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Abstract

Using the matrix product state (MPS) representation of

the recently proposed tensor ring (TR) decompositions, in

this paper we propose a TR completion algorithm, which is

an alternating minimization algorithm that alternates over

the factors in the MPS representation. This development is

motivated in part by the success of matrix completion al-

gorithms that alternate over the (low-rank) factors. We pro-

pose a novel initialization method and analyze the computa-

tional complexity of the TR completion algorithm. The nu-

merical comparison between the TR completion algorithm

and the existing algorithms that employ a low rank tensor

train (TT) approximation for data completion shows that

our method outperforms the existing ones for a variety of

real computer vision settings, and thus demonstrates the

improved expressive power of tensor ring as compared to

tensor train.

1. Introduction

Tensor decompositions for representing and storing data

have recently attracted considerable attention due to their

effectiveness in compressing data for statistical signal pro-

cessing [11, 5, 17, 13, 3]. In this paper we focus on Tensor

Ring (TR) decomposition [18] and in particular its relation

to Matrix Product States (MPS) [14] representation for ten-

sor and use it for completing data from missing entries. In

this context our algorithm is motivated by recent work in

matrix completion where under a suitable initialization an

alternating minimization algorithm [10, 8] over the low rank

factors is able to accurately predict the missing data.

Recently, tensor networks, considered as the generaliza-

tion of tensor decompositions, have emerged as the poten-

tially powerful tools for analysis of large-scale tensor data

[14]. The most popular tensor network is the Tensor Train

(TT) representation, which for an order-d tensor with each

dimension of size n requires O(dnr2) parameters, where r

is the rank of each of the factors, and thus allows for the effi-

cient data representation [15]. Tensor train decompositions

have been recently considered in [7, 16] and the authors in

[7, 16] considered the completion of data via an alternating

least square method.

Although TT format has been widely applied in numer-

ical analysis, its applications to image classification and

completion are rather limited [13, 7, 16]. As outlined in

[18], TT decomposition suffers from the following limita-

tions. Namely, (i) TT model requires rank-1 constraints to

the border factors, (ii) TT ranks are typically small for near-

border factors and large for the middle factors, and (iii) the

multiplications of the TT factors are not permutation invari-

ant. In order to alleviate those drawbacks, a tensor ring (TR)

decomposition has been proposed in [18]. TR decompo-

sition removes the unit rank constraints for the boundary

tensor factors and utilizes a trace operation in the decompo-

sition. The multilinear products between factors also have

no strict ordering and the factors can be circularly shifted

due to the properties of the trace operation. This paper pro-

vides novel algorithms for data completion when the data is

modeled as a TR decomposition.

For data completion using tensor decompositions, one of

the key attributes is the notion of the rank. Even though the

rank in TR is a vector, we can assume all ranks to be the

same, unlike that in TT case where the intermediate ranks

are higher, thus providing a single parameter that can be

tuned based on the data and the number of samples avail-

able. The use of trace operation in the tensor ring struc-

ture brings challenges for completion as compared to that

for tensor train decomposition. The tensor ring structure

is equivalent to a cyclic structure in tensor networks [10],

and understanding this structure can help understand com-

pletion for more general tensor networks. In this paper, we

propose an alternating minimization algorithm for the ten-

sor ring completion. The initialization of the algorithm is

an extension of TT approximation algorithm in [15] after

zero-filling the missing data. Further, all the sub-problems

in alternating minimization are converted to efficient least

square problems, thus significantly improving the complex-

ity of each sub-problem. We also analyze the storage and

computational complexity of the proposed algorithm.

We note that, to the best of our knowledge, tensor ring

completion has never been investigated for tensor comple-
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tion, even though tensor ring factorization has been pro-

posed in [18]. The different novelties as compared to [18]

include the initialization algorithm, exclusion of tensor fac-

tor normalization, conversion of tensor completion prob-

lem into different least square sub-problems, and analysis

of complexity in storage and computation.

The proposed algorithm is evaluated on a variety of

datasets, including Einstein’s image, Extended YaleFace

Dataset B, and high speed video. The results are compared

with the tensor train completion algorithms in [7, 16], and

the additional structure in the tensor ring is shown to signif-

icantly improve the performance as compared to using the

TT structure.

