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Abstract

Deep-learning metrics have recently demonstrated ex-
tremely good performance to match image patches for
stereo reconstruction. However, training such metrics re-
quires large amount of labeled stereo images, which can be
difficult or costly to collect for certain applications (con-
sider, for example, satellite stereo imaging).

The main contribution of our work is a new weakly su-
pervised method for learning deep metrics from unlabeled
Stereo images, given coarse information about the scenes
and the optical system. Our method alternatively optimizes
the metric with a standard stochastic gradient descent, and
applies stereo constraints to regularize its prediction.

Experiments on reference data-sets show that, for a
given network architecture, training with this new method
without ground-truth produces a metric with performance
as good as state-of-the-art baselines trained with the said
ground-truth.

This work has three practical implications. Firstly, it
helps to overcome limitations of training sets, in particular
noisy ground truth. Secondly it allows to use much more
training data during learning. Thirdly, it allows to tune
deep metric for a particular stereo system, even if ground
truth is not available.

1. Introduction

The stereo reconstruction problem consists in estimating
a depth map from two images taken from different view-
points. The problem has many practical applications in
robotics [35], remote sensing [44], and 3D graphics [49]].

It has been heavily investigated for several decades [41]],
and recent developments focused on designing high-order,
region-based and object-specific priors [63, (10, 58| [18)
25 130L 155 154], and improving efficiency of large scale
stereo [37, 26, [17, [7]. Perhaps the most significant recent

breakthrough was to use deep metrics [12} [61]. It led to
considerable gains in processing speed and reconstruction
accuracy (see Tables[] [5] and [6). Our work improves upon
this line of research.

Main contributions. In this work we showed that it
is possible to learn a high quality deep metric for stereo
matching without any labeled training data, using only
task-specific constraints. The method does not use the la-
beled training data but nevertheless relies on the informa-
tion about the scenes and the optical system, hence our call-
ing “weakly supervised”. The method allows to: (1) learn
a deep metric when the labeled training data is not avail-
able or contaminated with a noise; (2) use more data for
the training and thus learn more complex, better perform-
ing networks while avoiding overfitting.

2. Related work

Stereo reconstruction algorithms rely on epipolar geom-
etry [19], according to which every no-occluded point in
one stereo view corresponds a point in the other view lying
on a line that does not depend on the scene, but only on the
optical system. This line is called an epipolar line, and for a
calibrated stereo system, it is known for every image point.
Furthermore, for a pinhole camera, all the points lying on a
given epipolar line in the second view correspond to points
lying on a common epipolar line in the first view. Such two
epipolar lines are called conjugate.

It is a standard procedure to warp stereo views in order to
make conjugate epipolar lines in these views horizontal and
vertically aligned. This is called stereo rectification, and in
a rectified stereo pair, every point from the first view cor-
responds to a point shifted horizontally in the second view.
The extension of this shift — also known as a disparity — al-
lows to compute the distance to the corresponding 3d point,
which is the ultimate goal of the stereo reconstruction.

So at the core of the stereo reconstruction process lies
the matching of similar patches in two images along epipo-
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lar lines and the estimation of the disparity. It is not a triv-
ial task, since the local appearance of a physical point in
the two views might differ due to radiometric and geomet-
ric distortions. The patch matching is usually performed
using invariant similarity measures and descriptors, also
known as features. Historically, the former were more pop-
ular for the stereo reconstruction, while the latter were used
for matching sparse points of interest.

2.1. Similarity measures

The invariant similarity measures [22, 20] are popular
for stereo reconstruction, probably due to their low com-
putational complexity. The simplest similarity measures
are the sum of absolute differences (SAD), and the sum
of squared differences (SSD). Zero-mean variants of these
methods (ZSAD, ZSSD), as well as sum of absolute gra-
dient differences (GSAD), are invariant to local brightness
changes, which can also be achieved by combining SAD
and SSD with background subtraction by mean, Lapla-
cian of Gaussian (LoG) [21]] or Bilateral filters [4]. Non-
parametric similarity measures, such as Rank and Cen-
sus [S9]] are invariant to arbitrary order-preserving local in-
tensity transformations, and measures such as the Mutual
Information (MI) [24] explicitly model the joint intensity
distribution in the two images, and are invariant to arbitrary
intensity transformations. All these methods are invariant
to radiometric distortions only.

2.2. Descriptors

Invariant descriptors are popular for sparse point match-
ing, and are designed to be invariant to both radiometric
and geometric distortions. They all are either local his-
tograms of oriented image gradients such as SIFT [31], or
binary strings of local pairwise pixel comparisons such as
BRIEF [9]. Although descriptors are rarely used for stereo,
there are some exceptions, such as DAISY [51]], which can
be efficiently computed densely.

Recently, the community has moved from these fully
hand-crafted descriptors to data-driven descriptors, incor-
porating machine-learning approaches. Most of such de-
scriptors perform discriminative dimensionality reduction
either by feature selection, as VGG [46]], linear feature ex-
traction, as LDAHash [48]], or boosting, as BinBoost [|53].

2.3. Deep metrics

As for other application domains of machine learning,
the current trend is to move beyond “shallow” models,
where the learned quantities interact linearly with hand-
designed non-linearities, but are not involved in further re-
combinations.

