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Abstract

Blob detection and image denoising are fundamental,

and sometimes related, tasks in computer vision. In this pa-

per, we propose a blob reconstruction method using scale-

invariant normalized unilateral second order Gaussian ker-

nels. Unlike other blob detection methods, our method sup-

presses non-blob structures while also identifying blob pa-

rameters, i.e., position, prominence and scale, thereby fa-

cilitating blob reconstruction. We present an algorithm for

high-ISO long-exposure noise removal that results from the

combination of our blob reconstruction method and state-

of-the-art denoising methods, i.e., the non-local means al-

gorithm (NLM) and the color version of block-matching

and 3-D filtering (CBM3D). Experiments on standard im-

ages corrupted by real high-ISO long-exposure noise and

real-world noisy images demonstrate that our schemes in-

corporating the blob reduction procedure outperform both

the original NLM and CBM3D.

1. Introduction

In the computer vision community, the term blob is used

to refer to a small structure that is either brighter or darker

than the surrounding background in images [6, 9, 22]. It

is an important low-level image feature and plays a promi-

nent role in many computer vision tasks, such as bioim-

agery analysis [14, 23], medical image diagnosis [25], ob-

ject tracking [19, 26] and autonomous driving [8]. Nu-

merous methods, like Laplacian of Gaussian (LoG) [15],

Difference-of-Gaussians (DoG) [15], Determinant of Hes-

sian (DoH) [11], generalized Laplacian of Gaussian (gLoG)

[7] and Hessian-based Difference of Gaussians (HDoG)

[24], have been proposed over the past several decades.

Conventional methods produce significant responses for

lines, terminations, corners and edges, hindering the dis-

crimination of the blobs. Moreover, very few researchers

have focused on blob reconstruction and reduction. How-

ever, on some occasions, blob reduction might be the key to

solve some computer vision tasks like the removal of blob

noise caused by high-International Organization for Stan-

dardization (ISO) sensitivity and long exposure in digital

single-lens reflex (DSLR) camera images.

Since it is a fundamental step for improving the final

performance in many applications, image denoising has

received great attention [20]. A multitude of noise re-

duction algorithms, such as NLM [1], CBM3D [4], deep

Gaussian conditional random field [21], multi-layer per-

ceptron [2], external patch prior guided internal cluster-

ing [3] and Wishart fidelity nonlocal total variation [16],

have achieved considerable performance in removing white

Gaussian noise, salt-and-pepper noise, Poisson noise or

speckle noise. Unfortunately, to the best of our knowl-

edge, very few approaches were targeted to the noise caused

by high-ISO sensitivity and long-exposure sensors [17, 18],

though it is common in DSLR camera images.

In digital photography, high ISO sensitivity and long ex-

posure time are necessary for taking photos of objects under

low light conditions. However, the combination of high ISO

and long exposure, which maintains a high sensitivity and

raises the temperature of the sensor, simultaneously leads to

random noise and fixed pattern noise. The random noise is

conventionally termed as grain [17, 18]. The fixed pattern

noise is generally less spatially correlated than the random

noise. Therefore, in this paper, we term the noise caused

by high ISO and long exposure as blob noise, which in-

cludes the long-exposure noise and most of the fine grain

noise. Unfortunately, this kind of blob noise can hardly be

removed by conventional methods. The first reason is that

blob noise has a certain shape and occupies a certain area,

and therefore the self-similarity of image is seriously dam-

aged. The conventional denoising algorithms can hardly

recognize whether it is a noise blob or a true visual element

of the image. A second reason is that, from the perspective
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of the frequency domain, blob noise has a large number of

very low frequency components that are totally mixed with

true image content. Consequently, blob detection and re-

duction should play an important role in the denoising pro-

cess.

In this paper, after introducing the definition of blobs

and second order Gaussian functions in Section 2, we

present in Section 3 a blob reconstruction method based

on scale-invariant normalized unilateral Gaussian kernels

(USOGKs). In Section 4, we apply this method to high-

ISO long-exposure image denoising as a preprocessing pro-

cedure that can benefit the subsequent state-of-the-art de-

noising algorithm, specifically the NLM and the CBM3D

algorithms. Finally, in Section 5 experiments on both test-

ing images corrupted by real high-ISO long-exposure noise

and real-world noisy images are conducted to validate our

method.