The rest of the paper is organized as follows. In section 2

we introduce the basic notation and preliminaries on the TR

decomposition. In section 3 we outline the problem state-

ment and propose the main algorithm. We also describe the

computational complexity of the proposed algorithm. Fol-

lowing that we test the algorithm extensively against com-

peting methods on a number of real and synthetic data ex-

periments in section 4. Finally we provide conclusion and

future research directions in section 5.

2. Notation & Preliminaries

In this paper, vector and matrices are represented by

bold face lower case letters (x,y, z, · · ·) and bold face cap-

ital letters (X,Y,Z, · · ·) respectively. A tensor with or-

der more than two is represented by calligraphic letters

(X,Y,Z). For example, an nth order tensor is represented

by X 2 R
I1⇥I2⇥···⇥In , where Ii:i=1,2,··· ,n is the tensor di-

mension along mode i. The tensor dimension along mode

i could be an expression, where the expression inside () is

evaluated as a scalar, e.g. X 2 R
(I1I2)⇥(I3I4)⇥(I5I6) repre-

sents a 3-mode tensor where dimensions along each mode

is I1I2, I3I4, and I5I6 respectively. An entry inside a ten-

sor X is represented as X(i1, i2, · · · , in), where ik:k=1,2,..,n

is the location index along the kth mode. A colon is ap-

plied to represent all the elements of a mode in a tensor,

e.g. X(:, i2, · · · , in) represents the fiber along mode 1 and

X(:, :, i3, i4, · · · , in) represents the slice along mode 1 and

mode 2 and so forth. Similar to Hadamard product un-

der matrices case, Hadamard product between tensors is

the entry-wise product of the two tensors. vec(·) repre-

sents the vectorization of the tensor in the argument. The

vectorization is carried out lexicographically over the index

set, stacking the elements on top of each other in that or-

der. Frobenius norm of a tensor is the same as the vector

`2 norm of the corresponding tensor after vectorization, e.g.

kXkF = kvec(X)k`2 . ⇥ between matrices is the standard

matrix product operation.

Definition 1. (Mode-i unfolding [4]) Let X 2 R
I1⇥···⇥In

be a n-mode tensor. Mode-i unfolding of X, denoted as

X[i], matrized the tensor X by putting the ith mode in the

matrix rows and remaining modes with the original order

in the columns such that

X[i] 2 R
Ii⇥(I1···Ii−1Ii+1···In). (1)

Definition 2. (Left Unfolding and Right Unfolding [9]) Let

X 2 R
Ri−1⇥Ii⇥Ri be a third order tensor, the left unfolding

is the matrix obtained by taking the first two modes indices

as rows indices and the third mode indices as column in-

dices such that

L(X) = (X[3])
T 2 R

(Ri−1Ii)⇥Ri . (2)

Similarly, the right unfolding gives

R(X) = X[1] 2 R
Ri−1⇥(IiRi). (3)

Definition 3. (Mode-i canonical matrization [4] ) Let X 2
R

I1⇥···⇥In be an nth order tensor, the mode-i canonical ma-

trization gives

X<i> 2 R
(
Qi

t=1 It)⇥(
Qn

t=i+1 It), (4)

such that any entry in X<i> satisfies

X<i>(i1 + (i2 − 1)I1 + · · ·+ (ik − 1)
k−1Y

t=1

It,

ik+1 + (ik+2 − 1)Ik+1 + · · ·+ (in − 1)

n−1Y

t=k+1

It)

=X(i1, · · · , in).

(5)

Definition 4. (Tensor Ring [18]) Let X 2 R
I1⇥···⇥In be an

n-order tensor with Ii-dimension along the ith mode, then

any entry inside the tensor, denoted as X(i1, · · · , in), is rep-

resented by

X(i1, · · · , in) =
R1X

r1=1

· · ·
RnX

rn=1

U1(rn, i1, r1) · · ·

Un(rn−1, in, rn),

(6)

where Ui 2 R
Ri−1⇥Ii⇥Ri is a set of 3-order tensors,

also named matrix product states (MPS), which consist the

bases of the tensor ring structures. Note that Uj(:, ij , :) 2
R

Rj−1⇥1⇥Rj can be regarded as a matrix of size RRj−1⇥Rj ,

thus (6) is equivalent to

X(i1, · · · , in) = tr(U1(:, i1, :)⇥ · · · ⇥ Un(:, in, :)). (7)

Remark 1. (Tensor Ring Rank (TR-Rank)) In the formu-

lation of tensor ring, we note that tensor ring rank is the

vector [R1, · · · , Rn]. In general, Ri are not necessary to

be the same. In our set-up, we set Ri = R 8i = 1, · · · , n,

and the scalar R is referred as the tensor ring rank in the

remainder of this paper.
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Remark 2. (Tensor Train [15]) Tensor train is a special

case of tensor ring when Rn = 1.

