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Abstract

The modern image search system requires semantic un-

derstanding of image, and a key yet under-addressed prob-

lem is to learn a good metric for measuring the similarity

between images. While deep metric learning has yielded

impressive performance gains by extracting high level ab-

stractions from image data, a proper objective loss function

becomes the central issue to boost the performance. In this

paper, we propose a novel angular loss, which takes an-

gle relationship into account, for learning better similarity

metric. Whereas previous metric learning methods focus on

optimizing the similarity (contrastive loss) or relative sim-

ilarity (triplet loss) of image pairs, our proposed method

aims at constraining the angle at the negative point of triplet

triangles. Several favorable properties are observed when

compared with conventional methods. First, scale invari-

ance is introduced, improving the robustness of objective

against feature variance. Second, a third-order geometric

constraint is inherently imposed, capturing additional local

structure of triplet triangles than contrastive loss or triplet

loss. Third, better convergence has been demonstrated by

experiments on three publicly available datasets.

1. Introduction

Metric learning for computer vision aims at finding ap-

propriate similarity measurements between pairs of images

that preserve desired distance structure. A good similarity

can improve the performance of image search, particularly

when the number of categories is very large [2] or unknown.

Classical metric learning methods studied the case of find-

ing a better Mahalanobis distance in linear space. However,

linear transformation has a limited number of parameters

and cannot model high-order correlations between the orig-

inal data dimensions. With the ability of directly learning

non-linear feature representation, deep metric learning has

achieved promising results on various tasks, such as visual

product search [1, 20, 17], face recognition [6, 30, 24], fea-

ture matching [7], fine-grained image classification [33, 38],

zero-shot learning [11, 35] and collaborative filtering [13].
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Figure 1. Example of feature embedding computed by t-SNE [32]

for the Stanford car dataset [18], where the images of Ford Ranger

SuperCab (right) have a more diverse distribution than Volvo C30

Hatchback (left). Conventional triplet loss has difficulty in dealing

with such unbalanced intra-class variation. The proposed angular

loss addresses this issue by minimizing the scale-invariant angle at

the negative point.

Despite the various forms, the major work of deep met-

ric learning can be categorized as minimizing either the

contrastive loss (a.k.a., Siamese network) [6] or the triplet

loss [34, 5]. However, it has been widely noticed that di-

rectly optimizing distance-based objectives in deep learn-

ing framework is difficult, requiring many practical tricks,

such as multi-task learning [1, 38] or hard negative min-

ing [33, 8]. Recent work including the lifted structure [26]

and the N-pair loss [25] proposed to more effectively mine

relations among samples within a mini-batch. Neverthe-

less, all of these works rely on certain distance measure-

ment between pairs of similar and dis-similar images. We

hypothesize that the difficulty of training deep metric learn-

ing also comes from the limitation by defining the objective

only in distance. First, distance metric is sensitive to scale

change. Traditional triplet loss constrains the distance gap

between dis-similar clusters. However, it is inappropriate

to choose the same absolute margin for clusters in different

scales of intra-class variation. For instance, Fig. 1 shows the

t-SNE [32] feature embedding of Stanford car dataset [18],

where the sample distribution of Ford Ranger SuperCabs
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is much more diverse than Volvo C30 Hatchback. Second,

distance only considers second-order information between

samples. Optimizing distance-based objectives in stochas-

tic training leads to sub-optimal convergence in high-order

solution space.

To circumvent these issues, we propose a novel angu-

lar loss to augment conventional distance metric learning.

The main idea is to encode the third-order relation inside

triplet in terms of the angle at the negative point. By con-

straining the upper bound of the angle, our method pushes

the negative point away from the center of positive clus-

ter, and drags the positive points closer to each other. Our

idea is analogous to the usage of high-order information for

augmenting pair-wise constraints in the domain of graph

matching [9] and Markov random fields [10]. To the best

of our knowledge, this is the first work to explore angular

constraints in deep metric learning. In particular, the pro-

posed angular loss improves traditional distance-based loss

in two aspects. First, compared to distance-based metric,

angle is not only rotation-invariant but also scale-invariant

by nature. This renders the objective more robust against

the variation of local feature map. For instance, the two

triplets shown in Fig. 1 are quite different in their scales.