2. Related Work

2.1. Blob Structure Definition

In this paper, we consider the case of bright blobs. Lin-

deberg [10] attempted to give a mathematical description of

blobs based on the idea that the blob would extend until it

merges with another blob. Let x
T
= [x, y]T denote the pla-

nar coordinate and a 2D continuous signal f : R2 → R

obtain a local maximum at x0 = [x0, y0]T. For any intensity

h < f (x0), the protuberance surface S(x0, h) is defined as

the convex connected component of

S(x0, h) =
{

(x, f (x)) | h ≤ f (x) ≤ f (x0)
}

(1)

that contains (x0, f (x0)). Obviously, for h− < h, we have

S(x0, h) ⊆ S(x0, h
−). A subset P of S(x0, h) is defined as

follows: A point (xi, f (xi)) ∈ S(x0, h) belongs to P if there

exists a path ℓ(x0, f (x0)),(xi, f (xi)) from point (x0, f (x0)) to point

(xi, f (xi)) such that (i) every point on the path belongs to

S(x0, h), and (ii) the derivative of ℓ along this path satisfies

ℓ′
(x0, f (x0)),(xi, f (xi))

≤ 0. The base level h0 of S(x0, h) is defined

as the maximum value of h < f (x0) such that P , S(x0, h).
Thus the blob with the peak point x0 can be referred to as

the set of points S(x0, h0), and the blob prominence is given

by the difference in intensity between the peak point and the

base level:

c0 = f (x0) − h0 . (2)

A visual representation of this blob model is displayed

in Fig. 1.

2.2. Second Order Gaussian Functions

As described in Lindeberg’s work [11, 12], given any

n-dimensional signal f : Rn → R, its scale-space repre-

sentation L : Rn ×R+ → R is given by

L(x; σ) = g(x; σ) ∗ f (x) , (3)

Figure 1. Visual representation of a blob and its measurable char-

acteristics.

where ∗ denotes the kernel filtering operation, x represents

the coordinate of the kernel, the variance σ (σ > 0) is re-

ferred to as the scale parameter and g(x; σ) : Rn ×R+ → R

denotes the Gaussian kernel. Specifically, the 2D Gaussian

kernel is defined as:

g(x; σ) =
1

2πσ2
exp

(

−
x

T
x

2σ2

)

, (4)

where x
T
= [x, y]T.

The derivatives of the scale-space representation are then

defined based on Eq. (3):

Lxα, yβ (x; σ) = gxαyβ (x; σ) ∗ f (x) , (5)

where α and β ∈ Z+ denote the order of differentia-

tion. Moreover, in order to compensate the magnitude de-

crease of un-normalized Gaussian derivatives over scales,

the γ-normalized derivatives are proposed as

Lxα, yβ, γ-norm(x; σ) = σ2γ · gxαyβ (x; σ) ∗ f (x) . (6)

Based on Eq. (4), the second order Gaussian kernel

(SOGK) with respect to x is given by

gxx(x; σ) =
x2 − σ2

2πσ6
exp

(

−
x

T
x

2σ2

)

. (7)

The directional SOGK [13] can be obtained by rotating

the SOGK with an orientation of θ:

gxx(x; σ, θ) =

(

[cosθ, sinθ]x
)2
− σ2

2πσ6
exp

(

−
x

T
R−θRθx

2σ2

)

,

(8)

where

Rθ =

[

cosθ sinθ
−sinθ cosθ

]

.

Many blob detection methods, including LoG, DoG,

gLoG and DoH, employ the SOGK-based Hessian matrix
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or directional SOGK filters to obtain the blob strength mea-

surement (BSM). However, these methods also produce sig-

nificant responses for edges, lines, corners and terminations,

all of which have a strong spatial structure, as shown in

Figs. 2(b), 2(c), 2(d) and 2(e). Moreover, the relationship

between the BSM and the blob parameters is implicit so

that the blob can hardly be reconstructed.