Based on the formulation of tensor ring structure, we de-

fine a tensor connect product, the operation between the

MPSs, to describe the generation of high order tensor X

from the sets of MPSs Ui:i=1,··· ,n. Let R0 , Rn for ease

of expressions.

Definition 5. (Tensor Connect Product) Let Ui 2
R

Ri−1⇥Ii⇥Ri , i = 1, · · · , n be n 3rd-order tensors, the ten-

sor connect product between Uj and Uj+1 is defined as,

UjUj+1 2 R
Rj−1⇥(IjIj+1)⇥Rj+1

= reshape (L(Uj)⇥R(Uj+1)) .
(8)

Thus, the tensor connect product n MPSs is

U = U1 · · ·Un 2 R
R0⇥(I1···In)⇥Rn . (9)

Tensor connect product gives the product rule for the pro-

duction between 3-order tensors, just like the matrix product

as for 2-order tensor. Under matrix case, Uj 2 R
1⇥Ij⇥Rj ,

Uj+1 2 R
Rj⇥Ij+1⇥1. Thus tensor connect product gives

the vectorized solution of matrix product.

We then define an operator f that applies on U. Let

U 2 R
R0⇥(I1···In)⇥Rn be the 3-order tensor, R0 = Rn,

and let f be a reshaping operator function that reshapes a

3-order tensor U to a tensor of dimension X of dimension

R
I1⇥···⇥In , denoted as

X = f(U), (10)

where X(i1, · · · , in) is generated by

X(i1, · · · , in) = tr(U(:, i1+(i2−1)I1+· · ·+(in−1)In−1, :)).
(11)

Thus a tensor X 2 R
I1⇥···⇥In with tensor ring structure

is equivalent to

X = f(U1 · · ·Un). (12)

Similar to matrix transpose, which can be regarded as an
operation that cyclic swaps the two modes for a 2-order ten-

sor, we define a ‘tensor permutation’ to describe the cyclic

permutation of the tensor modes for a higher order tensor.

Definition 6. (Tensor Permutation) For any n-order tensor

X 2 R
I1⇥···⇥In , the ith tensor permutation is defined as

XPi 2 R
Ii⇥Ii+1⇥···⇥In⇥I1⇥I2⇥···⇥Ii−1 such that 8i, ji 2

[1, Ii]

XPi(ji, · · · , jn, j1, · · · , ji−1) = X(j1, · · · , jn). (13)

Then we have the following result.

Lemma 1. If X = f(U1 · · ·Un), then XPi =
f(UiUi+1 · · ·UnU1 · · ·Ui−1).

With this background and basic constructs, we now out-

line the main problem setup.

3. Formulation and Algorithm for Tensor Ring

Completion

3.1. Problem Formulation

Given a tensor X 2 R
I1⇥···⇥In that is partially observed

at locations Ω, let PΩ 2 R
I1⇥···⇥In be the correspond-

ing binary tensor in which 1 represents an observed entry

and 0 represents a missing entry. The problem is to find a

low tensor ring rank (TR-Rank) approximation of the ten-

sor X, denoted as f(U1 · · ·Un), such that the recovered ten-

sor matches X at PΩ. This problem is referred as the ten-

sor completion problem under tensor ring model, which is

equivalent to the following problem

min
Ui:i=1,··· ,n

kPΩ ◦ (f(U1 · · ·Un)− X)k2F . (14)

Note that the rank of the tensor ring R is predefined and the

dimension of Ui:i=1,··· ,n is RR⇥Ii⇥R.

To solve this problem, we propose an algorithm, referred

as Tensor Ring completion by Alternating Least Square

(TR-ALS) to solve the problem in two steps.

• Choose an initial starting point by using Tensor Ring

Approximation (TRA). This initialization algorithm is

detailed in Section 3.2.

• Update the solution by applying Alternating Least

Square (ALS) that alternatively (in a cyclic order) es-

timates a factor say Ui keeping the other factors fixed.

This algorithm is detailed in Section 3.3.