The resulting “deep metrics” demonstrate extremely
good performance compared to other similarity measures

and descriptors both for sparse point matching [23| 14} 45|
60, 157]] and stereo reconstruction [61} [12].

Standard deep metric networks have a Siamese architec-
ture, introduced in [8]. They consist of two “embedding”
sub-networks with complete weight sharing that join into a
common ‘“head”. Each embedding sub-network is convo-
lutional, it takes an image patch as input, and outputs the
patch’s descriptor. The “head” is usually fully connected, it
takes the two descriptors as input, and outputs a similarity
measure. The Siamese architecture was firstly used for im-
age patch matching in its classic form in [23]. Later it was
shown, that the “head” network may be replaced by a fixed
similarity such as L? [49] or cosine [61], that the embed-
ding sub-networks may not share weights [60], and, finally,
that the explicit notion of a descriptor might not be neces-
sary [60].

2.4. Supervised learning of deep metrics

Existing methods for training a Siamese network for
patch matching are supervised, using a training set com-
posed of positive and negative examples. Each positive ex-
ample (respectively negative) is a pair composed of a ref-
erence patch and its matching patch (respectively a non-
matching one) from another image.

Training either takes one example at the time, positive
or negative, and adapts the similarity [45} [12] 23] 160} 57],
or takes at each step both a positive and a negative exam-
ple, and maximizes the difference between the similarities,
hence aiming at making the two patches from the positive
pair “more similar” than the two patches from the negative
pair [61} 27, 16]. This latter scheme is known as “Triplet
Contrastive learning.”

Although the supervised learning of deep metrics works
very well, the complexity of the models requires very large
labeled training sets which are hard or costly to collect
for real applications (consider, for example, our domain
of interest — Mars satellite stereo reconstruction). Beside,
even when such large sets are available, the ground truth
is produced automatically from depth sensors and often
contains noise that reduces effectiveness of the supervised
learning [S0] (please, refer supplementary materials for de-
tails). This can be mitigated by augmenting the training
set with random perturbations [61] or synthetic training
data [14} 34]. However, synthesis procedures are hand-
crafted and do not account for the regularities specific to
the stereo system and target scene at hand.

2.5. Weakly supervised learning

Our work is inspired by Multi-Instance Learning
(MIL) [5] and Self-Training [S2f]. The main idea behind
MIL, is to use “coarsely” labeled data, where one label in-
dicates if a group of samples contains at least one positive
sample. This allows to deal with low geometrical accuracy,
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or even the absence of geometrical information and a label-
ing at the scene level. It has been applied with success to
deep learning [56].

Another strategy to relax the requirement for detailed la-
beling is Self-Training, where the training set is enriched
with unlabeled data. As for transductive learning, Self-
Training works by leveraging the information carried by
the unlabeled data about the structure of the data popula-
tion [[L1, 38]]. Note, that in contrast to Self-Training, which
is a semi-supervised method utilizing mixture of the labeled
and the unlabeled training data, our method is a weakly su-
pervised method, because it uses only unlabeled training
data and the prior knowledge about the structure of the data
population in a form of constraints as in [47]].

Our most efficient method uses dynamic program-
ming (DP) to regularize the noisy prediction of the metric as
it is currently trained. Similar idea in a different context ap-
peared in [28]]. In both [28] and in our paper the high level
idea is to learn an embedding in a weakly supervised man-
ner by minimizing the energy of the best path on a constraint
graph, while simultaneously maximizing the energy of the
best unconstrained path. However there are important dif-
ferences: (1) we use per location loss function with margin,
while they use per path loss function without margin, (2)
we use stereo constraints to construct the constrained graph,
while they use text string labels, and finally (3) the applica-
tion domain is drastically difference since we deal with ge-
ometrical regression and they deal with classification. DP
has also been used to automatically segment sequences of
action demonstrations into macro-actions to deal with non-
Markovian decision processes [29]], and the k-shortest paths
algorithm, which is a generalization of dynamic program-
ming to multiple paths, was used to train a person detector
from videos with time-sparse ground-truth [3].

Our work is also close to [15], where unsupervised learn-
ing is used to train regression CNN for predicting depth
from a single image. Although regularization and alternat-
ing procedure play a central role in both our work and theirs,
objectives and losses differ (regression vs. patch metric, re-
construction vs. classification).

3. Method

We start by formulating in § the task of weakly su-
pervised deep metric learning for stereo, then in §[3.2] we re-
view the stereo matching problem constraints we consider,
and in §[3.3|we describe how we use them to drive the train-
ing.

3.1. Problem formulation

We are provided with a weakly supervised training set
Tr = {(e",e",e ), }n=1.n. Each training example is a
triplet of series of s x s gray-scale patches:

e reference patches € = (pY,ph, .., p}y) extracted from a
horizontal line of a left rectified stereo image,

e positive patches et = (p],py,..,pjy) extracted from
the corresponding horizontal in the right rectified stereo
image, and

e negative patches €~ = (py ,p; , .., Py,) extracted from
another horizontal line of a right rectified stereo image,

where W is the number of patches per line, and NV is the
number of training examples. In addition to the training set,
we are provided with the maximum possible disparity d,,qz»
which depends on the optical system and a prior knowledge
about the scene.

Our goal is to learn parameters ® of deep metric
S(z,y,®) such that, for any set of reference e” and pos-
itive image patches e, the row-wise maxima of the simi-
larity matrix S;;r = (pf, pj', @) correspond to the true
matches.