3. Blob Reconstruction

3.1. Gaussian Blob Modelling

Assuming the blob structure is a Gaussian surface, based

on the aforementioned blob definition, we can describe a

blob using four parameters: the center position, the scale,

the prominence and the base level. Thus a blob in an image

can be modelled by a 2D Gaussian function that is formu-

lated as:

B(x; x0, σ0, c0, h0) = c0 · exp

(

−
(x − x0)T(x − x0)

2σ2
0

)

+ h0 ,

(9)

where x0 is the center position, c0 ∈]0, 1] is the prominence,

h0 ∈ [0, 1[ is the base level and σ0 denotes the blob scale,

respectively.

In fact, as the image intensity at each position is known,

we can calculate h0 based on Eq. (2) once c0 is obtained.

Therefore, the blob can be delimited once these four pa-

rameters are determined, and the task of blob detection can

also be reconsidered by finding these four parameters.

3.2. Blob Measurement and Reconstruction

Since the conventional blob detection methods can

hardly show the relationship between the BSM and the

blob parameters, here we will discuss how the second or-

der Gaussian kernel works. Afterwards, the scale-invariant

normalized SOGK, which can measure the ideal Gaussian

blob precisely, will be derived.

Elaborating on Eq. (6), we redefine the γ-normalized

SOGK as:

gxx, γ-norm(x; η, a, σ) = (−1)η · a · σ2γ · gxx(x; σ) , (10)

where η ∈ {0, 1} is a parameter determined by the blob type

(in this paper we employ kernels with η = 1 since they

produce a positive response for bright blobs), a is a constant

that will ensure that the convolutional result between SOGK

and the ideal Gaussian blob precisely reflects the blob pa-

rameters. Thus the signal response of the γ-normalized

SOGK and blob model at position x0 can be calculated as:

L(x0) = gxx, γ-norm(x; η, a, σ) ∗ B(x; x0, σ0, c0, h0) |x=x0

= ac0σ
2γ−2σ0(σ2

0 + σ
2)−1

[

1 − σ2
0(σ2

0 + σ
2)−1

]

. (11)

In order to calculate the scale of the blob, we need to find

a σ that can produce the largest response in the scale space.

Hence we calculate the derivative of L(x0) with respect to

σ and set it to zero. The solution is given by

σ = γ
1
2 (2 − γ)

1
2 σ0 . (12)

Substituting the latter σ in Eq. (12), we obtain

L(x0) =
ac0γ

4(2 − γ)γ−2
σ

2γ−2

0
. (13)

To make sure the response L(x0) is irrelevant to σ0,

i.e., the normalized SOGK is scale-invariant, the value of

γ should be set to 1. Now Eq. (13) becomes

L(x0) =
1

4
ac0 . (14)

Hence we have a = 4, so that L(x0) = c0 while L(x0)
achieves its maximum at scale σ = σ0.

From Eq. (10) and the discussion above, we get the scale-

invariant normalized SOGK:

gsogk(x; σ) = −4σ2 · gxx(x; σ) . (15)

Therefore, the proposed SOGKs produce a maximum re-

sponse at x0 for the scale σ0. Moreover, the final maximum

response can also indicate the blob prominence c0.

Interestingly, some blobs that are adjacent to other struc-

tures do not show ideal appearance. That is, their local con-

trast values in each direction are not identical. Thus the

orientation should be introduced to calculate the local con-

trast in each direction. For this reason, the USOGK, which

inherits the aforementioned merit of the SOGK, is proposed

to obtain the blob prominence, namely, the minimum local

contrast defined in Section 2.

From Eqs. (8) and (15), the directional scale-invariant

normalized SOGK is generated as:

gsogk(x; σ, θ) = 2
σ2 −

(

[cosθ, sinθ]x
)2

πσ4
exp

(

−
x

T
R−θRθx

2σ2

)

.

(16)

We can see from Eq. (16) and Fig. 3 that a SOGK is

spatially divided in three areas, i.e., a central area KC(x)
and two symmetrical side-areas KL(x) and KR(x), which are

illustrated in Fig. 3. Each of them can be expressed as an

individual kernel, leading to:

KC(x) =















gsogk(x) , if gsogk(x) > 0

0 , otherwise

KL(x) =















gsogk(x) , if gsogk(x) < 0 and x < −y tanθ

0 , otherwise

KR(x) =















gsogk(x) , if gsogk(x) < 0 and x > −y tanθ

0 , otherwise

,

(17)
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Response produced by LoG (b), DoH (c), gLoG (d), SOGK (e), USOGKs (f) and blob reduction result using our method (g) on

a synthetic image (a). The intensity range of each image has been reversed and adjusted for better display.