3.2. Tensor Ring Approximation (TRA)

A heuristic initialization algorithm, namely TRA, for

solving (14) is proposed in this section. The proposed algo-

rithm is a modified version of tensor train decomposition as

proposed in [15]. We first perform a tensor train decomposi-

tion on the zero-filled data, where the rank is constrained by

Singular Value Decomposition (SVD). Then, an approxima-

tion for the tensor ring is formed by extending the obtained

factors to the desired dimensions by filling the remaining

entries with small random numbers. We note that the small

entries show faster convergence as compared to zero entries

based on our considered small examples, and thus motivates

the choice in the algorithm. Further, non-zero random en-

tries help the algorithm initialize with larger ranks since the

TT decomposition has the corner ranks as 1. Having non-

zero entries can help the algorithm not getting stuck in a lo-

cal optima of low corner rank. The TRA algorithm is given

in Algorithm 1.

3.3. Alternating Least Square

The proposed tensor ring completion by alternating least

square method (TR-ALS) solves (14) by solving the follow-

ing problem for each i iteratively. The factors are initialized
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Algorithm 1 Tensor Ring Approximation (TRA)

Input: Missing entry zero filled tensor X 2 R
I1⇥I2⇥···⇥In ,

TR-Rank R, small random variable depicting the stan-

dard deviation of the added normal random variable σ

Output: Tensor train decomposition Ui:i=1,··· ,n 2
R

R⇥Ii⇥R

1: Apply mode-1 canonical matricization for X and get

matrix X1 = X<1> 2 R
I1⇥(I2I3···In)

2: Apply SVD and threshold the number of singular

values to be T1 = min(R, I1, I2 · · · In), such that

X1 = U1S1V
>
1 ,U1 2 R

I1⇥T1 ,S1 2 R
T1⇥T1 ,V1 2

R
T1⇥(I2I3···In). Reshape U1 to R

1⇥I1⇥T1 and ex-

tend it to U1 2 R
R⇥I1⇥R by filling the extended en-

tries by random normal distributed values sampled from

N (0, σ2).
3: Let M1 = S1V

>
1 2 R

T1⇥(I2I3···In).

4: for i = 2 to n− 1 do

5: Reshape Mi−1 to Xi 2 R
(Ti−1Ii)⇥(Ii+1Ii+2···In).

6: Compute SVD and threshold the number of singu-

lar values to be Ti = min(R, Ti−1Ii, Ii+1 · · · In),
such that Xi = UiSiV

>
i ,Ui 2 R

(Ti−1Ii)⇥Ti ,Si 2
R

Ti⇥Ti ,V 2 R
Ti⇥(Ii+1Ii+2···In). Reshape Ui to

R
Ti−1⇥Ii⇥Ti and extend it to Ui 2 R

R⇥Ii⇥R by fill-

ing the extended entries by random normal distributed

values sampled from N (0, σ2).
7: Set Mi = SiV

>
i 2 R

Ti⇥(Ii+1Ii+2···In)

8: end for

9: Reshape Mn−1 2 R
Tn−1⇥In to R

Tn−1⇥In⇥1, and ex-

tend it to Un 2 R
R⇥In⇥R by filling the extended en-

tries by random normal distributed values sampled from

N (0, σ2) to get Un

10: Return U1, · · · ,Un

from the TRA algorithm presented in the previous section.

Ui = argminYkPΩ◦f(U1 · · ·Ui−1YUi+1 · · ·Un)−XΩ)k
2
F .

(15)

Lemma 2. When i 6= 1, solving

Ui = argminYkPΩ ◦f(U1 · · ·Ui−1YUi+1 · · ·Un)−XΩ)k
2
F

(16)

is equivalent to

Ui = argminYkP
Pi

Ω ◦f(YUi+1 · · ·UnU1 · · ·Ui−1)−X
Pi

Ω k2F .
(17)

Since the format of (17) is exactly the same for each i

when the other factors are known, it is enough to describe

solving a single Uk without loss of generality. Based on

Lemma 2, we need to solve the following problem.

