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Abstract

We model the photo cropping problem as a cascade of

attention box regression and aesthetic quality classification,

based on deep learning. A neural network is designed that

has two branches for predicting attention bounding box and

analyzing aesthetics, respectively. The predicted attention

box is treated as an initial crop window where a set of

cropping candidates are generated around it, without miss-

ing important information. Then, aesthetics assessment is

employed to select the final crop as the one with the best

aesthetic quality. With our network, cropping candidates

share features within full-image convolutional feature map-

s, thus avoiding repeated feature computation and leading

to higher computation efficiency. Via leveraging rich data

for attention prediction and aesthetics assessment, the pro-

posed method produces high-quality cropping results, even

with the limited availability of training data for photo crop-

ping. The experimental results demonstrate the competitive

results and fast processing speed (5 fps with all steps).

1. Introduction

Consider Fig. 1 (a). How can we determine an appro-

priate crop for this picture? It seems to be a natural choice

that people first define a crop that covers the desired or im-

portant region, and then, iteratively adjust the position, size

and ratio of the initial crop window until achieving visual-

quality-inspired result. This determining-adjusting crop-

ping strategy brings two advantages: (1) considering both

attention and aesthetics in a cascaded way; and (2) high

computation efficiency since the searching space of the best

crop is only limited to the surrounding of the initial crop

area. Interestingly, however, most previous cropping ap-

proaches are proceeded in another way. They usually gen-

erate a large number of sliding windows with various ratios
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Figure 1: (a)-(c) Flowchart of our method. (d) Convention-

al methods apply sliding-judging cropping strategy, which

is time-consuming and violates natural cropping procedure.

(e) Our method works as a cascade of attention-aware crop

candidates generation and aesthetics-based crop window s-

election, which handles photo cropping in a more natural

manner and is achieved by a neural network.

and sizes over all the positions, and find the optimal subview

via repeatedly computing attention scores [29, 40, 47, 3], or

analyzing aesthetics [32, 48] for all the sliding windows.

This sliding-judging strategy, as depicted in Fig. 1 (d), is

companied with heavy computation load, since the search-

ing space would span all the possible subviews of the whole

image. Besides, compared with repeatedly calculating at-

tention and/or aesthetics scores over all the crop windows,

arranging these two items in a sequential order would be a

more reasonable and time-saving choice.

2186



In this paper, we design a deep learning based crop-

ping method, which models the cropping tasks as attention

bounding box regression and aesthetics classification prob-

lems. The network is learned for directly determining the

attention box that covers visually important area (the red

rectangle in Fig. 1 (b)), which seems like people first plac-

ing a crop to cover important region. Then the method gen-

erates cropping candidates (the yellow rectangles in Fig. 1

(b)) around the attention box and selects the one with the

highest aesthetics value as final crop (Fig. 1 (c)), as the pro-

cess of human iteratively adjusting initial crop and selecting

the most beautiful crop window.

The proposed method approaches cropping task in a

more natural and efficient way, which has the following ma-

jor characteristics and contributions:

Natural and unified deep cropping scheme. The crop-

ping procedure is arranged as a determining-adjusting pro-

cess, where attention-guided cropping candidates genera-

tion is cascaded by aesthetics-aware crop window selec-

tion, as demonstrated in Fig. 1 (e). The tasks of attention

box predication and aesthetics assessment are achieved in a

deep learning model, where attention information is exploit-

ed for avoiding discarding important information, while the

aesthetics assessment is employed for ensuring the high aes-

thetic value of cropping results. The deep learning model is

based on fully convolutional neural network, which natu-

rally supports input images of arbitrary sizes, thus avoiding

undesired deformation for evaluating aesthetic quality.

High computation efficiency. Three strategies for enhanc-

ing computational efficiency are proposed to achieve a fast

processing speed of 5 fps. First, instead of searching all the

possible positions in an image domain via sliding window,

the approach directly regresses the attention box and gener-

ates far less number of cropping candidates (∼1000) around

the visual important areas. Second, the sub-networks of at-

tention box prediction and aesthetics assessment share sev-

eral convolutional layers in the bottom. The marginal cost

for computing aesthetics estimate is decreased via shar-

ing convolutions with attention prediction task at test-time.