(a) (b)

Figure 3. Three-dimensional and planar representations of a sec-

ond order Gaussian kernel in R2.

where θ is the rotation angle and [x, y]T denotes the planar

coordinate of the kernel. Note that KL(x) and KR(x) have

the same sign, while KC(x) has the opposite one.

As a matter of fact, gsogk(x; σ, θ) measures the difference

between the central part and its two side parts, i.e. the aver-

age of the relative difference on both sides along the orien-

tation determined by θ. As a result, using SOGKs usually

leads to a great loss of orientation information, as they al-

ways bind the two side parts together. In order to measure

the blob prominence described in Section 2, the directional

scale-invariant normalized unilateral second order Gaussian

kernel is proposed as follows.

For a given scale σ, the USOGK in the direction of θ is

defined by

gusogk(x; σ, θ, x) = KC(x)+2λ(x)KL(x)+2[1−λ(x)]KR(x) ,
(18)

where

λ(x) =

{

1 , if |KL(x) ∗ N(x)| > |KR(x) ∗ N(x)|
0 , otherwise

, (19)

where N(x) is the image patch centered at position x with

the same size of gusogk(x; σ, θ, x).

To make the filtering easier to implement, we calculate

the filtering result fusogk(x; σ, θ) between gusogk(x; σ, θ, x)

and the signal f (x) by

fusogk(x; σ, θ)

= gusogk(x; σ, θ, x) ∗ f (x)

= fLR(x)
[(

KC(x) + 2KL(x)
)

∗ f (x)
]

+

(

1 − fLR(x)
)[(

KC(x) + 2KR(x)
)

∗ f (x)
]

, (20)

where

fLR(x) =

{

1 , if
(

−KL(x) + KR(x)
)

∗ f (x) > 0

0 , otherwise
. (21)

Obviously, the values of θ ∈ [0, π[ are able to cover all

possible orientations of the filter. For a given scale σ, the

kernel gusogk(x; σ, θ, x) that produces the minimum response

among all the orientations is selected and its corresponding

response is retained as the candidate prominence fusogk(x; σ)
at the scale of σ. The final BSM is obtained by selecting

the maximum of fusogk(x; σ) in the scale space. That is, the

BSM is selected by

fBSM(x) = max
σ∈Σ

min
θ∈Θ

fusogk(x; σ, θ) , (22)

where Σ denotes the set of values of σ andΘ represents the

set of orientations.

Subsequently, the estimated blob image fblob(x) can be

reconstructed using the detected position, prominence and

scale, all of which are calculated based on Eq. (22).

In order to accommodate digital image processing, the

discrete version of the USOGK should be considered. We

can get both the discrete Gaussian function and SOGK by

sampling the formula in Eq. (16) in the 2D integer coordi-

nate:

gsogk(m; σ j, θw)

= 2

(

σ2
j
− [cosθw, sinθw]m

)2

πσ4
j

exp

(

−
m

T
R

T
wRwm

2σ2
j

)

,

(23)

where

Rw =

[

cosθw sinθw

− sinθw cosθw

]

,

θw = (w − 1)π/W, w = 1, 2, 3, ...,W,
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where m = [mx,my]T ∈ Z2 represents the 2D image coor-

dinate of the kernel, σ j ∈ ΣJ = {σ1, σ2, ..., σJ} with σ j > 0
and θw ∈ ΘW = {θ1, θ2, ..., θW} with θw ∈ [0, π[ denote

the parameter of scale and orientation, respectively. Let

m = [mx,my]T ∈ Z2 represent the 2D image coordinate,

we easily obtain the discrete USOGK gusogk(m; σ j, θw,m)
using Eqs. (18), (19), (20), (21) and (23).