It is more reasonable to constrain the angle that is pro-

portional to the relative ratio between Euclidean distances.

Second, angle defines the third-order triangulation among

three points. Given the same triplet, angular loss describes

its local structure more precisely than distance-based triplet

loss. Our idea is general and can be potentially combined

with existing metric learning frameworks. The experimen-

tal study shows it achieves substantial improvement over

state-of-the-arts methods on several benchmark datasets.

2. Related work

Metric learning has been a long-standing problem in ma-

chine learning and computer vision. The simplest form of

metric learning may be considered as learning the Maha-

lanobis distance between pairs of points. It has a deep con-

nection with classical dimension reduction methods such as

PCA, LLE and clustering problems but in a discriminative

setting. An exhaustive review of previous work is beyond

the scope of this paper. We refer to the survey of Kulis et

al. [19] on early works of metric learning. Here we focus

on the two main streams in deep metric learning, contrastive

embedding and triplet embedding, and their recent variants

used in computer vision.

The seminal work of Siamese network [4] consists of

two identical sub-networks that learn contrastive embed-

ding from a pair of samples. The distance between a pos-

itive pair is minimized and small distance between a nega-

tive pair is penalized, such that the derived distance metric

should be smaller for pairs from the same class, and larger

for pairs from different classes. It was originally designed

for signature verification [4], but gained a lot of attention

recently due to its superior performance in face verifica-

tion [6, 30, 28, 36].

Despite its great success, contrastive embedding requires

that training data contains real-valued precise pair-wise

similarities or distances, which is usually not available in

practice. To address this issue, triplet embedding [23] is

proposed to explore the relative similarity of different pairs

and it has been widely used in image retrieval [33, 5] and

face recognition [24]. A triplet is made up of three samples

from two different classes, that jointly constitute a positive

pair and a negative pair. The positive pair distance is en-

couraged to be smaller than the negative pair distance, and

a soft nearest neighbor classification margin is maximized

by optimizing a hinge loss.

Compared to softmax loss, it has been shown that

Siamese network or triplet loss is much more difficult to

train in practice. To make learning more effective and effi-

cient, hard sample mining which only focuses on a subset

of samples that are considered hard is usually employed.

For instance, FaceNet [24] suggested an online strategy by

associating each positive pair in the minibatch with a semi-

hard negative example. Wang et al. [33] designed a more

effective sampling strategy to draw out-class and in-class

negative images to avoid overfitting for training triplet loss.

To more effectively bootstrap a large flower dataset, Cui

et al. [8] utilized the hard negative images labeled by hu-

mans, which are often neglected in traditional dataset con-

struction. Huang et al. [14] introduced a position-dependent

deep metric unit, which can be used to select hard samples

to guide the deep embedding learning in an online and ro-

bust manner. More recently, Yuan et al. [37] proposed a

cascade framework that can mine hard examples with in-

creasing complexities.

Recently, there are also some works on designing new

loss functions for deep metric embedding. A simple yet

effective way is to jointly train embedding loss with clas-

sification loss. With additional supervision, the improve-

ment of triplet loss has been evidenced in face verifica-

tion [28], fine-grained object recognition [38] and product

search problems [1]. However, these methods still suffer

from the limitation of the conventional sampling that fo-

cuses only on the relation within each triplet. To fix this is-

sue, Song et al. [26] proposed the lifted structure to enable

updating dense pair combinations in the mini-batch. Sohn

[25] further extended the triplet loss into N-pair loss, which

significantly improves upon the triplet loss by pushing away

multiple negative examples jointly at each update. In addi-

tion to these efforts that only explore local relation inside

each mini-batch, another direction of work is designed to

optimize clustering-like metric that is aware of the global

structure of all training data. Early methods such as neigh-

borhood components analysis (NCA) [12, 23] can directly
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optimize leave-one-out nearest-neighbor classification loss.

When applied to mini-batch training, however, NCA is lim-

ited as it requires to see the entire training data in each iter-

ation. Rippel et al. [21] improved NCA by maintaining an

model of the distributions of the different classes in feature

space. The class distribution overlap is then penalized to

achieve discrimination. More recently, Song et al. [27] pro-

posed a new metric learning framework which encourages

the network to learn an embedding function that directly op-

timizes a clustering quality metric. Nevertheless, all above-

mentioned losses are defined in term of distances of points,

and very few [31] has considered other possible forms of

loss. Our work re-defines the core component of metric

learning loss using angle instead of distance, and we show

it can be easily adapted into existing architectures such as

N-pair loss to further improve their performance.