Third, the approach inherits the spirit of recent object detec-

tion algorithms [13, 35, 9], which is trained to share convo-

lutional features among cropping candidates on the feature

maps. The convolutional layers are only performed once on

the entire image (regardless of the number of cropping can-

didates), and then convolutional features of cropping candi-

dates are extracted from feature maps, which avoiding ap-

plying the network to each cropping candidate for repeated-

ly computing features.

Learning without sufficient cropping annotation. For ap-

plying deep leaning for photo cropping, an important prac-

tical catch to that solution is training data availability. The

datasets for photo cropping are small-scale in deep learning

terms, and primarily support evaluation. Besides, the photo

cropping sometimes is a quite subjective problem which is

difficult to offer a clear answer for what is a ‘groundtruth’

crop. While the groundtruth for photo cropping is difficult

to access, datasets for human gaze prediction and photo aes-

thetics assessment are more easily to obtain. In our method,

the cropping task is explicitly achieved via learning neural

network on existing rich and high-quality data for visual at-

tention prediction and aesthetics assessment.

2. Related Work

In this section, we give a brief overview of recent works

in three lines: visual attention prediction, aesthetics assess-

ment and photo cropping.

2.1. Visual Attention Prediction

Visual attention prediction aims to predict scene loca-

tions where a human observer may fixate. Early attention

models [16, 2] are typically based on various low-level fea-

tures (e.g., color, intensity, orientation), operating and com-

bining them at multiple scales to form a saliency map. In

addition to low-level features, some approaches [19, 1] try

to employ high-level features from person or face detectors

learned from specific computer vision tasks. Recently, driv-

en by the success of deep learning in object recognition,

many deep learning based attention models [42, 23, 18, 33]

are proposed, and generally give impressive results. The

output of traditional attention methods is usually a gray-

scale image that represents the visual importance of each

corresponding pixel in the image. However, in our ap-

proach, we try to predict an attention bounding box, which

covers the most informative regions of the image.

2.2. Aesthetics Assessment

The main goal of aesthetics assessment is to imitate hu-

man interpretation of the beauty of natural images. Many

methods have been proposed for this topic, we refer the

reader to [5] for a more detailed survey. Traditionally, aes-

thetic quality analysis is viewed as a binary classification

problem of predicting high- and low- quality images. Ex-

tracting visual features and then employing various machine

learning algorithms to predict photo aesthetic values is a

common pipeline in this research area.

Early methods [4, 20, 6] manually designed aesthetics

features according to photographic rules or practices, such

as the rule of thirds and visual balance. Instead of us-

ing hand-crafted features, other approaches [30, 38] have

been developed to leverage more generic image descrip-

tors, such as Fisher Vector and bag of visual words, which

are previously used for image classification but also capa-

ble of capturing aesthetic properties. In more recent work

[25, 41, 27, 21, 28], deep learning methods have been used

to aesthetics assessment and have shown promising results.
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2.3. Photo Cropping

Cropping is an important operation for improving visual

quality of digital photos, which cuts away unwanted areas

outside of a selected rectangular region. A lot of method-

s have been proposed towards automating this task. These

methods, in general, can be categorized into attention-based

or aesthetics-based approaches. The attention-based ap-

proaches [29, 40, 3] focus on preserving the main subjec-

t or visually important area in the scene after cropping.

These methods usually place the crop window over the

most visually significant regions according to certain at-

tention scores [43, 44, 45, 46]. The other major direction

of cropping methods is aesthetics-based approach that em-

phasizes the general attractiveness of the cropped image.

Those aesthetics-based approaches [32, 48] are centered on

composition-related image properties. Taking various aes-

thetical factors into account, they try to find the cropping

candidate with the highest quality score.

In this paper, we consider both attention and aesthetics

information, which are arranged in a natural and cascaded

manner. The proposed method approaches photo cropping

as a cascade of generating cropping candidates via attention

box prediction and selecting best crop according to aesthet-

ics criteria. Our method shares the spirit of recent object

detection algorithms [13, 35, 9], one branch of our network

learns to predict the bounding box covers visually important

area, while the other one tries to analyze aesthetic value.