Note, that in contrast to [23} |60, 45, 14, 57, 12, 61]] in
our case each training example is not a pair of patches,
but a triplet of series of patches each taken on a horizon-
tal line of a rectified stereo image, so that we can utilize
constraints and loss functions defined on such families of
patches jointly. Additionally, processing lines as a whole
significantly speeds up the training process by allowing to
reuse shared computations.

3.2. Matching constraints

The stereo matching problem satisfies the following con-
straints:

(E) Epipolar constraint. Every non-occluded reference
patch has a matching positive patch [19][239-241p].

(D) Disparity range constraint. The offset of the reference
patch index with respect to the matching positive patch
index is bounded by a maximum disparity d,,,,. This
comes from the stereo system parameters (focal length,
pixel size, baseline) and the distance range of the scenes.

(U) Uniqueness constraint. The matching positive patch is
unique [33].

(C) Continuity (smoothness) constraint. The offsets of the
reference patches indices with respect to the matching
positive patch indices are similar for nearby reference
patches everywhere except on depth discontinuities [33].

(O) Ordering constraint. The reference patches are ordered
on their lines as the matching positive patches on theirs.

These constraints result in a particular shape of the pos-
itive similarity matrix, as pictured in Figure |1 Note that
uniqueness (U), continuity (C) and ordering (O) constraints
are sometimes violated. However, experiments show that
these rare violations only marginally affect the training in
presence of large training set.
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Figure 1. Positive similarity matrix. The bold line corresponds to the
optimal matches that satisfy the stereo constraints. Elements within
the disparity range are shown in gray. Note that there are no matches
for some points on the reference and positive epipolar lines.

3.3. Proposed weakly supervised methods

We developed several weakly supervised methods that
use different subsets of the stereo constraints during train-
ing. All methods alternate between two steps: (2) compute
constrained and unconstrained matches, given the current
estimate of the metric, (1) improve the metric, given the
current estimate of the matches. They can be used in com-
bination with any deep metric architecture and any gradient
based optimization method.

To each of our methods corresponds a loss function op-
timized in each of the two steps mentioned above. It takes
as an input either 8", or the three matrices S"*, 8"~ and
S~ defined respectively as follows:

SH_: S(p;,p;—,@) Oéi_jgdmaw (1)
Y —0o0 otherwise
r—_ [ SWIp;,0) 0<i—j<dnaw
Sij B { —00 otherwise @)
~ pT <4 —4i<
S;-‘r _ *i(pz P 7@) 0<1 '] < dmaz 3)
J 00 otherwise

In the next sections we describe each method in details.

3.3.1 MIL method

This method is inspired by Multi-Instance Learning (MIL)
paradigm [3] and uses only the epipolar and the disparity

range constraints (E) and (D) from §[3.2]

From these two constraints, we know that every non-
occluded reference patch has a matching positive patch in
a known index interval, but does not have a matching neg-
ative patch. Therefore, for every reference patch, the simi-
larity of the best reference-positive match should be greater
than similarity of the best reference-negative match. Our
training objective is to push apart these two similarities.

The training loss for the MIL method is

1
L(®) = 0,— ST ST
() |rows| iegvsmax( i +mjax i T
1
Tools] Z max (0, — max S’Zf + max SiTr +p), 4
|cols| iEs i i
where rows = {djq0 + 1,..., W} is a set of rows of

the similarity matrix that are guaranteed to have correct
matches (see Fig , col = {1,..., W — dyas} is a set
of valid columns of the similarity matrix that are guaran-
teed to have correct matches, 1/ is the number of patches in
a horizontal line of rectified image, and p is a loss margin.
Note that the disparity range constraint is taken into account
automatically, if we use the similarity matrices as defined in
§63)

Experiments shows that the method learns metrics insen-
sitive to small shifts from the optimal match. This problem
results in blocky shape of a similarity matrix, where blocks
correspond to the areas where the metric is not able to find
unique match. This issue motivates the CONTRASTIVE
method described in the following section.

3.3.2 CONTRASTIVE method

This method uses the epipolar, the disparity range, and the
uniqueness constraints (E), (D), and (U) from §[3.2]

From the epipolar and the disparity range constraints we
know that every non-occluded reference patch has a match-
ing positive patch in a known index interval. Furthermore,
according to the uniqueness constraint the matching posi-
tive patch is unique. Therefore, for every patch, the simi-
larity of the best match should be greater than the similarity
of the second best match. Our training objective is to push
apart these two quantities.

The training loss for this CONTRASTIVE method is

1 T ar
L(®) = rows] > max(0,— max Sm*+m?x SiF )
iErows
1 T or
[cols] Z max (0, — max Sij+ + na;auxSijJr + ), (5)
j€Ecols

where S is a similarity matrix with masked out row-wise
maxima, S is a similarity matrix with masked out column-
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wise maxima. To mask out elements of similarity of matrix,
we simply substitute them with —oo.

Training with this method and CONTRASTIVE-DP
method, from § requires good metric initialization.
Fortunately, in this work we use deep metric that works very
well with random CNN weights, as shown in § thus we
were able to use contrastive methods right from the start. In
other cases, it would be necessary to pre-train a metric with
another method such as MIL from §[3.3.1]

Experiments show that the CONTRASTIVE method suf-
fers from a problem opposite to the one exhibited by the
MIL method: it produces over-sharpened metric, sensitive
even to small shifts from the exact match. This is also detri-
mental to the performance, since our goal is to find metric
invariant to small geometric transformations, such as shift.
We solved the problem by masking out all spatial neighbors
within g, radius from the maxima in S and in S. See the
supplementary materials for details.