3. Proposed method

In this section, we present a novel angular loss to aug-

ment conventional deep metric learning. We first review the

conventional triplet loss in its mathematical form. We then

derive the angular loss by constructing a stable triplet trian-

gle. Finally, we detail the optimization of the angular loss

on a mini-batch.

3.1. Review of triplet loss

Suppose that we are given a set of training images

{(x, y), · · · } of K classes, where x 2 R
D denotes the fea-

ture embedding of each sample extracted by CNN and y 2
{1, · · · ,K} its label. At each training iteration, we sample

a mini-batch of triplets, each of which T = (xa,xp,xn)
consists of an anchor point xa, associated with a pair of

positive xp and negative xn samples, whose labels satisfy

ya = yp 6= yn. The goal of triplet loss is to push away the

negative point xn from the anchor xa by a distance margin

m > 0 compared to the positive xp:

kxa − xpk
2 +m  kxa − xnk

2. (1)

For instance, as shown in Fig. 2, we expect the anchor xa to

stay closer to the positive xp compared to the negative xn.

To enforce this constraint, a common relaxation of Eq. 1 is

the minimization of the following hinge loss,

ltri(T ) =
h

kxa − xpk
2 − kxa − xnk

2 +m
i

+
, (2)

where the operator [·]+ = max(0, ·) denotes the hinge func-

tion. It is worth mentioning that the feature map often needs

to be normalized to have unit length, i.e., kxk = 1, in or-

der to be robust to the variation in image illumination and

contrast.

Figure 2. Illustration of the triplet loss and its gradient on a syn-

thetic example.

To optimize Eq. 2, we can calculate its gradient with re-

spect to the three samples of triplet respectively as

∂ltri(T )

∂xn

= 2(xa − xn), (3)

∂ltri(T )

∂xp

= 2(xp − xa),

∂ltri(T )

∂xa

= 2(xn − xp),

if the constraint (Eq. 1) is violated, or zero otherwise.

It is widely observed that stochastic gradient descent

converges poorly on optimizing the triplet loss. There are

a few reasons contributing to this difficulty: First, it is im-

practical to enumerate all possible triplets due to the cubic

sampling size. Therefore, it calls for an effective sampling

strategy to ensure the triplet quality and learning efficiency.

Second, the goal of the objective (Eq. 2) is to separate clus-

ters by a distance margin m. However, it is inappropriate to

apply the single global margin m on the inter-class gap as

the intra-class distance can vary dramatically in real-world

tasks. Third, the gradient (Eq. 3) derived for each point only

takes its pair-wise relation with the second point, but fails

to consider the interaction with the third point. Consider

the negative point xn in Fig. 2 for an example. Its gradient

2(xa − xn) may not be optimal without the guarantee of

moving away from the class which both the anchor xa and

positive sample xp belong to.

3.2. Angular loss

To alleviate the problems elaborated above, a variety of

techniques [1, 38, 33, 8, 26, 25] have been proposed in the

last few years. However, the fundamental component in the

loss definition, i.e., the pair-wise distance between points,

has rarely been changed. Instead, this section introduces an

angular loss that leads to a novel solution to improve deep

metric learning.

Let’s first consider the triplet example shown in Fig. 3a,

where the triplet T = (xa,xp,xn) forms the triangle
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4apn, whose edges are denoted as ean = xa − xn,

epn = xp−xn and eap = xa−xp respectively. The original

triplet constraint (Eq. 1) penalizes a longer edge ean com-

pared to the one eap on the bottom. Because the anchor and

positive samples share the same label, we can derive a sym-

metrical triplet constraint that enforces keapk+m  kepnk.

According to the cosine rule, it can be proved that the angle

∠n surrounded by the longer edges ean and epn has to be

the smallest one, i.e., ∠n  min(∠a,∠p). Furthermore,

because ∠n+∠a+∠p = 180◦, ∠n has to be less than 60◦.