Next, a family of discrete USOGKs combining all the

possible scales and orientations is applied to filter the im-

age. Figure 4 illustrates the kernels generating the USOGK

at a specific scale. Consequently, the BSM represented by

IBSM is produced based on Eq. (22). At the same time, the

corresponding parameters of each blob, i.e., position, scale

and prominence, are also obtained.

Figure 2(f) illustrates the blob detection result on a syn-

thetic image using the method based on USOGKs. Com-

paring with the detection results of LoG, DoH, gLoG and

SOGK shown in Figs. 2(b), 2(c), 2(d) and 2(e), one can find

that only blob structures are detected in Fig. 2(f).

4. High-ISO Long-Exposure Noise Elimination

4.1. Noise Modelling

Denoising is the process of restoring the original image

by reducing the undesirable noise from a corrupted image.

Let a 2D image signal I
(q)
n (m) (q ∈ {1, 2, 3}) denote the qth

channel of the color space in a noisy color image In(m):

I
(q)
n (m) = F(q)

(

I
(q)
t (m)

)

+ n
(q)

b
(m) , (24)

where I
(q)
t is the qth channel of the true image, n

(q)

b
denotes

the independent additive blob noise and F(q) is a degradation

function caused by other noise. Here, we model the blob

noise by spatially mixed Gaussian functions as follows:

n
(q)

b
(m) =

∑

mi∈I
(q)
t

H(q)(u − u0)g̃(q)(m; mi, σ̃i, c̃i) , (25)

where H(q) is the Heaviside step function with u uniformly

distributed on the unit interval [0, 1], u0 ∈ [0, 1] a constant

and g̃(q) a Gaussian function defined by:

g̃(q)(m; mi, σ̃i, c̃i) = c̃i ·exp

(

−
(m −mi)

T(m −mi)

2σ̃2
i

)

, (26)

where both σ̃i and c̃i are normally distributed. As shown

in Fig. 5, the modelled noise can reflect the real high-ISO

long-exposure noise well.

4.2. Noise Elimination Based on Blob Reduction

From Eqs. (25) and (26), we find that an approximated

Îb ≈ nb can be reconstructed once the parameters mi, σ̃i

Figure 5. Illustration of noise modelling. The left image shows

real high-ISO long-exposure noise, while the right one shows the

modelled noise. Please zoom electronically for a better view.

and c̃i are determined at each position. Thus, the blob re-

construction method proposed in the preceding section is

introduced to produce the blob map Îb. Then the main part

of the blob noise can be removed as

Î = In − Îb . (27)

Figure 2(g) shows a blob reduction result from which

one can see that only the blobs are eliminated.

Finally, the subsequent denoising algorithms, NLM and

CBM3D, are employed to eliminate the residual noise and

the errors produced in the blob reduction procedure to ob-

tain the final denoising result, respectively.

5. Experimental Validation

To evaluate the performance of the proposed methods,

we first apply them on standard images to which real high-

ISO long-exposure noise is added. In this way, we can

obtain both the ground truth and noisy images so that a

quantitative evaluation can be performed. Besides, we fur-

ther apply our methods to real-world images to illustrate

the qualitative performance. The proposed methods, which

involve the blob reduction procedure summarized in Algo-

rithm 1, are tested in different color spaces, specifically

RGB, YCrCb, CIE Lab, YUV and Aopp [5]. Surprisingly,

the best results were reached for the RGB color space,

and so we have kept it as the standard. We also compare

our method with the original NLM as well as the CBM3D

methods. For a fair comparison, experiments are conducted

with either the recommended parameters mentioned in the

original papers or optimally tuned ones. Besides, all the

experiments are implemented in the Matlab (R2014b) en-

vironment on a PC with Intel Core(TM) i5-5200U CPU

2.20GHz × 2 and RAM 4.00GB.

5.1. Performance on Standard Images

We add real noise, which is created by taking black pho-

tos using a DSLR camera with high ISO sensitivity and long

exposure time, to all standard testing images including Ba-

boon, Barbara, Lena, Peppers and Sailboat (a.k.a. Sailboat
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Figure 4. Illustration of kernels generating USOGKs. The top row shows (KC + 2KL), the middle row shows (KC + 2KR) and the bottom

row shows (−KL + KR). The intensity range of each patch has been adjusted for better display.