3.3.3 CONTRASTIVE-DP method

This method uses all constraints listed in §[3.2] The only dif-
ference with CONTRASTIVE is that it finds the best match
under (C) and (O) using dynamic programming (DP), in-
stead of independent maxima.

Formally, it solves

1
p* = argmax ﬂ Z SZ”, (6)
reP Pl jep

where P is the set of paths {(iy, jn)}n=1.ar Which are con-
tinuous in the following sense:

Vn > 1; (1n7]n) - (inflajnfl) € {(07 1)7 (1a O), (17 1)}7
and (i1,71) € {1} x [1, dmaz]-

Which means that only down, right and diagonal steps are
allowed. This enforces the continuity and the ordering con-
straints (C) and (O) in the solution. Notice also that we
search for a path that has maximum average energy rather
than maximum total energy to prevent a bias toward longer
paths and consequently smaller disparities.

Given the best match-path p* found by the dynamic pro-
gramming we define our loss function as

1 N
L(®) :| *| Z max(0, —SZ-TJ-+ + m]?XSiT,:' + p)+
P (4,5)€p*
1 -
= Z max(0, —Sff + max Sl’;r +u), (1)
(4,5)€p*

where S is a similarity matrix where all neighbors of el-
ements belonging to p* withing radius are masked out by
setting their values to —oo.

The best match-path computed by the dynamic program-
ming might contain vertical and horizontal segments, that
correspond to depth discontinuities, violating the unique-
ness constraint (U). Therefore, during the training we ig-
nore all such segments that are longer than ¢,... For more
details, please refer to the supplementary materials.

4. Experiments

Our experiments were done in the Torch framework [13].
Optimization was performed with the ADAM method with
standard settings, using mini-batches of size equal to the
training images height, and no data augmentation of any
sort. The initialization of weights and biases of our deep
metric network was done in standard way by random sam-
pling from zero-mean uniform distribution.

We guarantee reproducibility of all experiments in this
section by using only available data-sets, and making our
code available online under open-source license after publi-
cations.

4.1. Data-Sets

In our experiments we use three popular benchmark
data-sets: KITTI’12 [16], KITTI'15 [35] and Middle-
bury (MB) [41} 142,140l 22} 139]. These data-sets have online
scoreboards [} 2], showing comparative performance of all
participating stereo methods.

KITTT’12 and KITTT’ 15 data-sets each consist of 200
training and 200 test rectified stereo pairs of resolution
1226 %370 acquired from cars moving around a city. About
30% of the pixels in the training set are supplied with a
ground truth disparity acquired by a laser altimeter with
error less than 3 pixels. The disparity range is about 230
pixels. Each data-set is supplied with an extension (respec-
tively KITTI"12-EXT and KITTI’ 15-EXT) that contains 19
additional stereo pairs for each scene, without ground truth
disparity. This allows us to use 40x more training data for
the weakly supervised learning than for the supervised (ac-
tually even more, considering that only about 30% of pixels
in the training set have labels).

Middlebury data-set (MB) consists of 60 training and 30
test rectified stereo pairs. The images are acquired by dif-
ferent stereo systems and contain different artificial scenes.
Their resolution varies from 380x430 to 30002000, and
their disparity ranges vary from 30 to 800 pixels. The train-
ing images are provided with a dense ground truth disparity
acquired by structured light system with error less that 0.2
pixels.

4.2. Performance measure

To estimate the performance of deep metrics we com-
pute a prediction error rate defined as the proportion of non-
occluded patches for which the predicted disparity is off by
more than 3 pixels.
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The motivation behind this work is to improve the met-
ric as a mean to match patches in a stand-alone manner, as
we have not taken into account the interplay with the ad-
ditional post-processing that may be applied in a complete
stereo pipeline. Performance regarding this main objective
is measured by picking the patch with the largest similarity
among the patches that belong to a valid disparity range on
the epipolar line. We call this the winner-take all (WTA)
error rate.

A second measure is the error rate of a complete stereo
pipeline with plugged-in deep metric. This is a performance
measure of direct practical interest, although not the objec-
tive we optimize during our training.

4.3. Deep metric architecture

The main contribution of this work is a new weakly
supervised training method, not deep metric architecture,
therefore we simply adopt the overall architecture of well
performing MC-CNN fst network from [61]], shown in Ta-
ble[I] and substitute their learning method with ours.

Parameter KITTI’'12,15 MB
Number of CNN layers 4 5
Number of features per layer 64 64
Receptive field 3x3x64 3x3x64
Activation function ReLU ReLU
Equivalent patch size 9x9 11x11
Similarity metric Cosine Cosine

Table 1. Network architectures for deep metric from [61]] that we
use in our experiments.