This fact motivates us to constrain the upper bound of ∠n
for each triplet triangle,

∠n  α, (4)

where α > 0 is a pre-defined parameter. Intuitively, this

constraint selects the triplet that forms a skinny triangle

whose shortest edge eap connects nodes of the same class.

Compared to the traditional constraint (Eq. 1) that is de-

fined on the absolute distance between points, the pro-

posed angular constraint offers three advantages: 1) An-

gle is a similarity-transform-invariant metric, proportional

to the relative comparison of triangle edges. With a fixed

margin α, Eq. 4 always holds for any re-scaling of the local

feature map. 2) The cosine rule determines the calculation

of ∠n involves all the three edges of the triangle. In con-

trast, the original triplet only takes two edges into account.

The additional constraint improves the robustness and ef-

fectiveness of the optimization. 3) In the original triplet

constraint (Eq. 1), it is difficult to choose a proper distance

margin m without meaningful reference. By comparison,

setting α in the angular constraint is an easier task because

it has concrete and interpretable meaning in geometry.

However, a straightforward implementation of Eq. 4 be-

comes unstable in some special case. Consider the triangle

shown in Fig. 3a, where ∠a > 90◦. By enforcing Eq. 4

to reduce ∠n, the negative point xn would be potentially

dragged towards x
0
n, which is closer to the anchor point

xa. This result contradicts our original goal of enlarging the

distance between points of different classes. To fix this is-

sue, we re-construct the triplet triangle to make Eq. 4 more

stable. Our intuition is to model the relation between the

negative xn with the local sample distribution defined by

the anchor xa and the positive xp, shown in Fig. 3b. A

natural approximation to this distribution is the circumcir-

cle C passing through xa and xp, centered at the middle

xc = (xa + xp)/2. We then introduce a hyper-plane P ,

which is perpendicular to the edge enc = xn−xc at xc. The

hyper-plane P intersects the circumcircle C at two nodes,

one of which is denoted as xm. Based on these auxiliary

structures, we define the new triangle 4mcn by shifting the

anchor xa and positive xp to xc and xm respectively. Given

the new triangle, we re-formulate Eq. 4 to constrain the an-

gle ∠n0 closed by the edge of enc and enm to be less than a

(a) (b)

Figure 3. Illustration of the angular constraint on a synthetic triplet

where ∠a > 90
◦. (a) Directly minimizing ∠n is unstable as it

would drag xn closer to xa. (b) The more stable ∠n
0 defined by

re-constructing the triangle 4mcn.

pre-define upper bound α, i.e.,

tan∠n0 =
kxm − xck

kxn − xck
=

kxa − xpk

2kxn − xck
 tanα, (5)

where kxm −xck is the radius of the circumcircle C, which

equals to kxa − xpk/2.

Inspired by the triplet loss (Eq. 2), we seek for the opti-

mum embedding such that the samples of different classes

can be separated well as the angular constraint (Eq. 5) de-

scribes. In a nutshell, our angular loss consists of minimiz-

ing the following hinge loss,

lang(T ) =
h

kxa − xpk
2 − 4 tan2 αkxn − xck

2
i

+
. (6)

To better understand the effect of optimizing the angular

loss, we can investigate the gradient of lang with respect to

xa, xp and xn, which are

∂lang(T )

∂xa

= 2(xa − xp)− 2 tan2 α(xa + xp − 2xn),

∂lang(T )

∂xp

= 2(xp − xa)− 2 tan2 α(xa + xp − 2xn),

∂lang(T )

∂xn

= 4 tan2 α
h

(xa + xp)− 2xn

i

, (7)

if ∠n0 is larger than α, or zero otherwise. As illustrated

in Fig. 3b, the gradient pushes the negative point xn away
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(a) (b)

Figure 4. Comparison between different sampling methods. For

each node, we use color to indicate the class label and shape for

its role (i.e., anchor, positive or negative) in triplet. (a) Traditional

triplet sampling. (b) N-pair sampling. To keep plot clean, we only

show the connection inside one tuplet.

from xc, the center of local cluster defined by xa and xp.

In addition, the anchor xa and the positive xp are dragged

towards each other. Compared to the original triplet loss

whose gradients (Eq. 3) only depend on two points, the gra-

dients in Eq. 7 are much more robust as they consider all the

three points simultaneously.

