and translation, of rigid objects is an essential and chal-

lenging task in many computer vision based systems. The

fields of application include robotics, medical navigation,

sports therapy, augmented reality and human computer in-

teraction (see e.g. [16] for a detailed survey). Thereby, for

many practical scenarios it is important that the underly-

ing pose estimation algorithms are real-time capable. Fur-

thermore, they should be robust to cluttered backgrounds,

different lighting conditions and surface properties such as

texture, reflectance and color. In particular for handheld

objects it is crucial that occlusions can be handled appro-

priately (see Fig. 1). In practice, it is often desirable to use

only one ordinary camera instead of a multi-camera setup

as this keeps the hardware and calibration requirements at a

minimum and suffers least from visibility issues.

Figure 1. Estimating the pose of a heterogenous object in a clut-

tered scene under strong occlusions and viewpoint changes. Top:

RGB input frames. Bottom: Tracking result (within ∼16 ms).

In human environments, objects of interest such as tools,

components or vehicles are often weakly textured or even

texturless, which is why methods based on point features

[17] cannot be used in general. Additionally, intensity

gradient-based descriptors of the object’s surface are prone

to local minima in case of cluttered background, motion

blur or defocus [16, 27]. Since the appearance of such ob-

jects is characterized by their silhouette, so-called region-

based approaches have been introduced. Based on prior

shape knowledge usually in form of a 3D model, these

methods try to estimate the object’s pose by minimizing

the discrepancy between a suitable representation of both

the camera image and the projected silhouette of the model

parametrized by the sought pose.

In general, the problem of pose estimation can be sepa-

rated into pose tracking and pose detection. In case of track-

ing, the object is assumed to be seen in a sequence of con-

secutive images such as a video footage. Thereby, the mo-
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tion of the object is assumed to be relatively small between

two consecutive frames. Thus, only the pose difference

from one frame to the next has to be determined and there-

fore tracking can be performed quite efficiently. The main

downside of pure pose tracking algorithms is the need for

manual initialization at the beginning and re-initialization

after tracking loss to get a coarse starting pose.

This leads to the problem of pose detection, where the

object’s pose has to be estimated from a single image with-

out any prior pose knowledge. This lack of information

makes pose detection generally more complex and compu-

tationally demanding than pose tracking. To obtain robust

real-time applications tracking has to be combined with de-

tection, which provides a starting solution whenever track-

ing is lost, e.g. in cases of strong occlusion, rapid movement

or when the object leaves the camera’s field of view.

1.1. Related Work

In recent years, research on tracking [5, 20, 19, 14] and

detection [11, 9, 2, 12] has mainly focused on RGB-D sen-

sor data. Although these methods outperform those only

based on monocular RGB image data, they are limited in

distance to the camera and struggle with sunlight. Thus, we

do not include them for comparison in this work.

For pose tracking using RGB images, region-based

methods relying on statistical level-set segmentation [6]

have shown to produce state of the art results. Thereby the

object’s pose is determined in an interleaved process, com-

prising a pixel-wise segmentation of the object’s silhouette

based on a statistical foreground/background model and its

alignment with a level-set representation of the rendered sil-

houette of a model of the object.

Early region-based methods were too computationally

demanding for real-time applications [22, 4, 23]. The first

real-time capable algorithm called PWP3D was presented

by Prisacariu and Reid in [18]. It was recently improved by

Tjaden et al. in [26] which enhanced the pose-optimization

strategy to better handle fast rotations and scale changes

and further reduced its overall runtime. In parallel to this,

Hexer and Hagege in [7] proposed a localized segmentation

model to PWP3D, that improves its performance with clut-

tered backgrounds and heterogeneous object surfaces.

A segmentation strategy similar to the local color his-

tograms used in [7] was presented within a contour edge-

based approach by Seo et al. in [24] and further improved

by Wang et al. in [28]. Although it performs well in clut-

tered scenes, the approach struggles with motion blur and

defocus and is limited to slow movement for real-time use.