Algorithm 1 Proposed blob reduction method

Input: Noisy image In, standard deviation set ΣJ =

{σ1, σ2, ..., σJ}, orientation set ΘW = {θ1, θ2, ..., θW}

Output: Blob reduction result Î

1: for each I
(q)
n ∈ In do

2: for each σ j ∈ ΣJ do

3: for each θw ∈ ΘW do

4: I
(q)

usogk
(m; σ j, θw) ← gusogk(m; σ j, θw,m) ∗

I
(q)
n (m)

5: end for

6: I
(q)

usogk
(m; σ j)← min

θw∈ΘW

I
(q)

usogk
(m; σ j, θw)

7: end for

8: I
(q)

BSM
(m)← max

σ j∈ΣJ

I
(q)

usogk
(m; σ j)

9: Reconstruct Î
(q)

b
using I

(q)

BSM
;

10: Î(q) ← (I
(q)
n − Î

(q)

b
);

11: end for

12: Î← {Î(1), Î(2), Î(3)} .

on lake), all of which are shown in Fig. 6. These testing im-

ages reflect a diversity of image content and are extensively

used in the field of image processing. Their resolution is

512 × 512 × 3. To attain a quantitative performance eval-

uation, we adopt the widely used peak signal-to-noise ratio

(PSNR) as criterion:

PSNR = 10log10

(

N
∑

m∈It
[It(m) − Id(m)]2

)

, (28)

where It is the true image, Id is the denoising result and N
is the number of elements in Id. Note that both It and Id are

transformed into the intensity range [0, 1].
As shown in Fig. 6 and Tab. 1, the proposed approaches,

which include the blob reduction procedure, outperform the

original NLM and CBM3D methods in all cases, respec-

tively. The acceptable PSNRs indicates that most of the

noise has been removed by the proposed methods. Be-

sides, the method combining blob reduction and CBM3D

performs the best among all the compared methods at an

acceptable computational cost. The average executing time

of each method is shown in Tab. 2. However, we can also

infer from the denoising results that the proposed method

underperforms in areas with plenty of texture structures.

For example, all the four approaches show a limited per-

formance on the testing image of Baboon. This is because

the denoising algorithm has to make a hard compromise be-

tween removing more noise and preserving more structured

details.

5.2. Performance on Real­world Images

We further evaluate the performance of our schemes on

real-world noisy images. Their resolution is 250 × 250 × 3.

Figure 7 shows that though a large part of noise can be re-

moved by the original NLM or CBM3D method, the denois-

ing results obtained using methods incorporating the blob

reduction procedure appear to be of better quality, although

this is subjective. This demonstrates that both the NLM and

CBM3D method can benefit a lot from the blob reduction

procedure to produce better denoising results in the case of

high-ISO long-exposure noise.

6. Conclusion

In this paper we have proposed a novel blob reconstruc-

tion method using the scale-invariant normalized unilateral

second order Gaussian kernels. The method can suppress

non-blob structures and produce significant BSM only for

blobs. The BSM can also indicate parameters of blobs, i.e.,

center position, prominence and scale, and consequently the

blobs can be reconstructed. We have applied this method to

remove high-ISO long-exposure noise as a preprocessing

step to the NLM and CBM3D method, respectively. Exper-

imental results demonstrate that the latter methods can both

benefit from the blob reduction procedure and produce bet-

ter denoising results in the case of high-ISO long-exposure

noise.
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Figure 6. Experimental images and the zoomed-in sections of denoising results. Left Column: Corrupted images using real high-ISO long-

exposure noise. Second Column: Results of NLM. Third Column: Results of our method+NLM. Fourth Column: Results of CBM3D.

Fifth Column: Results of our method+CBM3D. Right Column: Ground truth. Please zoom electronically for a better view.

Method Baboon Barbara Lena Peppers Sailboat

NLM 24.92 29.69 29.32 27.32 27.34

ours+NLM 25.51 31.52 31.15 30.00 28.20

CBM3D 26.94 30.03 29.46 27.32 28.19

ours+CBM3D 28.55 32.59 32.14 30.85 30.42

Table 1. PSNR (dB) of denoising results.
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