4.4. Comparison of weakly supervised methods

In this experiment we compare the performance of the
proposed weakly supervised methods. We performed com-
parison on KITTI'12 data-set using the winner-take-all
(WTA) error (see §[4.2). The results of the experiments are
shown in Table 21

Method WTA error, [%] Time, [hr]
MIL 18.45 45
CONTRASTIVE 17.63 30
MIL+CONTRASTIVE 16.12 65
CONTRASTIVE-DP 14.61 68

Table 2. Comparison of the proposed weakly supervised learn-
ing methods on KITTI'12 set. MIL+CONTRASTIVE method
uses MIL and CONTRASTIVE losses simultaneously. All meth-
ods are used to train the same network architecture. The
CONTRASTIVE-DP method, shown in bold, uses all the con-
straints during learning and achieves the smallest WTA error. No-
tice that in general increasing the number of constraints increases
performance.

The main conclusion is that weakly supervised methods
that use more stereo constraints during learning perform
better. For example, the MIL, that uses only the epipolar
and the disparity range constraints, has larges WTA error,
whereas the CONTRASTIVE-DP, that uses the epipolar,
the disparity range, the continuity, the uniqueness and the
ordering constraints has smallest WTA error.

In all following sections, we use the best performing
CONTRASTIVE-DP method only, and refer to it as MC-
CNN-WS, where WS stands for weakly supervised.

4.5. Comparison with supervised method

In this section, we compare the proposed weakly su-
pervised method with our reference fully supervised deep-
metric baseline [61] on the three different sets, using the
winner-take-all (WTA) error (see §[4.2)).

The results are shown in Table3] As we see, our method
outperforms the supervised method in terms of WTA error
across tree sets. This is remarkable considering the fact that
our method does not use ground truth disparity during learn-
ing.

The success of our method in case of KITTI'12 and
KITTI' 15 sets can be attributed to the fact that these sets
have large amount of unlabeled stereo data, that can be used
by our method. In fact, these sets have more than 40 x more
unlabeled data than labeled training data.

In case of MB data-set our method does not have such
huge advantage over the supervised method. The set has
only 30% more unlabeled training data than the labeled
training data.

WTA error, [%]

Method KITTI’12 KITTI’15 MB

MC-CNN fst [61] 15.44 15.38 29.94
MC-CNN-WS fst (ours) 13.90 14.08 29.60
CENSUS 9x9 [59] 53.52 50.35 64.53
SAD 9x9 32.36 30.67 59.39

Table 3. Comparison of our weakly supervised learning method
with the fully supervised baseline using the same network archi-
tecture [61]]. Smallest WTA errors are shown in bold. Our weakly
supervised method outperforms the baseline in terms of WTA er-
ror across tree sets. This is remarkable since in contrast to the
supervised method, our does not use ground truth disparity during
learning. For reference, the two bottom rows show the perfor-
mance of two standard similarity measures and descriptors, where
SAD stands for sum of absolute differences of pixels’ intensities
in 9 x 9 image patch. Note that following the setup of [61], the
patches used as input to the deep-learning methods are of size 9 X9
for KITTI’12,’15, and 11 x 11 for MB.

4.6. Stereo benchmarking

In this section we investigate how well our weakly su-
pervised deep metric performs when it is combined with the
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complete stereo pipeline. For that we plug it in the stereo
pipeline from [61]], and tuned the parameters of the pipeline
using simple coordinate descent method, starting from the
default values of [61]. Note that we used specific metric and
pipeline parameters for each data-set.

Then we computed disparity maps for the test sets with
withheld ground truth, and uploaded the results to the eval-
uation web sites for the respective data-sets|1} 2]. The ob-
tained evaluation results are available in online scoreboards
and shown in Tables [} [6] and [4] (note, that corresponding
disparity maps are also available for viewing in the score-
boards). As we can see, results with our metric trained with-
out ground truth during training are very close to the results
of the fully supervised method across all benchmarks.

Those are very encouraging results, given in particular
that we did not optimize the deep metric and the pipeline
parameters together, and considering the performance in the
winner-take-all setup of § The fact that our metric
outperforms the supervised metric in winner-takes-all setup
but lags behind it when used as a part of the Pipeline is not
surprising. The pipeline relies on multiple heuristics and as
such provide a regularization that is not taken into account
during the training of the network. Thus, smaller WTA error
does not guarantee smaller Pipeline error.

Regarding the processing time, note that the network
structure used for our method is identical to that of MC-
CNN-fst [61], except for the pipeline parameters. The dif-
ference in processing times in Tables [5] [6] and [4]is only due
to the hardware differences.

# dd/mm/yy Algorithm Pip. Err, [%] Time, [s]
1 19/01/15 NTDE [25] 7.62 300
2 28/08/15 MC-CNN acrt [61] 8.29 254
3 03/11/15 MC-CNN+RBS [7] 8.62 345
4 26/01/16 MC-CNN fst [61] 9.69 2.94
5 11/14/16 MC-CNN-WS (ours) 12.3 5.59
6 13/10/15 MDP [30] 12.6 130
7 19/04/15  MeshStereo [63] 13.4 146

Table 4. MB benchmark [2] snapshot from 14/11/2016 with pub-
lished methods (default view). Methods ranked 1, 2, 3, 4 and 5
use deep metrics for stereo matching. Note that our weakly su-
pervised method MC-CNN-WS, shown in bold, that does not use
ground truth data during training, has an error rate very similar to
that of the supervised MC-CNN fst method, also shown in bold,
trained with ground truth data.