3. Our Approach

The cropping algorithm is decomposed into two cascad-

ed stages, namely, attention-aware cropping candidates gen-

eration (Sec. 3.1) and aesthetics-based crop window selec-

tion (Sec. 3.2). It infers initial crop as a bounding box cov-

ering the most visually important area, and then selects the

best crop with highest aesthetic quality from a few crop can-

didates generated around the initial crop. We design a deep

learning model that has two sub-networks: Attention Box

Prediction (ABP) network and Aesthetics Assessment (AA)

network, for achieving two key subtasks in above cropping

process: (1) attention box prediction for determining the

initial crop; and (2) aesthetics assessment for determining

the final crop. Those two networks share several convolu-

tional blocks in the bottom and are based on fully convolu-

tional network, which will be detailed in following sections.

Finally, in Sec. 3.3, we will give more details of our model

in training and testing.

3.1. Attention­aware Cropping Candidates

In this section, we introduce our method for cropping

candidates generation, which is based on an Attention Box

Prediction (ABP) network. This network takes an image

of any size as input and outputs a set of rectangular crop

Figure 2: (a) Input image. (b) Attention map. (c) Ground

truth attention box generation via [3]. (d) Positive (red)

and negative (blue) defaults boxes are generated for train-

ing ABP network according to ground truth attention box.

windows, each with a score that stands for the prediction

accuracy. Then the initial crop is identified as the most ac-

curate one, and various cropping candidates with different

sizes and ratios are generated around it. After that, the fi-

nal crop is selected from those candidates according to their

aesthetic quality based on an Aesthetics Assessment (AA)

network (Sec. 3.2).

The initial crop can be viewed as a rectangle that pre-

serves the most informative part of the image while has

minimum area. This optimal rectangle searching problem is

a common task for attention-based cropping methods. Let

P ∈ [0, 1]w×h be an attention mask, we first define a set of

crop windows W:

W = {W |
∑

x∈W

P (x) > λ
∑

x

P (x)}, (1)

where λ ∈ [0, 1] is a fraction threshold. Then the optimum

rectangle Ẇ is defined as:

Ẇ = argmin
W∈W

|W |. (2)

Equ. 2 can be solved via sliding window with O(w2h2)
computation complexity, while a recent method [3] shows

it can be solved with computation complexity of O(wh2).
Differently, we design a neural network for directly pre-

dicting such attention box. Given a training sample (I,G)
consisting of an image I of size w × h × 3 (Fig. 2 (a)),

and a groundtruth attention map G ∈ [0, 1]w×h (Fig. 2 (b)),

the optimum rectangular Ẇ defined in Equ. 2 is computed

as the groundtruth attention prediction box. Here we apply

[3] for generating Ẇ over G (Fig. 2 (c)) for computation

efficiency. We set λ = 0.9 for preserving most informa-

tive areas. Then the task of attention box prediction can be
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Figure 3: Architecture of Attention Box Prediction (ABP)

network.

achieved via bounding box regression as object detection

[13, 35, 9]. Note that any other attention scores can also be

used for generating groundtruth bounding box for training

the ABP network.

Fig. 3 illustrates the architecture of ABP network. The

bottom of this network is a stack of convolutional layers,

which are borrowed from the first five convolutional blocks

of VGGNet [37]. With the last convolutional layer, we slide

a small network with 3 × 3 kernel over its convolutional

feature map, thus generating 512−d feature for each sliding

location. The feature vector is further fed into two fully-

connected layers: box-regression layer for predicting atten-

tion bounding box; box-classification layer for determining

the box whether belongs to attention box. For a given lo-

cation, those two fully-connected layers predict box offsets

and scores over a set of default bounding boxes, which are

similar to the anchor boxes used in Faster R-CNN [35].

During training, we need to determine which default

boxes correspond to the groundtruth attention box and

train the network accordingly. We assign the default box

which has the highest Intersection-over-Union (IoU) with

the groundtruth box or with IoU higher than 0.7 as a positive

label (c = 1). We assign the default box that has a IoU low-

er than 0.3 a negative label (c = 0) and drop other default

boxes. The above process is illustrated in Fig. 2 (d). For

the preserved boxes, we define p̄ci ∈ {1, 0} as an indicator

for the label of i-th box and vector t̄ as a four-parameterized

coordinate (coordinates of center, width and height) of the

groundtruth attention box. Similarly, we define pci and ti
as predicted confidence over c class and predicted attention

box of i-th default box. With above definition, the ABP net-

work is trained via minimizing the following loss function

derived from object detection [10, 35, 24]:

L(p, t) =
∑

i
Lcls(pi, p̄i) +

∑
i
p̄1i Lreg(ti, t̄). (3)

The classification loss Lcls is the softmax loss over confi-

Figure 4: (a) Initial crop (red rectangle) predicted via ABP

network. (b) Cropping candidates (blue rectangles) gener-

ated around the initial crop. (c) Final crop selected as the

candidate with highest aesthetic score from AA network.

dences of two classes (attention box or not). The regression

loss Lreg is a Smooth L1 loss [10], between the predicat-

ed box and the ground truth attention box, which is only

activated for positive default boxes.

With the ABP network trained on existing attention pre-

diction datasets, it learns to generates reliable attention box-

es. Then we select the one with the highest prediction score

(p1i ) as the initial crop. This initial crop covers the most

informative part of the image, which likes human placing a

crop around the desired area (Fig. 4 (a)). Next, we gener-

ate a set of cropping candidates around the initial crop, as

the human adjusting the location, size and ratio of the ini-

tial crop. A rectangular can be uniquely determined via the

coordinates of its top-left and right-bottom corners. For the

top-left corner of the initial crop, we define a set of offsets:

{−40,−32, · · · ,−8, 0} in x- and y-axis. Similarly, a set of

offsets: {0, 8, ..., 32, 40} in x- and y-axis is also defined for

the bottom-right corner. Via adding the top-left and bottom-

right corners with corresponding pre-defined offsets 1, we

generate 64 = 1296 cropping candidates in total, which

is far less than the sliding windows needed for traditional

cropping methods. Each of crop candidates is designed for

covering the whole initial crop area, since the initial crop

is a minimum visually importance-preserved rectangle that

should be maintained in cropping process (Fig. 4 (b)).

3.2. Aesthetics­based Crop Window Selection

With our attention-aware cropping candidates by ABP

network, we next select the most aesthetics-inspired one as

the final crop. It is important to consider aesthetics for photo

cropping task, since beyond preserving the important con-

tent, a nice crop should also deliver pleasant viewing expe-

1Since we resize the input image with min(w, h) = 224, we find the

largest offset (40) is enough.
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Figure 5: Architecture of Aesthetics Assessment (AA) network.

rience. For analyzing the aesthetic quality of each cropping

candidates, one choice is training an aesthetics assessment

network, and iteratively applying forward-propagation for

each crop candidate over this network when cropping. Ob-

viously, this strategy is straightforward but time-consuming.

Inspired by the recent advantages of object detection, which

share convolutional features between regions, we build a

network that analyzes aesthetic values of all cropping can-

didates simultaneously.

We achieve this via an Aesthetics Assessment (AA) net-

work (Fig. 5), which takes an entire image and a set of crop-

ping candidates as input, and outputs the aesthetic values of

the cropping candidates. The bottom of the AA network is

the former four convolutional blocks of VGGNet [37] with-

out pool4 layer. Here we adopt a relatively shallow network

mainly due to two reasons. First, aesthetics assessment is a

relatively easier problem (high quality vs low quality) com-

pared with image classification (with 1000 classes). Sec-

ondly, for an image with the size of w × h × 3, the spatial

dimensions of the final convolutional feature map of AA

network is w
8
× h

8
, which preserves discriminability for the

offsets defined in Sec. 3.1.

Then, on the top of the last convolutional layer, we adopt

Region of Interest (RoI) pooling layer [35], which is a spe-

cial case of spatial pyramid pooling (SPP) layer [13], to ex-

tract a fixed-length feature vector from the final convolu-

tional feature map. The RoI pooling layer uses max pool-

ing to convert the features inside any crop candidate into a

small feature map with a fixed-dimensional vector, which

is further fed into a sequence of fully-connected layer for

aesthetic quality classification. This operation allows us to

operate image with arbitrary aspect ratios, thus avoiding un-

desired deformation in aesthetics assessment. With a crop

candidate with size of w′ × h′, RoI pooling layer divides

it into n × n spatial bins and applies max-pooling for the

features within each bins. Here we set n = 7.