Uk = argminYkP
Pk

Ω ◦f(YUk+1 · · ·UnU1 · · ·Uk−1)−X
Pk

Ω k2F .
(18)

We further apply mode-k unfolding, which gives the

equivalent problem

Uk = argminYkP
Pk

Ω [k] ◦ f(YUk+1 · · ·UnU1 · · ·Uk−1)[k]

− X
Pk

Ω [k]k
2
F ,

(19)

where P
Pk

Ω [k], f(YUk+1 · · ·UnU1 · · ·Uk−1)[k] and X
Pk

Ω [k]

are matrices with dimension R
Ik⇥(Ik+1···InI1···Ik−1).

The trick in solving (19) is that each slice of tensor Y,

denoted as Y(:, ik, :), ik 2 {1, · · · , Ik} which corresponds

to each row of PPk

Ω [k], f(YUk+1 · · ·UnU1 · · ·Uk−1)[k] and

X
Pk

Ω [k], can be solved independently, thus equation (19) can

be solved by solving Ik equivalent subproblems

Uk(:, ik, :) = argminZ2RR×1×R

kPPk

Ω [k](ik, :) ◦ f(ZUk+1 · · ·Uk−1)− X
Pk

Ω [k](ik, :)k
2
F .

(20)

Let B(k) = Uk+1 · · ·UnU1 · · ·Uk−1 2
R

R⇥(Ik+1···InI1···Ik−1)⇥R, Ωik be the observed

entries in vector X[k](ik, :), thus B
(k)
Ωik

2

R
R⇥(Ik+1···InI1···Ik−1)Ωik

⇥R
are the components in

B(k) such that P
Pk

Ω [k](ik, (Ik+1 · · · InI1 · · · Ik−1)Ωik
) are

observed. Thus equation (20) is equivalent to

Uk(:, ik, :) =argminZkf(ZB
(k)
Ωik

)

− X
Pk

Ω [k](ik, (Ik+1 · · · InI1 · · · Ik−1)Ωik
))k2F .

(21)

We regard Z 2 R
R⇥1⇥R as a matrix Z 2 R

R⇥R. Since

the Frobenius norm of a vector in (21) is equivalent to entry-

wise square summation of all entries, we rewrite (21) as

Uk(:, ik, :) = argmin
Z2RR×R

X

j2Ωik

ktr(Z⇥B
(k)
Ωik

(:, j, :))− X
Pk

Ω [k](ik, j)k
2
F .

(22)

Lemma 3. Let A 2 R
r1⇥r2 and B 2 R

r2⇥r1 be any two

matrices, then

Trace(A⇥B) = vec(B>)>vec(A). (23)

Based on Lemma 3, (22) becomes

Uk(:, ik, :) = argmin
Z

X

j2Ω
(k)
ik

kvec((B
(k)
Ωik

(:, j, :))>)>vec(Z)− X
Pk

Ω [k](ik, j)k
2
F .

(24)
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Algorithm 2 TR-ALS Algorithm

Input: Zero-filled Tensor XΩ 2 R
I1⇥I2⇥...⇥In , binary ob-

servation index tensor PΩ 2 R
I1⇥I2⇥...⇥In , tensor ring

rank R, thresholding parameter tot, maximum iteration

maxiter

Output: Recovered tensor XR

1: Apply tensor ring approximation in Algorithm 1 on XΩ

to initialize the MPSs Ui:i=1,··· ,n 2 R
R⇥Ii⇥R. Set it-

eration parameter ` = 0.

2: while `  maxiter do

3: ` = `+ 1
4: for i = 1 to n do

5: Solve by Least Square Method Ui
(`) =

argminUkPΩ ◦ (UU
(`−1)
i+1 ...U

(`−1)
n U

(`)
1 ...U

(`)
i−1 − X)k2F

6: end for

7: if
kU(`+1)

n −U
(`)
n kF

kU
(`)
n kF

 tot then

8: Break

9: end if

10: end while

11: Return XR = reshape(U
(`)
1 U

(`)
2 ...U

(`)
n−1U

(`)
n )

Then the problem for solving Uk[:, ik, :] becomes a least

square problem. Solving Ik least square problem would

give the optimal solution for Uk. Since each Ui:i=1,··· ,n

can solved by a least square method, tensor completion un-

der tensor ring model can be solved by taking orders to up-

date Ui:i=1,··· ,n until convergence. We note the completion

algorithm does not require normalization on each MPS, un-

like the decomposition algorithm [18] that normalizes all

the MPSs to seek a unique factorization. The stopping crite-

ria in TR-ALS is measured via the changes of the last tensor

factors Un since if the last factor does not change, the other

factors are less likely to change. Details of the algorithm

are given in Algorithm 2.