4.7. What does deep metric learn?

In Figure [2] we show positive similarity matrices com-
puted by the network initialized with random weight and the
network after the training with MC-CNN-WS on KITTI’ 12
data-set. While one can not visually distinguish the best
match in the similarity matrices before the training, it be-
comes clearly visible after. This suggests that the training
improves discriminative ability of the deep metric.

# dd/mm/yy Algorithm Pip. Err, [%] Time, [s]
1 27/04/16  PBCP [43] 2.36 68

2 26/10/15  Displets v2 [18] 2.37 265

3 21/08/15 MC-CNN acrt [61] 243 67

4 30/03/16  cfusion [36] 2.46 70

5 16/04/15 PRSM [55] 2.78 300

6 21/08/15 MC-CNN fst [61] 2.82 0.8

7 03/08/15  SPS-st [58] 2.83 2

8 14/11/16 MC-CNN-WS (ours) 3.02 1.35

9 03/03/14 VC-SF [54] 3.05 300

Table 5. KITTI’12 benchmark [[1] snapshot from 14/11/2016 with
published methods (default view). Methods ranked 1, 2, 3, 4, 6,
and 7 use deep metrics for stereo matching. Note that our weakly
supervised method MC-CNN-WS, shown in bold, that does not
use ground truth data during training, has an error rate very similar
to that of the supervised MC-CNN fst method, also shown in bold,
trained with ground truth data. Since the MC-CNN fst method
does not appear on KITTI’12 evaluation table, due to restrictions
on the number of results for a single paper, we borrowed it from
(62]

# dd/mm/yy Algorithm Pip. Err, [%] Time, [s]
1 26/10/15 Displets v2 [18] 3.43 265

2 27/04/16  PBCP [43] 3.61 68

3 21/08/15 MC-CNN acrt [61] 3.89 2.94

4 16/04/15 PRSM [55] 4217 300

5 06/11/15  DispNetC [34] 4.34 0.06

6 11/04/16  ContentCNN [32] 4.54 1

7 21/08/15 MC-CNN fst [o1] 4.62 0.8

8 14/11/16 MC-CNN-WS (ours) 4.97 1.35

9 03/08/15  SPS-st [58] 5.31 2

Table 6. KITTI’ 15 benchmark [[1] snapshot from 14/11/2016 with
published methods (default view). Methods ranked 1, 2, 3, 5, 6
and 7 use deep metrics for stereo matching. Note that our weakly
supervised method MC-CNN-WS, shown in bold, that does not
use ground truth data during training, has an error rate very similar
to that of the supervised MC-CNN fst method, also shown in bold,
trained with ground truth data. Since the MC-CNN fst method
does not appear on KITTI’12 evaluation table, due to restrictions
on the number of results for a single paper, we borrowed it from
[62].

Notably, the performance of the deep metric with a ran-
dom weights is surprisingly good. The corresponding WTA
error on KITTI’ 12 is just 42.01%. This good performance
is the reason why we don’t need to pre-train the deep metric
before applying our contrastive methods.

In Figure[3|we show failure cases of learned deep metric.
Most of the failures happen when the ground truth match is
visually indistinguishable from the incorrect match picked
by the deep metric. This happens if the reference patch is
from a flat image area, an area with a repetitive texture, or
an area with a horizontal edge.

Notably, some failures are triggered by probable errors
in the ground truth. These errors worsen outcomes of the
supervised learning as we show in supplementary materi-
als, but does not affect outcomes of our weakly supervised

1345



after learning -

Figure 2. Diagonal part of the similarity matrix before and after train-
ing with MC-CNN-WS on KITTI’12 dataset. Top figure shows one
of the stereo images with two highlighted epipolar lines. The pictures
below show the positive similarity matrices for these epipolar lines.
The dark elements in the similarity matrices correspond to the higher
similarities. WTA error before training is 42.01%, and 14.61% after.
Note that before the training we can not visually distinguish the best
matches in the similarity matrices, while after the learning they are
clearly visible.
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Figure 3. Failure cases of the deep metric trained with our MC-
CNN-WS method on the KITTI data-set. For each example the three
patches displayed correspond to (from top to bottom): the reference
patch, the predicted match and the ground-truth match. Note that as
expected, the ground truth and the predicted matches are often visu-
ally indistinguishable. This happens if the reference patch is from an
area with almost horizontal edges (3, 6, 13), a flat image area (4, 5,
10), or an area with repetitive texture. Some failures are triggered by
likely errors in the ground truth labeling (2, 12, 14, 16).

learning, since it does not use the ground-truth.

5. Conclusion

We proposed novel weakly supervised techniques for
training patch similarity measures for stereo reconstruction.
These techniques allow to train with data-sets for which
ground truth is not available, by relying on simple con-
straints coming from properties of the optical sensor, and
from a rough knowledge about the scenes to process.

We applied this framework to the training of a “deep
metric”, that is a deep siamese neural-network that takes
two patches as an input and predicts a similarity measure.
Benchmarking on standard data-sets shows that the result-
ing performance is as good or better than published results
with the same network trained on the same but fully labeled

data-sets (see Table 3).

This very good performance can be explained by the
strong redundancy of a fully labeled data-set, due to the
continuity of surfaces, coupled with inevitable labeling er-
rors. The latter can degrade the performance resulting from
a fully supervised training process, and could only be miti-
gated by using a prior knowledge about the regularity of the
labeling, similar to the constraints we use.