For training, given an image from the existing aesthetics

assessment datasets, it takes an aesthetic label c ∈ {1,0},

where 1 corresponds to high aesthetic quality and 0 repre-

sents low quality. We resize the image with min(w, h) =
224, similar to ABP net, and the whole image can be viewed

as a cropping candidate for training. For i-th image in train-

ing, we define q̄ci ∈ {1, 0} as an indicator for its aesthetics-

quality label and qci is its predicted aesthetics-quality score

for c class.

Based on the above definition, the training of the AA

network is done by minimizing the following softmax loss

over N training samples:

Lcls(q, q̄) = −
1

N

∑

i

∑

c∈{1,0}

q̄ci log(q̂
c
i ),

where q̂ci = exp(qci )
/
(exp(q1i ) + exp(q0i )).

(4)

With the cropping candidates generated from APB net-

work, the AA network is capable of producing their

aesthetics-quality scores ({q1i }), where the one with the

highest score is selected as the final crop (Fig. 4 (c)).

3.3. Implementation Details

Training Two large-scale datasets: SALICON [18] and A-

VA [31], are used for training our model. SALICON is used

for training our ABP network. It contains 15000 natural

images with eye fixation annotations which are simulated

through mouse movements of users on blurred images. For

obtaining groundtruth attention box, we follow the instruc-

tions of [18] for transferring the binary mouse-clicking map

into grey-scale human attention map, and then we apply

[3] for generating attention bounding box according to E-

qu. 2 with λ = 0.9. The AVA dataset is the largest publicly

available aesthetics assessment benchmark, which provides

about 250,000 images in total. The aesthetics quality of

each image was rated on average by roughly 200 people

with the ratings ranging from one to ten, with ten indicating

the highest aesthetics quality. Followed by [25, 27, 28, 31],

about 230,000 images are used for training our AA network.

More specially, images with mean ratings smaller than 5 are

assigned as low quality and those with mean ratings larger

than or equal to 5 are labeled as high quality.

Our two sub-networks are trained simultaneously. In

each training iteration, we use a min-batch of 4 images, 2 of

which are from SALICON dataset with the groundtruth at-

tention boxes and the rest from AVA dataset with aesthetics

quality groundtruth. Before feeding the input images and

ground-truth to the network, we scale the images such that

the smaller dimension is 224. Since the bottom two con-

volutional blocks (conv1 and conv2) are shared between

both the tasks of attention box prediction and esthetics as-

sessment, they are trained for the two tasks simultaneously

using all the images in the batch. For the layers specialized

to each of the sub-networks are trained using only those im-

ages in the batch having the corresponding ground-truth.
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(a) Images with highest aesthetics values (b) Images with lowest aesthetics values

Figure 6: Aesthetics assessment results via our AA network. The test images with the highest predicted aesthetics values and

those with the lowest predicted aesthetics values are presented in (a) and (b), respectively.

Both ABP and AA networks are initialized from the

weights of VGGNet [37], which is pre-trained on large-

scale image classification dataset [36]. Our model is imple-

mented with the popular Caffe library [17] and trained with

stochastic gradient descent. The networks were trained over

200K iterations where we use momentum of 0.9 and weight

decay of 0.0001, which is reduced by a factor of 0.1 at every

10K iterations.

Testing For training, our two sub-networks are trained in

parallel strategy, while for testing, they work in a cascaded

way. With a given image (resized with min(w, h) = 224)

for cropping, we first gain a set of attention boxes gener-

ated via forward propagation on APB network. Then the

initial crop was selected as the one with the highest score of

attention box prediction. After that, a set of cropping can-

didates are generated around the initial crop. Since the two

convolutional blocks at the bottom are shared between ABP

and AA networks, we directly feed the cropping candidates

and the convolutional feature of last layer of conv2 into AA

network. Finally, the final crop is selected as the cropping

candidate with best aesthetic quality. The cropping model

achieves a fast speed of 5 fps.

4. Experimental results

In this section, we first examine the performance of our

ABP and AA networks on their specific tasks. The goal

of these experiments is to investigate the effectiveness of

individual components instead of comparing them with the

state-of-the-art. Then, we evaluate the performance of our

whole cropping model on two widely used photo cropping

datasets with other competitors.

