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Abstract

Image geolocalization, inferring the geographic location

of an image, is a challenging computer vision problem with

many potential applications. The recent state-of-the-art ap-

proach to this problem is a deep image classification ap-

proach in which the world is spatially divided into cells and

a deep network is trained to predict the correct cell for a

given image. We propose to combine this approach with

the original Im2GPS approach in which a query image is

matched against a database of geotagged images and the

location is inferred from the retrieved set. We estimate the

geographic location of a query image by applying kernel

density estimation to the locations of its nearest neighbors

in the reference database. Interestingly, we find that the best

features for our retrieval task are derived from networks

trained with classification loss even though we do not use

a classification approach at test time. Training with clas-

sification loss outperforms several deep feature learning

methods (e.g. Siamese networks with contrastive of triplet

loss) more typical for retrieval applications. Our simple ap-

proach achieves state-of-the-art geolocalization accuracy

while also requiring significantly less training data.

1. Introduction

In recent years, the recognition community has broad-

ened its focus beyond object categorization to the under-

standing of a litany of object, scene, material, or 3D at-

tributes. One of the most important attributes of an im-

age is geolocation – if we know the location of a photo,

we trivially know hundreds of additional attributes (any at-

tribute for which a map exists, e.g. population density, av-

erage temperature, crime rate, elevation, distance to a Mc-

Donald’s, etc.). Knowing the location of an image is also

a common photo forensics task. For example, the mobile

app TraffickCam collects hotel room images to locate inci-

dents of abuse. Unlike many computer vision tasks, com-

putational systems typically exceed the performance of hu-

mans at image geolocalization because it is hard for humans

to have an accurate visual model of the entire world.

Figure 1. This work addresses the image geolocalization problem:

given a large set of GPS-tagged images, learn to infer the GPS

coordinate of a query image with unknown location.

Estimating the geolocation of an arbitrary photo is still a

challenging task (Figure 1). In particular, we examine the

task of predicting the location of a single photo given only

the image content with no metadata. We consider this task

at a global scale and attempt to estimate the GPS coordi-

nates for any query image. For this task, localization can

be considered successful if the estimated location is within

a specified error threshold. Depending on the application,

this threshold could be street level (1km), city level (25km),

region level (200km), country level (750km), or continent

level (2500km). We adopt these five levels of granularity

from prior work and examine the performance of geolocal-

ization strategies at these error thresholds.

One natural approach to the image geolocalization task

would be to to treat it like an instance retrieval task and

match local features from the query image (and perhaps

their geometric layout) to a reference database of images

with known locations [16]. Such approaches work well if

(1) there are images in the reference database with a field

of view that significantly overlaps with that of the query
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image and (2) if the content of the query image is well

suited to local feature matching (i.e., it has distinctive man-

made or geological features). Unfortunately, this is often

not the case, especially for query images away from tourist

destinations and dense urban areas. Therefore, it is neces-

sary to infer location without requiring direct local-feature

matching. In these cases, image geolocalization is similar

to scene classification or scene attribute estimation in that a

system needs to achieve a higher-level, more qualitative un-

derstanding of an image, e.g. recognizing that buildings are

typical of Greek islands even though this particular island

isn’t in the reference database.

Im2GPS [10, 11] introduced the global geolocalization

problem and used hand-crafted features from the instance

recognition and scene classification literature jointly to re-

trieve nearest neighbors in a database of 6 million geo-

tagged images. Im2GPS found that roughly half of suc-

cessful geolocalizations are instance level matches whereas

half are more qualitative matches based on shared scene at-

tributes (geology, architecture, land cover, etc.).

More recently, PlaNet [36] formulates image geolocal-

ization as a classification task. This is done by mapping

the GPS coordinate (a pair of real numbers) to a discrete

class label by dividing the surface of the earth into dis-

tinct regions. PlaNet proposes a deep convolutional neural

network to estimate a probability distribution over regions

from raw pixel values. PlaNet not only significantly outper-

forms Im2GPS in terms of accuracy, it is also dramatically

faster since it requires only a forward pass through a deep

network instead of a nearest neighbor search through mil-

lions of image features.

Is the deep image classification formulation of PlaNet

the best approach to geolocalization (as it seems to be for

most other scene understanding tasks)? There are two rea-

sons to suspect it might not be ideal – first, discretizing the

Earth’s surface is lossy since we are ultimately interested

in a real-valued location estimate (potentially expressed

through GPS coordinates). Second, and more limiting, is

that a single deep network, even with tens of millions of pa-

rameters, will struggle to memorize the visual appearance

of the entire Earth. An effective deep network needs to learn

to do both instance matching and more qualitative scene

understanding. Can contemporary deep networks implicitly

‘memorize’ tens of millions of photographic features nec-

essary for the instance matching?