The techniques we propose open the way first to using
stereo reconstruction based on deep metrics for data-sets for
which no ground-truth exists, such as planetary measure-
ments. Second, it will allow the training of larger neural
networks, with very large unlabeled data-sets. Our experi-
ments show that the network that we are using in our exper-
iments does benefit from an one order of magnitude more
training samples, than it is available to supervised method
as shown in Table[3] We expect that this effect will be even
more significant if we use our training method with larger
networks that would over-fit existing labeled training sets.

We are now extending our work in two directions.
Firstly, we are generalizing the CONTRASTIVE-DP
method to use any stereo pipeline instead of DP to compute
the regularized solution. This version can piggyback on any
stereo pipeline, and tune the deep metric for the stereo sys-
tem at hand, during normal operation, with minimum com-
putational overhead. Secondly, we are investigating how the
unlabeled training data can be combined with the labeled
data in the framework of our algorithm. Our preliminary
experiments show both directions to be very promising.

6. Acknowledgement

We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Tesla K40 GPU used
for this research. We also acknowledge support from the
NCCR PlanetS and CaSSIS project of the University of
Bern funded through the Swiss Space Office via ESA’s
PRODEX programme.

References

[1] KITTI 2012, 2015 stereo scoreboards. http://www.
cvlibs.net/datasets/kitti/l Accessed: 2016-11-

14.

[2] Middlebury scoreboard. http://vision.
middlebury.edu/stereo/eval3/l Accessed:
2016-11-14.

[3] K. All, D. Hasler, and F. Fleuret. FlowBoost - Appearance
learning from sparsely annotated video. In CVPR, 2011.

A. Ansar, A. Castano, and L. Matthies. Enhanced Real-time
Stereo Using Bilateral Filtering . 3DPVT, 2004.

B. Babenko. Multiple instance learning: algorithms and ap-
plications. NCBI Google Scholar, 2008.

V. Balntas, E. Johns, L. Tang, and K. Mikolajczyk. PN-Net:
Conjoined Triple Deep Network for Learning Local Image

Descriptors. CoRR, 2016.

(4]
(5]
(6]

1346


http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
http://vision.middlebury.edu/stereo/eval3/
http://vision.middlebury.edu/stereo/eval3/

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]
(18]
(19]
[20]

[21]

(22]

(23]

[24]

(25]

[26]

J. T. Barron and B. Poole. The fast bilateral solver. ECCV,
2016.

J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah.
Signature verification using a “siamese” time delay neural
network. In NIPS, 1994.

M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski,
C. Strecha, and P. Fua. BRIEF: Computing a local binary
descriptor very fast. PAMI, 2012.

A. Chakrabarti, Y. Xiong, S. J. Gortler, and T. Zickler. Low-
Level Vision by Consensus in a Spatial Hierarchy of Re-
gions. CVPR, 2015.

X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting
Visual Knowledge from Web Data. In /CCV, 2013.

Z. Chen, X. Sun, and L. Wang. A Deep Visual Correspon-
dence Embedding Model for Stereo Matching Costs. ICCV,
2015.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, 2011.

P. Fischer, A. Dosovitskiy, and T. Brox. Descriptor Match-
ing with Convolutional Neural Networks: a Comparison to
SIFT. CoRR, 2014.

R. Garg, V. K. B. G, and I. D. Reid. Unsupervised CNN
for single view depth estimation: Geometry to the rescue.
ECCV, 2016.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-
tonomous driving? the kitti vision benchmark suite. In
CVPR, 2012.

A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale
stereo matching. ACCV, 2010.

F. Giiney and A. Geiger. Displets: Resolving Stereo Ambi-
guities using Object Knowledge. CVPR, 2015.

R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

H. Hirschm. Evaluation of Stereo Matching Costs on Images
with Radiometric Differences. PAMI, 2008.

H. Hirschmiiller, P. R. Innocent, and J. Garibaldi. Real-Time
Correlation-Based Stereo Vision with Reduced Border Er-
rors. 1JCV, 2002.

H. Hirschmuller and D. Scharstein. Evaluation of Cost Func-
tions for Stereo Matching. CVPR, 2007.

M. Jahrer, M. Grabner, and H. Bischof. Learned local de-
scriptors for recognition and matching. Computer Vision
Winter Workshop, 2008.

J. Kim, V. Kolmogorov, and R. Zabih. Visual correspon-
dence using energy minimization and mutual information. In
ICCV, 2003.

K. R. Kim and C. S. Kim. Adaptive smoothness constraints
for efficient stereo matching using texture and edge informa-
tion. In ICIP, 2016.

J. Kowalczuk, E. T. Psota, and L. C. Pérez.  Real-
time Stereo Matching on CUDA using an Iterative Refine-
ment Method for Adaptive Support-Weight Correspondences
Real-time Stereo Matching on CUDA using an Iterative Re-
finement Method for Adaptive Support-Weight Correspon-
dences. Transactions on Circuits and Systems for Video
Technology, 2012.

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

(43]

(44]

[45]

[40]

(47]

1347

B. G. V. Kumar, G. Carneiro, and I. Reid. Learning Lo-
cal Image Descriptors with Deep Siamese and Triplet Con-
volutional Networks by Minimising Global Loss Functions.
CVPR, 2016.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 1998.