4.1. Evaluation for ABP and AA Networks

Performance of ABP Network We first evaluate the per-

formance of ABP network on PASCAL dataset [22], which

is widely used for attention prediction. This dataset contain-

s totally 850 natural images from PASCAL 2010 [7], with

the eye fixations during 2 seconds of 8 different subjects.

With the binary eye fixation images, we follow [22] to gen-

erate gray-scale attention map. Then, as the way described

in Sec. 3.3, we generate groundtruth attention box for each

image. We consider eight state-of-the-art attention models:

ITTI [16], AIM [2], GBVS [12], SUN [49], DVA [15], SIG

[14], CAS [11] and SalNet [33]. Then we extract the atten-

tion boxes of above methods via the same strategy used for

generating groundtruth bounding box. We opt for the Inter-

section over Union (IoU) score for quantifying the quality

of extracted attention boxes. The quantitative results are il-

lustrated in Table 1. As seen, our attention box prediction

results are more accurate than previous attention models, s-

ince our ABP network is specially designed for this task.

Method Ours ITTI[16] AIM [2] GBVS[12] SUN[49]

IoU 0.517 0.318 0.327 0.319 0.273

Method Ours DVA[15] SIG[14] CAS [11] SalNet [33]

IoU 0.517 0.346 0.272 0.356 0.379

Table 1: Attention box prediction with IoU for PASCAL [22].

Performance of AA Network We adopt the testing set of

AVA dataset [31], which is mentioned in Sec. 3.3, for eval-

uating the performance of our AA network. The testing set

of AVA dataset contains 19,930 images. The testing images

with mean ratings smaller than 5 are labeled as low quali-

ty; otherwise they are labeled as high quality. We compare

our methods with the state-of-the-art methods: AVA [31],

RAP [25], RAP2 [26], DMA [27], ARC [21] and CPD [28],

where AVA is based on manually designed features while

other methods are based on deep learning model. As shown

in Table 2, our AA network is struggle to achieve state-of-

the-art performance due to relatively simple network archi-

tecture. In Fig. 6, we present some examples of the test im-

ages that are considered of the highest and lowest aesthetics

values by our AA network.
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Method Ours AVA[31] RAP-DCNN[25] RAP-RDCNN[25]

Accuracy 0.769 0.667 0.732 0.745

Method Ours RAP2[26] DMA-SPP[27] DMA[27]

Accuracy 0.769 0.754 0.728 0.745

Method Ours DMA-Alex[27] ARC[21] CPD[28]

Accuracy 0.769 0.754 0.773 0.774

Table 2: Aesthetics assessment accuracy for AVA [31].

Conclusion Overall, our two sub-networks generate the

promising results or compete with existing top-performance

approaches. Considering the shared convolutional layers in

the bottom of these two networks, our model achieves a

good tradeoff between performance and computation effi-

ciency. More important, the robustness of those two basic

components greatly contributes the high-quality of our crop

suggestions, which will be detailed in next section.

4.2. Evaluation for Photo Cropping

We evaluate our whole cropping model on two public im-

age cropping datasets, including Image Cropping Dataset

from MSR (MSR-ICD) [48] and FLMS [8]. The MSR-

ICD dataset includes 950 images and each image is care-

fully cropped by 3 experts. The FLMS dataset contains 500

natural images which are collected from Flickr. For each

image, 10 expert users on Amazon Mechanical Turk who

passed a strict qualification test are employed for cropping

groundtruth box.

We adopt the same evaluation metrics as [48], i,e., IoU

score and Boundary Displacement Error (BDE), to measure

the cropping accuracy of image croppers. BDE is defined as

the mean normalized displacement of four edges between

the cropping box and the groundtruth rectangles.

Method
Photographer1 Photographer2 Photographer3

IoU↑ BDE↓ IoU↑ BDE↓ IoU↑ BDE↓

ATC [39] 0.605 0.108 0.628 0.100 0.641 0.095

AIC [3] 0.469 0.142 0.494 0.131 0.512 0.123

LCC [48] 0.748 0.066 0.728 0.072 0.732 0.071

MPC [34] 0.603 0.106 0.582 0.112 0.608 0.110

SPC [32] 0.396 0.177 0.394 0.178 0.385 0.182

ARC [21] 0.448 0.163 0.437 0.168 0.440 0.165

Ours 0.813 0.030 0.806 0.032 0.816 0.032

Table 3: Cropping results with IoU and BDE on MSR-ICD [48].