All of the aforementioned methods are strictly designed

for tracking and do not provide a solution for pose detec-

tion. For real-time applications, pose detection approaches

based on 2D template matching are currently yielding the

best results [10, 9, 11, 8, 21, 13]. Thereby, the templates

are projections of the model at varying perspectives. Prob-

ably the most popular and still the most generic template-

based method for real-time use is LINE-2D, introduced by

Hinterstoisser et al. in [8] and improved by Rios-Cabrera

and Tuytelaars in [21]. Here, both the input image and

the templates are transformed into so-called gradient re-

sponse maps, by computing the dominant orientations of

RGB intensity gradients. LINE-2D and similar approaches

are usually demonstrated in scenarios where the objects are

assumed to be standing or lying on a surface. This allows to

only include the upper hemisphere for outer image plane ro-

tations and a small range of inner image plane rotation dur-

ing template generation, instead of the full hemisphere that

is needed in case of e.g. handheld objects which we are tar-

geting in this paper. In addition, the pose accuracy of these

methods is constrained to the resolution of the templates

and they do not incorporate a solution for pose refinement

or tracking.

Latest results on pose detection using RGB images were

based on learning of so-called object coordinates using ran-

dom forests presented by Brachmann et al. in [3] as an im-

provement of [2]. To our best knowledge this approach cur-

rently yields state of the art results, but its runtime perfor-

mance is far from real-time capable.

1.2. Contribution

We present a novel approach to real-time pose tracking

and pose detection of rigid objects. Our region-based ap-

proach incorporates the improved optimization procedure

presented in [26] and combines it with the localized seg-

mentation idea presented in [7]. The core novelty of our

method is to attach local color histograms to the object’s

surface. This allows to enforce temporal consistency within

each of them which improves the robustness of pose track-

ing in case of dynamic occlusion, motion of both the cam-

era as well as the object and light changes in cluttered

scenes superior to the current state of the art. We also

show that the resulting temporally consistent, local color

histograms (tclc-histograms) form a novel object descrip-

tor that can be used for pose detection. This has not been

previously addressed by other level-set-based pose estima-

tion approaches. Thereby, a unique similarity measure is

used for both template matching and pose optimization. We

also introduce a corresponding novel image representation

called posterior response maps in order to speed up our pose

detection approach.

The rest of the paper is structured as follows. In section 2

we give a detailed mathematical and algorithmic description

of the proposed method. An overview of the key technical

details of our implementation is presented in section 3, fol-

lowed by an experimental evaluation in section 4. In sec-

tion 5 we conclude with a final discussion of the proposed

system and potential future work.
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Figure 2. Overview of our pose estimation setting. Left: The ob-

ject pose T relative to a camera based on color image Ic and a 3D

model of the object. Right: Silhouette Is generated by projecting

the surface model into the image plane using an estimated pose T .

2. Method

We represent an object by a dense surface model consist-

ing of vertices Xn := (Xn, Yn, Zn)
⊤ ∈ R

3, n = 1 . . . N
building a triangular mesh. A camera color image is de-

noted by Ic : Ω → R
3, with Ω ⊂ R

2 being the image do-

main (see Fig. 2). Accordingly, a synthetic silhouette pro-

jection of the model is given by Is : Ω→ {0, 1} that yields

a contour C splitting the image into a foreground region

Ωf ⊂ Ω and a background region Ωb = Ω \ Ωf .

The pre-calibrated and fixed intrinsic matrix of the cam-

era is denoted by K, the pose of an object relative to the

camera by T ∈ SE(3). All camera images Ic are remapped

removing non-linear distortion such that the perspective

projection of a surface point to an image point is given by

x = π(K(T X̃)3×1) ∈ R
2, with π(X) = (X/Z, Y/Z)⊤,

being X̃ = (X,Y, Z, 1)⊤ the homogenous extension of X.

The color of a pixel at x is denoted by y = Ic(x).