3.3. Implementation details

Eq. 6 defines the angular loss on a triplet. When opti-

mizing a mini-batch containing multiple triplets, we found

our method can be further improved in two ways.

First, we enhance the mini-batch optimization by making

the full use of the batch. As illustrated in Fig. 4a, the con-

ventional sample strategy constructs a mini-batch as multi-

ple disjoint triplets without interaction among them. This

poses a large bottleneck in optimization as it can only en-

code a limited amount of information. To allow joint com-

parison among all samples in the batch, we follow the sam-

pling strategy proposed in N-pair loss [25] to construct tu-

plets with multiple negative points. More concretely, we

first draw N/2 different classes, from each of which we

then randomly sample two training images. The main bene-

fit behind N-pair sampling is that it can avoid the quadratic

possible combinations of tuplets. For instance, as shown in

Fig. 4b, given a batch with N samples B = {xi, yi}
N
i=1,

there are in total N tuplets, each of which is composed by

a pair of anchor xa 2 B and positive xp 2 B of the same

class, and N − 2 negative from other classes.

Second, a direct extension of Eq. 6 to consider more than

one negative point would result in a very non-smooth ob-

jective function. Inspired by recent work [26, 25, 27], we

replace the original hinge loss with its smooth upper bound,

i.e., log(exp(y1) + exp(y2)) ≥ max(y1, y2). By assuming

feature is of unit length (i.e., kxk = 1) in Eq. 6, we derive

the angular loss for a batch B using the following log-sum-

exp formulation:

lang(B) =
1

N

X

xa2B

⇢

log



1 +
X

xn2B
yn 6=ya,yp

exp
(

fa,p,n
)

]}

,

(8)

where in fa,p,n, we drop the constant terms depending on

the value of kxk in a similar spirit to N-pair loss [25], i.e.,

fa,p,n = 4 tan2 α(xa + xp)
T
xn − 2(1 + tan2 α)xT

a xp.

Our work on angular loss explores the third-order rela-

tions beyond the scope of the well-studied pair-wise dis-

tance. Due to its flexibility and generality, we can eas-

ily combine the angular constraint with traditional distance

metric loss to boost the overall performance. As an exam-

ple, we mainly investigate the combination with the N-pair

loss [25], one of the latest work for deep metric learning,

lnpair&ang(B) = lnpair(B) + λlang(B), (9)

where lnpair(B) denotes the original N-pair loss as,

lnpair(B) =
1

N

X

xa2B

⇢

log



1+

X

xn2B
yn 6=ya,yp

exp
(

x
T
a xn − x

T
a xp

)

]}

, (10)

and λ is a trade-off weight between N-pair and the angular

loss. In all experiments, we always set λ = 2 as it consis-

tently yields promising result.

4. Experiments

In this section, we evaluate deep metric learning algo-

rithms on both image retrieval and clustering tasks. Our

method has been shown to achieve state-of-the-art perfor-

mance on three public benchmark datasets.

4.1. Benchmark datasets

We conduct our experiments on three public benchmark

datasets. For all datasets, we follow the conventional proto-

col of splitting training and testing:

CUB-200-2011 [3] dataset has 200 species of birds with

11,788 images included, where the first 100 species (5,864

images) are used for training and the remaining 100 species

(5,924 images) are used for testing.

Stanford Car [18] dataset is composed by 16,185 cars

images of 196 classes. We use the first 98 classes (8,054

images) for training and the other 98 classes (8,131 images)

for testing.

Online Products [26] dataset contains 22,634 classes

with 120,053 product images in total, where the first 11,318

classes (59,551 images) are used for training and the rest

classes (60,502 images) are used for testing.
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4.2. Baselines

In order to evaluate the superiority of the proposed

method, we compare with three baselines:

Triplet Loss: We implement the standard triplet em-

bedding by optimizing Eq. 2. To be fair in comparison,

we apply triplet loss embedding with two sampling strate-

gies. Following the most standard setting, the mini-batch of

Triplet-I (T-I) was constructed by sampling disjoint triplets

as illustrated in Fig. 4a. In the second case of Triplet-II (T-

II), we optimize Eq. 2 using the N-pair sampling as shown

in Fig. 4b to keep consistent with the angular loss.