In this paper, we adopt the retrieval approach of Im2GPS

but pair it with deep feature learning as in PlaNet. We out-

perform PlaNet by a significant margin – 47.7% accuracy

vs 37.6% for PlaNet on the Im2GPS test set with a 200km

threshold . Interestingly, while we approach geolocalization

as a retrieval task with learned deep features, we don’t see a

benefit to using embedding formulations (e.g. Siamese net-

works with contrastive or triplet loss) typical for retrieval

tasks. Our best performance comes from training a classi-

fication network, in the spirit of PlaNet, and using its inter-

mediate activations as our image feature.

The contributions of this study are:

• We significantly improve the state-of-the-art accuracy

for global image geolocalization. Our increase in ac-

curacy is similar in magnitude to that achieved by

PlaNet [36] over the hand-crafted retrieval approach

of Im2GPS. We achieve this with as little as 5% of the

training data used by PlaNet, and increase the gap fur-

ther while using 28% as much reference data.

• Our increase in accuracy comes from changing the for-

mulation from classification to retrieval. The benefit of

retrieval in this setting is a reflection of the geolocal-

ization problem and the nature of current deep models

– the visual world is too complex for a deep model to

memorize, but a retrieval approach does so trivially.

• We investigate different strategies for learning a deep

feature embedding for geolocalization. Surprisingly,

deep feature learning methods typically used for re-

trieval applications do not outperform training with a

classification loss. For classification-based localiza-

tion, we find that different discretization strategies also

have a significant impact.

• Through extensive experimentation, we find that some

training procedures lead to higher accuracy at the

street scale (1km) and others at the country scale

(750km). We observe a trade off between fine-scale

and coarse-scale performance, the regimes tradition-

ally approached with instance-level matching methods

and scene classification methods, respectively.

Related works are discussed in the next section. We de-

scribe image geolocalization system designs in Section 3.

Experiments and analysis are reported in Section 4 and we

conclude in Section 5.

2. Related Work

Recent years have seen a dramatic expansion of deep

learning methods for scene understanding tasks [14]. Deep

learning has been applied successfully to location predic-

tion [36] and other tasks related to our problem: predict-

ing scene type [40], perceptual attributes [7] such as safety,

liveliness and geo-informative attributes [15] like GDP, ele-

vation.

Image retrieval using learned, deep representations is

useful to a wide range of tasks such as product ranking

[4, 12], sketch based image retrieval [25], face recognition

[31, 26], cross-view localization [18, 37, 34] and scene re-

trieval [33, 2, 23, 8]. Distance metric learning (DML) is

usually employed with a deep network, most commonly us-

ing the contrastive loss [9] or triplet ranking (hinge loss)
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Figure 2. We study six schemes for discretizing geographic location. These vary from coarse to fine (10, 80, 359, 1060, 1693 and 7011

regions respectively).

Figure 3. Our proposed CNN architecture consists of the convo-

lutional layers of the VGG-16 network [28] followed by a global

max pooling layer. Depending on the task, we append to this an

output layer and the corresponding loss layer. For classification,

we use a fully connected layer and Softmax-CrossEntropy loss, for

retrieval, we use a DML loss.

[5, 19, 35]. New loss functions and example mining strate-

gies have been proposed as they play important role in the

learning process [24, 20, 23, 34].

We are studying image retrieval geolocalization which

has overlap with instance-level scene retrieval [33, 2, 23, 8];

Since this line of work mostly focuses on instance-level

matching, benchmarks designed for this task consist of pop-

ular scenes or landmarks [21, 22, 13] and similarity between

matched images are visually recognizable (by humans or

geometric verification). In this regime, with manual label-

ing and/or clever example mining, it is beneficial to apply

distance metric learning. Techniques such as geometry ver-

ification or query expansion typically improve instance re-

trieval mAP, but these techniques are less useful when ge-

olocalizing scenes that do not have instance matches.

Many previous works on image localization are at lim-

ited spatial scale (urban areas) or on special class of im-

ages (landmarks, streetview) [16, 39, 18, 34, 1, 17, 38].

Many approaches make used of aerial imagery for local-

ization [3, 27, 17]. In [18, 34, 37], images of the same

scene from the ground viewpoint and overhead viewpoint

are embedded in the same feature space through deep learn-

ing DML; the resulting system then does localization by

image retrieval using reference database of aerial images.