3.4. Complexity Analysis

Storage Complexity Given an n-order tensor X 2
R

I1⇥···⇥In , the total amount of parameters to store isQn

i=1 Ii, which increases exponentially with order. Under

tensor ring model, we can reduce the storage space by con-

verting each factor (except the last) one by one to being

orthonormal and multiply the product with the next fac-

tor. Thus, the number of parameters to store the MPSs

Ui:i=1,··· ,n−1 with orthonormal property requires storagePn−1
i=1 (R

2Ii − R2), and Un with parameter R2In. Thus,

the total amount of storage is R2(
Pn

i Ii − n + 1), where

the tensor ring rank R can be adjusted to fit the tensor data

at the desired accuracy.

Computational Complexity For each Ui, the least

square problem in (19) solved by pseudo-inverse gives a

computational complexity max(O(PR4), O(R6)), where

P is the total number of observations. Within one iteration

when n MPSs need to be updated, the overall complexity is

max(O(nPR4), O(nR6)).
We note that tensor train completion [7] gives the simi-

lar complexity as tensor ring completion. However, tensor

train rank is a vector and it is hard for tuning to achieve the

optimal completion. The intermediate ranks in tensor train

are large in general, leading to significantly higher compu-

tational complexity of tensor train. This is alleviated in part

by the tensor ring structure which can be parametrized by

the tensor ring rank which can be smaller than the interme-

diate ranks of the tensor train in general. In addition, the sin-

gle parameter in the tensor ring structure leads to an ease in

characterizing the performance for different ranks and can

be easily tuned for practical applications. The lower ranks

lead to lower computational complexity of data completion

under the tensor ring structure as compared to the tensor

train structure.

4. Numerical Results

In this section, we compare our proposed TR-ALS algo-

rithm with tensor train completion under alternating least

square (TT-ALS) algorithm [7], which solves the tensor

completion by alternating least squares under tensor train

format. SiLRTC algorithm is another tensor train comple-

tion algorithm proposed in [16] and the tensor train rank is

tuned based on the dimensionality of the tensor. It is se-

lected for comparison as it shows good recovery in image

completion [16]. The evaluation merit we consider is Re-

covery Error (RE). Let X̂ be the recovered tensor and X be

the ground truth of the tensor. Thus, the recovery error is

defined as

RE =
kX̂− XkF
kXkF

.

Tensor ring completion by alternating least square (TR-ALS

) algorithm is an iterative algorithm and the maximum itera-

tion, maxiter, is set to be 300. The convergence is captured

by the change of the last factorization term Un, where the

error tolerance is set to be 10−10.

In the remaining of the section, we first evaluate the com-

pletion results for synthetic data. Then we validate the pro-

posed TR-ALS algorithm on image completion, YaleFace

image-sets completion, and video completion.

4.1. Synthetic Data

In this section, we consider a completion problem of a

4-order tensor X 2 R
20⇥20⇥20⇥20 with TR-Rank being

8 without loss of generality. The tensor is generated by

a sequence of connected 3-rd order tensor Ui:i=1,··· ,4 2
R

8⇥20⇥8 and every entry in Ui are sampled independently

from a standard normal distribution.

TT-ALS is considered as a comparable to show the dif-

ference between tensor train model and tensor ring model.
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Two different tensor train ranks are chosen for the compar-

isons. The first tensor-train ranks are chosen as [8, 8, 8], and

the completion with these ranks is called Low rank tensor

train (LR-TT) completion. The second tensor-train ranks

are chosen as the double of the first ( [16, 16, 16]), and the

completion with these ranks is called High rank tensor train

(HR-TT) completion. Another comparable used is the SiL-

RTC algorithm proposed in [16], where the rank is adjusted

according to the dimensionality of the tensor data, and a

heuristic factor of f = 1 in the proposed algorithm of [16]

is selected for testing.

Fig.1a shows the completion error of TR-ALS, LR-TT,

HR-TT, and SiLRTC for observation ratio from 10% to

60%. TR-ALS shows the lowest recovery error compared

with other algorithms and the recovery error drops to 10−10

for observation ratio larger than 14%. The large completion

errors of all tensor train algorithm at every observation ra-

tio show that tensor train algorithm can not effectively com-

plete the tensor data generated under tensor ring model. Fig.