For pose optimization we model the rigid body motion

using twists ξ̂ ∈ se(3) parametrized by ξ ∈ R
6. A twist

can be mapped to its corresponding rigid body transform

via exp(ξ̂) ∈ SE(3).

2.1. Segmentation

Our image segmentation strategy is based on local color

histograms with extension to pose tracking. The core idea

is to build a segmentation model from multiple overlapping

color histograms and update it for each frame after pose op-

timization. Each of these histograms correspond to a circu-

lar image region Ωn := {x with |x− xn| < r} with radius

r, centered at pixel xn ∈ C as proposed by Lankton and

Tannenbaum in [15]. Thus, each Ωn is split into a fore-

ground region Ωfn ⊂ Ωf and background region Ωbn ⊂ Ωb

determined by Is (see Fig. 2). This allows to compute fore-

ground and background color histograms for each region.

In our case we are using the RGB color model with a

quantization of 32 values per channel and r = 40 px regard-

less of the object’s distance to the camera. As presented by

Bibby and Reid in [1], pixel-wise local foreground Pfn and

background Pbn posteriors can be calculated using Bayes

rule, with prior probabilities ηfn and ηbn as well as color

likelihoods P t(y|Mfn) and P t(y|Mfn) at time t as

Pin(y) =
P t(y|Min)

ηinP
t(y|Min) + ηjnP

t(y|Mjn)
(1)

where i 6= j ∈ {f, b}.
We associate each local histogram with a 3D surface

point in order to memorize and identify them and thereby

enable temporal consistency (see Fig. 3 a)). In contrast

to [7] where the 2D histogram centers are computed as an

arbitrary subset of C for each individual frame, we use pro-

jected 3D mesh vertices, i.e. xn = π(K(T X̃n)3×1). This

correspondence between surface points and histograms en-

ables to enforce temporal consistency of them as

P t(y|Min) = (1−αi)P
t−1(y|Min)+αiP

t(y|Min) (2)

where i ∈ {f, b}. Here the current color likelihoods are

computed from a silhouette projection resulting from pose

optimization based on the previous segmentation model.

This strategy was originally used in PWP3D for the global

segmentation model, using learning rates of αf = 0.05
and αb = 0.02. Since the localized model captures spa-

tial variations a lot more precisely our experiments showed

that higher learning rates of αf = 0.1 and αb = 0.2 can be

used, enabling faster adaptation to dynamic changes.

2.2. Pose Tracking

For pose optimization, based on a rough pose estimate

either from the previous frame or pose detection, [18, 26]

suggest to measure the discrepancy between the posterior

segmentation of the current image Ic and a synthetic object

silhouette projection by

Eglobal = −
∑

x∈Ω

log
(

He(Φ(x))Pf (y)

+ (1−He(Φ(x)))Pb(y)
)

.

(3)

Thereby, Φ is a level-set embedding of the pose given by a

2D Euclidian signed distance transform of the silhouette

Φ(x) =

{

−d(x,C) ∀x ∈ Ωf

d(x,C) ∀x ∈ Ωb

, (4)

with d(x,C) = minc∈C |c−x|, He(x) is a smoothed Heav-

iside function and Pf , Pb are pixel-wise posteriors using a

single global foreground and background color histogram.

In [7] this formulation was adapted to

Elocalized =
1

N

N
∑

n=1

En, (5)

where

En = −
∑

x∈Ω

log
(

He(Φ(x))Pfn(y)

+ (1−He(Φ(x)))Pbn(y)
)

Bn(x)

(6)
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a) b) c) d) e)

Xn

Figure 3. Temporally consistent, local color histogram segmentation. a) Schematic 3D visualization of a tclc-histogram attached to a mesh

vertex of 3D driller model. b) Example image from a synthetic sequence where the textured model is rendered and animated on a static

but cluttered background. The local histogram regions are depicted by colored circles corresponding to their vertex index around small red

circles at their centers along the object’s contour estimated in the previous frame. b) Detailed view of the dark tip of the driller in front of

a dark background region. d) Average posterior probabilities P̄f (x)− P̄b(x). e) Pf (x)− Pb(x) from global color histograms.