Also related, to match aerial images across wide baselines,

Altwaijry et al. [1] propose a deep attentive architecture to

classify whether two views match.

Image geolocalization at planet scale is challenging and

less studied. An effort to advance this area is the placing

task at MediaEval [6]. Two more notable works that aim

for global coverage are Im2GPS [10, 11] and PlaNet [36],

which we build upon.

3. Image Geolocalization using Deep Learning

Given a large training data of images with GPS labels,

we examine two deep learning approaches for geolocaliza-

tion. For both cases we use the same architecture shown

in Figure 3 which has been popular for landmark recogni-

tion [2, 23, 8].

3.1. Geolocalization by classification

One approach is to formulate geolocalization as a classi-

fication problem [36]: the GPS label is converted to class

label by quantizing all GPS labels to a fixed number of

classes, so that each class represents a physical region in the

real world. The classification result then can be converted

back to the GPS coordinate of the corresponding region.

PlaNet[36] divides the Earth into a set of geographi-

cal cells based on image density. We derive a similar

adaptive scheme: starting with a single cell of the entire

world, repeatedly divide each cells along latitude or longi-

tude whichever side is bigger (either evenly or randomly)

until the number of images in each cell is smaller than a

threshold timg or the physical area is smaller than a thresh-

old tarea; these parameters define how fine the partitioning

is.

To predict the location as precisely as possible, one

would prefer a fine-grained partitioning (for example [36]’s

partitioning has 26,263 cells). However we should take into

account the training data’s size, the learning model’s ca-

pacity and especially the localization error tolerance. We
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Figure 4. A visual overview of our image-retrieval approach to image geolocalization. We extract a feature from our CNN, find nearby

neighbors in feature space, and estimate the GPS coordinate using either the top NN or the density.

Figure 5. When performing distance metric learning, we sam-

ple images based on their distance, either in label space (geo-

graphic distance) or feature space, to an anchor image. Some ex-

ample images that are close/far from an anchor image in the label

space/feature space.

investigate 6 different partitionings shown in Figure 2. Ad-

mittedly these choices are somewhat arbitrary, as we do not

directly control the number of cells, nor do we try to “opti-

mize” each partitioning. We used similar parameter to [36]

to obtain a fine grained partitioning (though [36]’s data is

∼14 times bigger so they still have
√
14 times more cells);

then we loosen the thresholds to obtain the other 5 coarser

partitionings.

Multiple class labeling: We investigate the effect of us-

ing multiple partitionings simultaneously. The motivation is

that different proximity information is preserved at different

levels of granularity (and not the others). Moreover classi-

fication results at multiple coarse partitionings can be com-

bined to produce a more fine grained prediction. Therefore

we experiment with training multiple classification losses

as these tasks are heavily correlated and benefit each other.

3.2. Geolocalization by image retrieval

This approach looks up images that are similar to the

query images and makes use of the known locations of those

images [10]. This requires learning a representation for

comparing images (for which we will use deep learning)

and indexing a large reference database.

To learn such a representation, we employ distance met-

ric learning (ranking/triple hinge loss, contrastive loss and

similar loss functions) which requires pairs of images la-

beled ‘similar’ or ’different’. When not available, such la-

beling can be automatically generated using geometry ver-

ification [8, 23] or class labels [20, 24]. In our case, we

make use of the class label described in the previous sec-

tion or directly threshold the GPS distance between the 2

images. Similar to [2], we can also match images that are

not only close in the GPS label space but also close in the

current feature space. Even so, with the data we are dealing

with, this supervision is very weak in the sense that matched

images (taken at the same location/region) are most likely

not of the same or even similar scene/object (Figure 5).

After training we use the CNN as a feature extractor and

index a large dataset of reference image features. At test

time, we look up the nearest neighbor (NN) of the query im-

age in the feature space using approximate NN search and

output its location (Figure 4). This approach works based

on the assumption that, after learning, images close in the

feature space are likely to be close in the label (GPS coor-

dinate) space too.

k-NN density estimation: we can make use of the top k

NN instead of only 1. We perform weighted kernel density

estimation using each NN as a Gaussian kernel, the density

at a point x in GPS coordinate space can be written as:

f(x) =

k∑

i=1

wiN(x;xi, σ
2I) (1)

Where xi is the GPS coordinate of the i-th NN, we also

weight each NN wi = smi depending on its similarity score

si (defined to be the inverse of the distance between the

query image’s feature and the reference image’s feature).