Lifted Structure (LS) [26]: We adopt the open-source

code from the authors’ website with the default parameters

used in the paper.

N-pair Loss (NL) [25]: We implement N-pair loss

(Eq. 10) closely following the illustration of the paper. We

found our implementation achieved similar results as re-

ported in the paper.

For our method, we implement two versions, Angular

Loss (AL) and N-pair & Angular Loss (NL&AL), that

optimize Eq. 8 and Eq. 9 respectively. To be comparable

with prior work, we employ the N-pair sampling (Fig. 4b)

shared by the baselines of Triplet-II and N-pair Loss.

As the focus of this work is the similarity measure, we

did not employ any hard negative mining strategies to com-

plicate the comparison. But it is worth mentioning that our

work can be easily combined with any hard negative mining

method.

4.3. Evaluation metrics

Following the standard protocol used in [26, 25], we

evaluate the performance of different methods in both re-

trieval and clustering tasks. We split each dataset into two

sets of disjoint classes, one for training and the other for

testing the retrieval and clustering performance of the un-

seen classes. For retrieval task, we calculate the percentage

of the testing examples whose R nearest neighbors contain

at least one example of the same class. This quantity is also

known as Recall@R, the defacto metric [15] for image re-

trieving evaluation. For clustering evaluation, we adopt the

code from [26] by clustering testing examples using the k-

means algorithm. The quality of clustering is reported in

terms of the standard F1 and NMI metrics. See [26] for

their detailed definition.

4.4. Training setup

The Caffe package [16] is used throughout the experi-

ments. All images are normalized to 256-by-256 before fur-

ther processing. The embedding size is set to D = 512 for

all embedding vectors, and no normalization is conducted

before computing loss. We omit the comparison on different

embedding sizes as the performance change is minor. This

fact is also evidenced in [26]. GoogLeNet [29] pretrained

on ImageNet ILSVRC dataset [22] is used for initialization

and a randomly initialized fully connected layer is added.

The new layer is optimized with 10 times larger learning

rate than the other layers. We fix the base learning rate to

10−4 for all datasets except for the CUB-200-2011 dataset,

for which we use a smaller rate 10−5 as it has fewer images

and is more likely to meet the overfitting problem. We use

SGD with 20k training iterations and 128 mini-batch size.

Standard random crop and random horizontal mirroring are

used for data augmentation. Notice that our method incurs

negligible computational cost compared to traditional triplet

loss. Therefore, the training time is almost same as other

baselines.

4.5. Result analysis

Tables 1, 2 and 3 compare our method with all baselines

in both clustering and retrieval tasks. These tables show that

the two recent baselines, lifted structure (LS) [26] and N-

pair loss (NL) [25], can always improve the standard triplet

loss (T-I and T-II). In particular, N-pair achieves a larger

margin in improvement because of the advance in its loss

design and batch construction. Compared to previous work,

the proposed angular loss (AL) consistently achieves bet-

ter results on all three benchmark datasets. It is important

to notice that the proposed angular loss (AL) employs the

same sampling strategies as triplet loss (T-II) and N-pair

loss (NL). This clearly indicates the superiority of the new

loss for solving deep metric learning problem. By integrat-

ing with the original N-pair loss, the joint optimization of

angular loss in NL&AL can lead to the best performance

among all the methods in all metrics.

Fig. 5 compares NL&AL with N-pair loss on the task

of image retrieval. As it can be observed, the proposed

NL&AL learns a more discriminative feature that helps in

identifying the correct images especially when the intra-

class variance is large. For example, given a query image

of FIAT 500 Convertible 2012 at the fourth row of Fig. 5 on

the right side, the top-5 images retrieved by NL&AL con-

tain four successful matches that belong to the same class

as the query, while N-pair method fails to identify them.

In addition, Fig. 6 visualizes the feature embedding com-

puted by our method (NL&AL) in 2-D using t-SNE [32].

We highlight several representative classes by enlarging the

corresponding regions in the corners. Despite the large pose

and appearance variation, our method effectively generates

a compact feature mapping that preserves semantic similar-

ity.