uses local histograms and a corresponding masking func-

tion

Bn(x) =

{

1 ∀x ∈ Ωn

0 ∀x 6∈ Ωn

, (7)

indicating whether a pixel xc lies within that histogram or

not. Here, each individual local energy En (6) again is only

influenced by the posteriors Pfn and Pbn computed from a

single local foreground and background histogram. Thus,

locally they suffer from the same segmentation problems

as the global energy (3). This becomes a problem when

the local background color is similar to the local object sur-

face color (see e.g. Fig. 3 c)) resulting in many misclassified

pixels (outliers) that have a negative impact on the overall

energy term (see Fig. 4 a) - c)). Thus, in order to improve

a) b) c) d)

Figure 4. A comparison in the image region of Fig. 3 c) between

pixel-wise posteriors computed from a single Ωn and those av-

eraged over all Ωn. a) - c) Segmentation Pfn(y) − Pbn(y) for

different local regions. d) The averaged posterior probabilities

P̄f (x,y) − P̄b(x,y). Here especially the foreground segmenta-

tion is significantly more reliable for the average posteriors.

the quality of the energy term per pixel we suggest to first

compute the average posteriors from all local histograms in-

stead of computing the average energy over all local regions

Ωn, (see Fig. 4 d)). This leads to a slightly different energy

formulation, changing (3) into

E = −
∑

x∈Ω

log
(

He(Φ(x))P̄f (x,y)

+ (1−He(Φ(x)))P̄b(x,y)
)

(8)

with

P̄i(x,y) =
1

∑N

n=1
Bn(x)

N
∑

n=1

Pin(y)Bn(x), (9)

where i ∈ {f, b}, being the posterior probabilities per pixel

averaged over all corresponding histograms. Although this

may seem like a minor change, our experiments show that

it leads to a significant increase in robustness and accuracy

for both pose tracking and detection in cluttered scenes.

Since x = π(K(exp(ξ̂)T X̃)3×1) pose optimization can

be performed by minimizing E with respect to the pose pa-

rameters given as twist coordinates. The gradient of (8) is

then given by

∂E

∂ξ
= −

∑

x∈Ω

P̄f − P̄b

He(Φ)P̄f + (1−He(Φ))P̄b

∂He(Φ)

∂ξ
(10)

where P̄f = P̄f (x,y), P̄b= P̄b(x,y) and Φ=Φ(x). Based

on the iterative optimization scheme presented in [26] pose

update is given by

T ← exp(∆̂ξ)T. (11)

with the update step

∆ξ = −

(

∑

x∈Ω

J⊤J

)−1
∑

x∈Ω

J⊤, (12)

where J = J(x, ξ0) = ∂E(x, ξ0)/∂ξ is the 1× 6 per pixel

Jacobi vector at ξ0 = 0⊤.

2.3. Pose Detection

For each frame we evaluate (8) after pose optimization.

If E/|Ω| > t, we consider the tracking to be lost. Especially

for handheld objects no assumptions can me made about the

pose, when it becomes visible again, for example when it is

moved outside the field of view and back in from a different

side or held upside down. Once the tracking has been lost,

we thus perform a full search for the object and its current

pose in each subsequent frame until pose recovery.

Our strategy for re-localization is generally related to

current state of the art template matching-based pose de-

tection methods [11, 8, 21, 13]. A template view consists

of a level-set Φ from that pose and an associated set of
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tclc-histograms along C. Thereby, the orientation of the so-

called base templates is given by one of the 12 corner ver-

tices of an icosahedron, defining the outer image plane ro-

tation (see Fig. 5). The base templates are augmented with

four different rotations of 0◦, 90◦, 180◦ and 270◦ within the

image plane. In order to cover different scales, each of these

48 base orientations is used to generate a template at a close,

an intermediate and a far distance to the camera, resulting

in overall 144 base templates. As soon as all histograms

corresponding to a template have been filled, either during

a dedicated training stage or regular tracking, the template

can be used for re-localization.