The point with highest density is chosen as output.

Note that as k decrease, m increase or σ decreases, this

output becomes the NN. These parameters can be opti-

mized: bigger reference data allows bigger k and looser er-

ror threshold allows bigger σ. Given our dataset (described

in the next section) We choose m = 10, k = 100 through

validation (these parameters were not precisely tuned) and

experimentally manipulate σ.

4. Experiments

Training data: We use the Im2GPS dataset from [10].

It consists of more than 6 million images collected from

Flickr that are tagged with countries or states’ name and
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Figure 6. Example results of geolocalization by image classification using different partitionings. From left to right: input images,

classification result with 80, 1060 and 7011 classes respectively (lighter region means higher probability). Red * denotes the predicted

location and green o denotes the true location.

also have GPS coordinates. This data is used for GPS quan-

tization (Figure 2), training deep networks, and as retrieval

reference database.

Testing data: for analysis, we construct 2 test sets; we

make sure that no image from training and test data come

from the same photographer.

• Im2GPS3k: 3000 images from Im2GPS. Note that

this is different from the Im2GPS test set [10].

• YFCC4k: 4000 random images from the YFCC100m

dataset [32]. Since it is designed for general computer

vision purpose, its image distribution is different from

Im2GPS making this test set more challenging.

Training for classification: we train the following net-

works:

• Lone: We trained a network with a single classifica-

tion loss corresponding to the most fine grained parti-

tion (7011 classes). This can be considered an analog

of PlaNet [36] at smaller scale. We also train another

version L2 for the 359 ways classification loss.

• Multi: We train another classification network with 6

different losses corresponding to 6 partitions scheme

described in section 3.1. Hence this network produces

6 localization outputs . We’ll treat these outputs in-

dependently and evaluate the performance of each of

them.

Training for retrieval: we fine-tune the model L with

ranking loss (triplet hinge loss) to learn a better represen-

tation, resulting in a Ranking network. To do localization

by retrieval, we experiment with different networks as fea-

ture extractor: the classification networks (L and M) and the

ranking network (R).

We also evaluate two other publicly available state-of-

the-art models, NetVLAD [2] and Siamac [23], which have

similar architecture (VGG-conv layers), but different train-

ing data (weakly supervised Google streetview time ma-

chine and SfM landmark images hard example mining),

global pooling layer (NetVLAD and R-Max) and loss func-

tion (triplet hinge loss and contrastive loss). Different from

us, these models have an additional PCA & whitening step.

Features from all models are L2-normalized when used for

retrieval.

Notation: we will use [Model]Approach to refer to

each method, where Model can be L, L2, M, R, NetVLAD,

Siamac described above, and Approach can be C (for clas-

sification), NN, kNN (for retrieval). For example [M]311C

refers to the 311 way classification output of model M, and

[M]NN refer to the NN retrieval approach using model M

as feature extractor.

Metric: the geolocalization accuracy is defined as the

percentage of test images whose predicted location is within

the error threshold from the true location. Similar to [10, 11,

36], 5 error thresholds are used: 1km, 5km, 25km, 750km,

2500km corresponding to 5 levels of localization: street,

city, region, country, continent.

Result: Qualitative results are shown in Figures 6 and

7. Quantitative results on two test sets are shown in Figure

8. For comparison we add a simple baseline: always out-

putting London, which is the region with the most images.

This baseline is practically the best one can do without look-

ing at the input image; its performance is much better than

guessing a random location on the Earth.

We will ensure that our results can be replicated by shar-

ing our datasets, source code, and trained models.

4.1. Comparing classification performance

An example output of classification is in Figure 6. In the

case of less ambiguous image, the network would be able

to predict the correct region/cell. Since the center of the

region is used, a finer partitioning will lead to a prediction
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Figure 7. Example results of our geolocalization by image retrieval system (kNN, σ=4). Each row shows the input image on the left,

the first few NNs on the right, together with their locations (blue *). At the end of the row we show the density result, red * denotes the

predicted location and green o denotes the true location.

that is closer to the true location (top row). Though in case

of the image being very ambiguous, correctly localizing it

at coarser level is more likely (bottom row).

As shown in Figure 8, the geolocalization accuracy of

the 10 way classification output is quite bad, this is mostly

because at this scale the Earth is under-divided. We can see

that as the partitioning is finer, the localization performance

at lower error threshold gets better as expected. The fine-

grained classification output (7011C) outperforms others at

street and city level.