A key parameter of our method is the margin α, that de-

termines to what degree the constraint (Eq. 5) would be ac-

tivated. Table 4 and Table 5 study the impact of choosing

different α for the retrieval task on the Stanford car and on-

line product datasets, respectively. Choosing α = 45◦ for

Stanford car and α = 36◦ for online product lead to the
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Method
Clustering (%) Recall@R (%)

NMI F1 R=1 R=2 R=4 R=8

T-I 53.7 19.7 42.2 54.4 66.2 76.7
T-II 54.1 20.0 42.8 54.9 66.2 77.6
LS 56.2 22.7 46.5 58.1 69.8 80.2
NL 60.2 28.2 51.9 64.3 74.9 83.2
AL 61.0 30.2 53.6 65.0 75.3 83.7
NL&AL 61.1 29.4 54.7 66.3 76.0 83.9

Table 1. Comparison of clustering and retrieval on the CUB-200-

2011 [3] dataset.

Method
Clustering (%) Recall@R (%)

NMI F1 R=1 R=2 R=4 R=8

T-I 53.8 18.7 45.5 59.0 71.0 80.8
T-II 54.3 19.6 46.3 59.9 71.4 81.3
LS 55.1 21.5 48.3 61.1 71.8 81.1
NL 62.7 31.8 68.9 78.9 85.8 90.9
AL 62.4 31.8 71.3 80.7 87.0 91.8
NL&AL 63.2 32.2 71.4 81.4 87.5 92.1

Table 2. Comparison of clustering and retrieval on the Stanford

car [18] dataset.

Method
Clustering (%) Recall@R (%)

NMI F1 R=1 R=10 R=100 R=1000

T-I 86.2 19.9 56.5 74.7 88.3 96.2
T-II 86.4 21.0 58.1 76.0 89.1 96.4
LS 87.4 24.7 63.0 80.5 91.7 97.5
NL 87.7 26.3 66.9 83.0 92.3 97.7
AL 87.8 26.5 67.9 83.2 92.2 97.7
NL&AL 88.6 29.9 70.9 85.0 93.5 98.0

Table 3. Comparison of clustering and retrieval on the online prod-

ucts [26] dataset.

best performance for the method of NL&AL. We found that

our method performs consistently well in all three dataset

for 36◦  α  55◦. It deserves to be mentioned that, with-

out integrating with NL, AL preforms comparably with NL,

and even better when mining a proper value of α, which is

shown in Table 5.

5. Conclusion

In this paper, we propose a novel angular loss for deep

metric learning. Unlike most methods that formulate objec-

tive based on distance, we resort to constrain the angle of the

triplet triangle in the loss. Compared to pair-wise distance,

NL&AL(α)
Recall@R (%)

R=1 R=2 R=4 R=8

α = 36◦ 69.9 79.7 86.8 91.8
α = 42◦ 70.7 80.5 87.2 91.9
α = 45◦ 71.4 81.4 87.5 92.1
α = 48◦ 71.3 80.4 87.0 91.9
α = 55◦ 69.0 78.1 85.3 90.8

Table 4. Comparison of different values for α for our method on

Stanford car dataset.

Method NL NL&AL(α = 45◦) NL&AL(α = 36◦)

Recall@1 (%) 66.9 69.2 70.9

Method NL AL(α = 45◦) AL(α = 36◦)

Recall@1 (%) 66.9 66.4 67.9

Table 5. Comparison of different values for α for our method on

the online product dataset.

angle is a rotation and scale invariant metric, rendering the

objective more robust against the large variation of feature

map in real data. In addition, the value of angle encodes the

triangular geometry of three points simultaneously. Given

the same triplet, it offers additional source of constraints

to ensure that dis-similar points can be separated. Further-

more, we show how the angular loss can be easily integrated

into other frameworks such as N-pair loss [25]. The supe-

riority of our method over existing state-of-the-art work is

verified on several benchmark datasets.

In the future, we hope to extend our work in two direc-

tions. First, our method origins from the triplet loss and

leverages the third-order relation among three points. It

is interesting to consider more general case with four or

more samples. Previous work [38, 14] studied the case of

quadruplet but still employed certain distance-based objec-

tives. One possible extension of our idea on quadruplet is to

construct a triangular pyramid and constrain the angle be-

tween the side edge and the plane on the bottom. Second,

it is beneficial to combine our method with other practical

tricks such as hard negative mining [37] or new clustering-

like frameworks [21, 27].
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