2D template matching is started at the 4th level of an im-

age pyramid (80×64 px resolution), where we perform an

exhaustive search for all base templates by evaluating (8).

This first matching step is split into two stages in order to

reduce the number of function evaluations and thereby im-

prove the runtime. The relatively wide basin of convergence

for in-plane translation of (5) and (8) (see [7] for a detailed

analysis) allows us to use a stride of 4 pixels in the first stage

to get a rough estimate of the 2D location of each template.

In the second stage, this location is refined considering all

pixels in a 5 × 5 neighborhood around the coarse estimate.

Inspired by the gradient response maps of LINE-2D [8], we

introduce posterior response maps, a novel image represen-

tation based on tclc-histograms that allows us to skip im-

age regions by a rough statistical pixel-wise foreground or

background membership decision. We define a posterior

response map Ip as a binary representation of the current

camera image Ic by

Ip(x)=

{

1 if P̄f (Ic(x)) > P̄b(Ic(x))

0 else
∀x ∈ Ω, (13)

with

P̄i(y) =
1

N

N
∑

n=1

Pin(y), (14)

where i ∈ {f, b}, being the average posterior probabilities

over all histograms regardless of the pixels location. Given

this representation, we can compute the binary overlap be-

tween the silhouette mask Is of a template at each poten-

tial 2D matching location and Ip. If this intersection is less

than 50% of the area of Ωf , we skip this location without

evaluating the energy function, which reduces the number

of necessary computations. To further refine the orienta-

tion, we continue the search in the next higher resolution of

the image pyramid (160×128 px). Thereby, we discard two

out of three distances per base templates and only keep that

with the best matching score. For the remaining base tem-

plates the matching score of the so-called neighboring ori-

entation templates is computed at the previously estimated

2D location of its corresponding base template. These tem-

plates were generated at the corner vertices resulting from

✏✏✏✏✏✏✏✏✏

Figure 5. The template views used for pose detection. Left: A sub-

divided icosahedron generates the outer plane rotation of the tem-

plate views. Red dots indicate vertices corresponding to the base

templates, blue dots indicate those provided by subdivision used

for the neighboring templates. Right: An example base template

visualized by the corresponding He(Φ) (grey pixels) with the local

histogram regions depicted (colored circles) along the contour.

sub-dividing the icosahedron (see Fig. 5) in order to finer

sample the outer plane rotation. They are augmented with

12 in-plane rotations of 0◦, 30◦, . . . , 330◦. Each base tem-

plate is associated with 18 neighboring templates in the next

pyramid level. Those include itself and that corresponding

to the 5 closest vertices of the subdivided icosahedron, each

with the same in-plane rotation as the base template as well

as those with ±30◦. The poses of the 4 best matches of all

neighboring templates are finally optimized as described in

section 2.2 with three times the number of iterations com-

pared to frame-to-frame optimization.

If E/|Ω| corresponding to one of these optimized poses is

smaller than the threshold t, we consider the re-localization

as successful and switch back to frame-to-frame tracking.

Increasing the value of t thus results in both the tracking

and re-localization to be more tolerant to slight misalign-

ment and false positive detections. This can help to improve

the overall performance in case of heterogenous objects and

background clutter if continuity is more important than pre-

cision. In our experiments we chose t ∈ [0.5, 0.6].

3. Implementation

Our C++ implementation is oriented towards the multi-

resolution image pyramid approach presented in [26] with

an additional 4th level only used within template match-

ing for pose detection. We are using OpenGL exclusively

for rendering the object silhouette Is and the correspond-

ing depth buffer Id while the major image processing steps

are performed in parallel per image row on the CPU during

tracking. Template matching within pose detection is per-

formed in parallel per template for each step and the pos-

terior response maps are speeded up with an LUT. The key

idea to efficiently build and update the localized segmenta-

tion model is to process each histogram region in parallel
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