L. Lefakis and F. Fleuret. Dynamic Programming Boosting
for Discriminative Macro-Action Discovery. ICML, 2014.
A. Li, D. Chen, Y. Liu, and Z. Yuan. Coordinating multiple
disparity proposals for stereo computation. In CVPR, 2016.
D. G. Lowe. Distinctive Image Features from Scale-Invariant
Keypoints. 1IJCV, 2004.

W. Luo, A. G. Schwing, and R. Urtasun. Efficient deep learn-
ing for stereo matching. In CVPR, 2016.

D. Marr and T. Poggio. A Computational Theory of Human
Stereo Vision. Biological Sciences, 1979.

N. Mayer, E. Ilg, P. Hiusser, P. Fischer, D. Cremers,
A. Dosovitskiy, and T. Brox. A large dataset to train convo-
lutional networks for disparity, optical flow, and scene flow
estimation. CVPR, 2016.

M. Menze and A. Geiger. Object scene flow for autonomous
vehicles. In CVPR, 2015.
V. Ntouskos and F. Pirri.
CoRR, 2016.

E. T. Psota, J. Kowalczuk, M. Mittek, and L. C. Perez. MAP
Disparity Estimation Using Hidden Markov Trees. ICCV,
2015.

S. E. Reed and H. Lee. Raining deep neural networks on
noisy labels with bootstrapping. /CLR, 2015.

D. Scharstein, H. Hirschmiiller, Y. Kitajima, G. Krathwohl,
N. Nesié, X. Wang, and P. Westling. High-resolution stereo
datasets with subpixel-accurate ground truth. Lecture Notes
in Computer Science, 2014.

Confidence driven tgv fusion.

D. Scharstein and C. Pal. Learning conditional random fields
for stereo. In CVPR, 2007.

D. Scharstein and R. Szeliski. A Taxonomy and Evaluation
of Dense Two-Frame Stereo Correspondence Algorithms.
Jjcv, 2001.

D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. CVPR, 2003.

A. Seki and M. Pollefeys. Patch based confidence prediction
for dense disparity map. In BMVC, 2016.

D. E. Shean, O. Alexandrov, Z. M. Moratto, B. E. Smith,
I. R. Joughin, C. Porter, and P. Morin. An automated,
open-source pipeline for mass production of digital eleva-
tion models (DEMs) from very-high-resolution commercial
stereo satellite imagery. {ISPRS}, 2016.

E. Simo-Serra, E. Trulls, L. Ferraz, 1. Kokkinos, P. Fua, and
F. Moreno-Noguer. Discriminative Learning of Deep Con-
volutional Feature Point Descriptors. /ICCV, 2015.

K. Simonyan, A. Vedaldi, and A. Zisserman. Descriptor
Learning Using Convex Optimization. PAMI, 2013.

R. Stewart and S. Ermon. Label-Free Supervision of Neu-
ral Networks with Physics and Domain Knowledge. AAAI
2017.



(48]

[49]
(501
[51]

(52]

(53]
[54]
[55]

[56]

[57]

(58]

[59]
(60]
[61]

[62]

[63]

C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.
LDAHash: Improved matching with smaller descriptors.
PAMI, 2012.

C. Strecha, T. Pylvinidinen, and P. Fua. Dynamic and scal-
able large scale image reconstruction. In CVPR, 2010.

S. Sukhbaatar and R. Fergus. Learning from noisy labels
with deep neural networks. ICLR’15 workshop, 2014.

E. Tola. DAISY: A Fast Descriptor for Dense Wide Baseline
Stereo and Multiview Reconstruction. PAMI, 2010.

I. Triguero, S. Garcfa, and F. Herrera. Self-labeled tech-
niques for semi-supervised learning: taxonomy, software
and empirical study. Knowledge and Information Systems,
2013.

T. Trzcinski, M. Christoudias, V. Lepetit, and P. Fua. Learn-
ing Image Descriptors with the Boosting-Trick. NIPS, 2012.
C. Vogel, S. Roth, and K. Schindler. View-consistent 3d
scene flow estimation over multiple frames. In ECCV, 2014.
C. Vogel, K. Schindler, and S. Roth. 3d scene flow estimation
with a piecewise rigid scene model. IJCV, 2015.

J. Wu, Y. Yu, C. Huang, and K. Yu. Deep Multiple Instance
Learning for Image Classification and Auto-Annotation.
CVPR, 2015.

Xufeng Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg.
MatchNet: Unifying feature and metric learning for patch-
based matching. CVPR, 2015.

K. Yamaguchi, D. Mcallester, and R. Urtasun. Efficient Joint
Segmentation , Occlusion Labeling , Stereo and Flow Esti-
mation. ECCV, 2014.

R. Zabih and J. Woodfill. Non-parametric Local Transforms
for Computing Visual Correspondence. ECCV, 1994.

S. Zagoruko and N. Komodakis. Learning to Compare Image
Patches via Convolutional Neural Networks. CVPR, 2015.
J. Zbontar and Y. LeCun. Computing the Stereo Matching
Cost With a Convolutional Neural Network. CVPR, 2015.

J. Zbontar and Y. LeCun. Stereo matching by training a con-
volutional neural network to compare image patches. JMLR,
2016.

C. Zhang and Z. Li. MeshStereo : A Global Stereo Model
with Mesh Alignment Regularization for View Interpolation.
ICCV, 2015.

1348