Most interesting, the geolocalization accuracy at coarse

level gets worse if the partitioning is too fine: for example at

continent level, the 80C and 359C achieve highest accuracy;

At country level, the 359C and 1060C have the advantage.

This seems to indicate a trade off between the accuracy at

coarse and fine level, which may be a shortcoming of the

partitioning in PlaNet [36].

[M]7011C and [L]7011C achieve similar accuracy ([L]

is slightly better). However in the case of 359C, [M] is

slightly better than [L2]. This suggests that when train-

ing with multiple classification losses, the fine-grained one

seems to help the coarse one a little, but not vice versa.

4.2. Comparing retrieval performance

Figure 7 shows example image retrieval results. The

NNs are similar scenes to the input image. In the case of

landmarks and popular sites, they are usually instance level

matches.

As shown in Figure 8, with localization by NN image re-

trieval, all 5 models (R, M, L, NetVLAD, Siamac) perform

well and outperform the classification result at street and

city level. This makes sense as these successful localiza-

tions are likely correct instance-level matches. While clas-

sification network can learn the general characteristics of
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Figure 8. Geolocalization accuracy on two test sets. Note that the accuracy is presented as the top of the bars, not the length of each single

color.

each regions, it doesn’t have enough capacity to ‘remem-

ber’ all specific instances, while the retrieval approach ‘re-

members’ this by directly saving all reference features.

Among all 5 models, NetVLAD is the worst. Siamac

is the most discriminative at street level. As a trade off,

it has slightly lower performance at coarse level (country

and continent). The L and M models are comparable and

they perform relatively well even though they are trained for

classification. Coarse partitioning classification approaches

still have the advantage at country and continent scale.

Finally, using kNN-kernel density estimation improves

the accuracy (here we only show [L] and [Siamac] but the

changes when using other models are similar); especially at

coarse scales (as σ increases) this makes retrieval competi-

tive with the classification approach. However bigger σ can

potentially lower the accuracy at fine grained level. Inter-

estingly, we arrive at a similar trade off between fine and

coarse geolocalization accuracy.

4.3. Training a ranking network with GPS label

Model R (which was fine-tuned from L) doesn’t produce

a noticeable improvement over L or M (Figure 8). In further

investigations, we train a dozen versions of R, fine-tuned

from different pretrained models and varied the way we

sample/mine training examples. In all cases, little progress

is observed in term of both training loss and geolocalization

performance.

However when using landmark matches from [23] for

training instead of Im2GPS data, we observe slight im-

provement at street level, but worse results at other scales.

This is consistent with the fact that Siamac[23] is very good

at street level.

Distance metric learning losses like triplet hinge loss

seems to be very sensitive to noisy labels. Different from

classification loss (where the label for each image is fixed

during training), the “target” of each training image keep

changing while they are adjusting distance from each other,

usually making convergence slower.

We hypothesize that the inter-class ambiguity and intra-

class diversity are too large and DML is not able to learn

from GPS supervision (Figure 5).

4.4. Comparing with IM2GPS and PlaNet

On the Im2GPS test set, we can directly compare

Im2GPS [10, 11] and PlaNet [36] with two of our models:
• The fine-grained classification network ([L] 7011C).

This can be considered the equivalent of Google’s

PlaNet[36] at smaller scale.

• kNN kernel density estimation retrieval ([L] kNN,

σ=4). This can be considered the equivalent of

Im2GPS approach [10], but using deep features instead

of classical features.

The result is shown in table 1. Our classification net-

work outperforms Im2GPS even though it is still not as

good as PlaNet. On the other hand, our localization by deep

learnt image retrieval method produces even better accura-

cies. This result highlights the advantage of retrieval ap-

proach for fine-grain localization.
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Complexity analysis: in term of number of parameters

without counting the output layers, PlaNet is 3 times big-

ger than our 13 layers deep VGG model. Note that PlaNet

uses an Inception architecture which has been heavily de-

signed to optimize for complexity [29, 30] (for reference, it

is 8 times bigger than 22 layers deep GoogLeNet[29] and

2 times bigger than 42 layers deep InceptionV2[30]). Also

PlaNet’s training data has more than 90 million images and

it takes 2.5 months to train on clusters (approximately 40

years of CPU time). However in term of space complexity,

our image retrieval approach requires all reference features

be available during testing, not just the deep network. More

over, the cost of indexing and perform NN search is not neg-

ligible; though indexing needs to be done only once and in

our experience the cost of approximate NN search is smaller

than that of feature extraction.