We compare our cropping method with two main cat-

egories of image cropping methods, i.e., attention-based

and aesthetics-based methods. For attention-based method,

we select ATC [39] which is a classical image thumbnail

cropping method. We also use AIC as a baseline, which

is obtained via equipping crop window researching method

[3] with top-performing saliency detection method. We

Method Ours ATC [39] AIC [3] LCC [48] MPC [34] VBC [8]

IoU↑ 0.81 0.72 0.64 0.63 0.41 0.74

BDE↓ 0.057 0.063 0.075 - - -

Table 4: Cropping results with IoU and BDE on FLMS [8].

Figure 7: Qualitative results on MSR-ICD [48] and FLM-

S [8] datasets. The red rectangles indicate the initial crop

generated via ABP network, and the yellow windows corre-

spond to the final crop selected via AA network.

apply context-aware saliency [11] and optimal parameters,

as suggested by [3], for maximizing its performance. For

aesthetics-based method, we select LCC [48], MPC [34],

and VBC [8]. We also consider SPC, which is an advanced

version of [32], as described in [48]. Additionally, we adopt

a recent aesthetics ranking method [21] combined with s-

liding window strategy as a baseline: ARC. We select the

crop as the one with the highest ranking score from sliding

windows. The comparison results on MSR-ICD and FLMS

datasets are demonstrated in Table 3 and Table 4, respec-

tively. As seen, our cropping method achieves the best per-

formance in both datasets. Qualitative results on MSR-ICD

and FLMS datasets are presented in Fig. 7.

5. Conclusions

In this work, we propose a deep learning based photo

cropping approach, driven by human attention box predic-

tion and aesthetics assessment. The proposed deep model

is decomposed into two sub-networks: Attention Box Pre-

diction (ABP) network and Aesthetics Assessment (AA)

network, which share multiple convolution layers at the

bottom. The proposed method approaches photo crop-

ping in a determining-adjusting manner. It infers initial

crop as a bounding box covering the visually important

area (attention-aware determining), and then selects the best

crop with highest aesthetic quality from a few cropping can-

didates generated around the initial crop (aesthetic-based

adjusting). Our extensive experimental analyses demon-

strate that our solution achieves superior performance in

comparison to the state-of-the-art.

2192



References

[1] A. Borji. Boosting bottom-up and top-down visual features

for saliency estimation. In CVPR, 2012.

[2] N. Bruce and J. Tsotsos. Saliency based on information max-

imization. NIPS, 2006.

[3] J. Chen, G. Bai, S. Liang, and Z. Li. Automatic image crop-

ping : A computational complexity study. In CVPR, 2016.

[4] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Studying aesthetics

in photographic images using a computational approach. In

ECCV, 2006.

[5] Y. Deng, C. C. Loy, and X. Tang. Image aesthetic assessmen-

t: An experimental survey. arXiv preprint arXiv:1610.00838,

2016.

[6] S. Dhar, V. Ordonez, and T. L. Berg. High level describ-

able attributes for predicting aesthetics and interestingness.

In CVPR, 2011.

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

challenge. IJCV, 2010.

[8] C. Fang, Z. Lin, R. Mech, and X. Shen. Automatic image

cropping using visual composition, boundary simplicity and

content preservation models. In ACMMM, 2014.

[9] R. Girshick. Fast R-CNN. In ICCV, 2015.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014.

[11] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware

saliency detection. IEEE PAMI, 2012.

[12] J. Harel, C. Koch, P. Perona, et al. Graph-based visual salien-

cy. In NIPS, 2006.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling

in deep convolutional networks for visual recognition. In

ECCV, 2014.

[14] X. Hou, J. Harel, and C. Koch. Image signature: Highlight-

ing sparse salient regions. IEEE PAMI, 2012.

[15] X. Hou and L. Zhang. Dynamic visual attention: Searching

for coding length increments. In NIPS, 2009.

[16] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. IEEE PAMI, 1998.

[17] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolutional

architecture for fast feature embedding. arXiv preprint arX-

iv:1408.5093, 2014.