Comparing to Im2GPS [10, 11], deep learning feature

extraction is orders of magnitudes faster than computing

many classical computer vision features. Im2GPS’s com-

bined feature has more than 100k dimensions; in [11] lazy

learning is done for each query adding more time complex-

ity. In contrast, our deep feature with 512 dimensions is

suitable for direct comparisons in Euclidean space. Because

of this, our kNN kernel density estimation is a more effi-

cient and effective post-processing procedure than the sim-

ilar kNN mean shift clustering and lazy learning in [11].

4.5. Effect of retrieval reference database

One advantage of retrieval approach is that we can sim-

ply index more examples to improve the performance. To

that end we collect another 22 million GPS-tagged images

from the YFCC100m dataset [32], increasing our database

size to a total of 28 million images. As shown in table 1 (last

row), this results in better performance of [L]kNN,σ=4 on

the Im2GPS test set.

We vary the reference retrieval database (Im2GPS-6 mil-

lions images, YFCC-22 millions and the combined 28 mil-

lion) and show the geolocalization accuracy in table 2. The

performance when using YFCC22m is actually no better

than when simply using Im2GPS; though the combined

database of 28 million images result in an improvement.

We attribute this to the fact that the IM2GPS test set and the

IM2GPS database come from the same distribution, which

makes IM2GPS more useful for referencing. To quantify

this, we measure the percentage of IM2GPS images among

the top 1, 10, 100, 1000 nearest neighbors result, they are

53.2%, 50.1%, 44.6% and 40.1% respectively, which is

quite high given that IM2GPS only constitutes 22.8% of the

combined database.

Similar to result on Im2GPS3k and YFCC4k, we can

change σ to optimize the accuracy at a localization level

(at the expense of the others). If the system is allowed to

produce different outputs at different levels, this further out-

performs the result in Table 1.

Table 1. Performance on Im2GPS test set. (Human* performance

is average from 30 mturk workers over 940 trials)

Street City Region Country Cont.

Threshold (km) 1 25 200 750 2500

Human* 3.8 13.9 39.3

Im2GPS [10] 12.0 15.0 23.0 47.0

Im2GPS [11] 02.5 21.9 32.1 35.4 51.9

PlaNet [36] 08.4 24.5 37.6 53.6 71.3

[L] 7011C 06.8 21.9 34.6 49.4 63.7

[L] kNN, σ=4 12.2 33.3 44.3 57.4 71.3

... 28m database 14.4 33.3 47.7 61.6 73.4

Table 2. Performance on Im2GPS test set based on different re-

trieval reference database.
Retrieval Database Stre. City Reg. Cou. Cont.

[L] NN

Im2GPS 12.7 33.3 40.9 53.2 71.7

YFCC22m 12.2 30.4 37.6 51.1 67.1

Both(28m) 13.9 32.9 40.5 54.4 70.9

[L] kNN

σ = 1

Im2GPS 13.1 36.3 44.3 56.1 70.0

YFCC22m 12.7 34.2 43.9 55.3 68.8

Both(28m) 15.2 37.6 46.0 57.0 69.2

[L] kNN

σ = 4

Im2GPS 12.2 33.3 44.3 57.4 71.3

YFCC22m 11.8 31.2 42.2 58.7 70.0

Both(28m) 14.4 33.3 47.7 61.6 73.4

[L] kNN

σ = 16

Im2GPS 10.6 24.9 35.4 59.5 75.9

YFCC22m 8.4 19.8 34.6 58.2 74.7

Both(28m) 11.8 24.9 36.7 60.8 77.2

5. Conclusion

We presented a deep learning study on image geolocal-

ization, where we experimented with several settings of im-

age classification and image retrieval approaches adapted to

this task. We do not claim technical novelty for any com-

ponents of this study. Our approaches are relatively simple

yet achieve state-of-the-art accuracy. In the end, the best

performing models can efficiently and accurately localize

at coarse level using classification, and if needed can search

for instance matches using retrieval techniques.

The main goal of this paper is to investigate the effec-

tiveness of deep learning methods for geolocalization. With

the newly obtained insights, we think the following lines of

future work would be important: (1) we have shown the de-

pendency between partitioning scheme and geolocalization

accuracy, which begs the question: what is the best way to

partition and how can the partitioning be optimized given

a particular error threshold? (2) Are GPS labels too weak

a supervision for traditional deep distance metric learning?

There is likely an opportunity for better weakly supervised

DML to improve the geolocalization.
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