[18] M. Jiang, S. Huang, J. Duan, and Q. Zhao. SALICON:

Saliency in context. In CVPR, 2015.

[19] T. Judd, K. Ehinger, F. Durand, and A. Torralba. Learning to

predict where humans look. In ICCV, 2009.

[20] Y. Ke, X. Tang, and F. Jing. The design of high-level features

for photo quality assessment. In CVPR, 2006.

[21] S. Kong, X. Shen, Z. Lin, R. Mech, and C. Fowlkes. Photo

aesthetics ranking network with attributes and content adap-

tation. In ECCV, 2016.

[22] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The

secrets of salient object segmentation. In CVPR, 2014.

[23] N. Liu, J. Han, D. Zhang, S. Wen, and T. Liu. Predicting

eye fixations using convolutional neural networks. In CVPR,

2015.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

ECCV, 2016.

[25] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. RAPID:

Rating pictorial aesthetics using deep learning. In ACMMM,

2014.

[26] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. Rating image

aesthetics using deep learning. In IEEE TMM, 2015.

[27] X. Lu, Z. Lin, X. Shen, R. Mech, and J. Z. Wang. Deep

multi-patch aggregation network for image style, aesthetics,

and quality estimation. In ICCV, 2015.

[28] L. Mai, H. Jin, and F. Liu. Composition-preserving deep

photo aesthetics assessment. In CVPR, 2016.

[29] L. Marchesotti, C. Cifarelli, and G. Csurka. A framework for

visual saliency detection with applications to image thumb-

nailing. In ICCV, 2009.

[30] L. Marchesotti, F. Perronnin, D. Larlus, and G. Csurka. As-

sessing the aesthetic quality of photographs using generic

image descriptors. In ICCV, 2011.

[31] N. Murray, L. Marchesotti, and F. Perronnin. AVA: A large-

scale database for aesthetic visual analysis. In CVPR, 2012.

[32] M. Nishiyama, T. Okabe, Y. Sato, and I. Sato. Sensation-

based photo cropping. In ACMMM, 2009.

[33] J. Pan, E. Sayrol, X. Giro-i Nieto, K. McGuinness, and N. E.

O’Connor. Shallow and deep convolutional networks for

saliency prediction. In CVPR, 2016.

[34] J. Park, J.-Y. Lee, Y.-W. Tai, and I. S. Kweon. Modeling pho-

to composition and its application to photo re-arrangement.

In ICIP, 2012.

[35] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge. I-

JCV, 2015.

[37] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[38] H.-H. Su, T.-W. Chen, C.-C. Kao, W. H. Hsu, and S.-

Y. Chien. Scenic photo quality assessment with bag of

aesthetics-preserving features. In ACMMM, 2011.

[39] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs. Au-

tomatic thumbnail cropping and its effectiveness. In ACM

UIST, 2003.

[40] J. Sun and H. Ling. Scale and object aware image thumb-

nailing. IJCV, 2013.

[41] H. Tang, N. Joshi, and A. Kapoor. Blind image quality as-

sessment using semi-supervised rectifier networks. In CVPR,

2014.

[42] E. Vig, M. Dorr, and D. Cox. Large-scale optimization of hi-

erarchical features for saliency prediction in natural images.

In CVPR, 2014.

[43] W. Wang, J. Shen, and F. Porikli. Saliency-aware geodesic

video object segmentation. In CVPR, 2015.

[44] W. Wang, J. Shen, and L. Shao. Consistent video saliency

using local gradient flow optimization and global refinement.

IEEE TIP, 2015.

2193



[45] W. Wang, J. Shen, L. Shao, and F. Porikli. Correspondence

driven saliency transfer. IEEE TIP, 2016.

[46] W. Wang, J. Shen, R. Yang, and F. Porikli. Saliency-aware

video object segmentation. IEEE PAMI, 2017.

[47] W. Wang, J. Shen, Y. Yu, and K.-L. Ma. Stereoscopic thumb-

nail creation via efficient stereo saliency detection. IEEE

TVCG, 2016.

[48] J. Yan, S. Lin, S. Bing Kang, and X. Tang. Learning the

change for automatic image cropping. In CVPR, 2013.

[49] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cot-

trell. SUN: A bayesian framework for saliency using natural

statistics. Journal of vision, 2008.

2194