1b shows the convergence of TR-ALS under sampling ra-

tios 10%, 15%, 20%, 30%, 40%, and 50%, and the plot in-

dicates the higher the observation ratios, the faster the al-

gorithm converges. When the observation ratio is lower

than 10%, the tensor with missing data can not be com-

pleted under the proposed set-up. The fast convergence of

the proposed TR-ALS algorithm indicates that alternating

least square is effective in tensor ring completion.

4.2. Image Completion

In this section, we consider the completion of

RGB Einstein Image [1], treated as a 3-order tensor

X 2 R
600⇥600⇥3. A reshaping operation is applied

to transform the image into a 7-order tensor of size

R
6⇥10⇥10⇥6⇥10⇥10⇥3. Reshaping low order tensors into

high order tensors is a common practice in literature and

has shown improved performance in classification [13] and

completion [16].

Fig. 2a shows the recovery error versus rank for TR-

ALS and TT-ALS when the percentage of data observed

are 5%, 10%, 20%, 30%. At any considered ranks, TR-ALS

completes the image with a better accuracy than TT-ALS.

For any given percentage of observations, the recovery er-

ror first decreases as the rank increases which is caused by

the increased information being captured by the increased

number of parameters in the tensor structure. The recovery

error then starts to increase after a thresholding rank, which

can be ascribed to over-fitting. The plot also indicates that

higher the observation ratio, larger the thresholding rank,

which to the best of our knowledge is reported for the first

time. Fig. 2b shows the recovered image of Einstein im-

age when 10% pixels are randomly observed. TR-ALS with

rank 28 gives the best recovery accuracy in the considered

ranks.

4.3. YaleFace Dataset Completion

In this section, we consider Extended YaleFace Dataset

B [6] that includes 38 people with 9 poses under 64 illu-

mination conditions. Each image has the size of 192⇥ 168,

where we down-sample the size of each image to 48⇥42 for

ease of computation. We consider the image subsets of 38

people under 64 illumination with 1 pose by formatting the

data into a 4-order tensor in R
48⇥42⇥64⇥38, which is further

reshaped into a 8-order tensor X 2 R
6⇥8⇥6⇥7⇥8⇥8⇥19⇥2.

We consider the case when 10% of pixels are randomly ob-

served. YaleFace sets completion is considered to be harder

than an image completion since features under different il-

lumination and across human features are harder to learn

than information from the color channels of images. Ta-

ble 1 shows that for any considered rank, TR-ALS recovers

data better than TT-ALS and the best completion result in

the given set-up is 16.25% for TR-ALS as compared with

25.55% given by TT-ALS. Further we reshape the data into

an 11-order tensor and 4-order tensor to evaluate the effect

of reshaped tensor size on tensor completion. The result in

Table 1 shows that in the given reshaping set-up, reshaping

tensor from 4-order tensor to 7-th order tensor significantly

improve the performance of tensor completion by decreas-

ing recovery error from 21.48% to 16.25%. However, fur-

ther reshaping to 11-order tensor slightly degrades the per-

formance of completion, resulting in an increased recovery

error to 16.34%.

Fig. 3 shows the original image, missing images, and

recovered images using TR-ALS and TT-ALS algorithms

for ranks of 10, 20, and 30, where the completion results

given by TR-ALS better captures the detail information

given from the image and recovers the image with a better

resolution.

4.4. Video completion

The video data we used in this section is high speed

camera video for gun shooting [2]. It is downloaded

from Youtube with 85 frames in total and each frame

is consisted by a 100 ⇥ 260 ⇥ 3 image. Thus the

video is a 4-order tensor of size 100⇥ 260⇥ 3⇥ 85,

which is further reshaped into a 11-order tensor of size

5⇥ 2⇥ 5⇥ 2⇥ 13⇥ 2⇥ 5⇥ 2⇥ 3⇥ 5⇥ 17 for comple-

tion. Video is a multi-dimensional data with different color

channel a time dimension in addition to the 2D image struc-

ture.

In Table 2, we show that TR-ALS achieves 6.25% re-

covery error when 10% of the pixels are observed, which is

much better than the best recovery error of 14.83% achieved

by TT-ALS. The first frame of the video is shown in Fig. 4,

where the first row shows the original frame and the com-

pleted frames by TR-ALS, and the second row shows the

frame with missing entries and the frames completed by

TT-ALS. The resolution, and the display of the bullets and

the smoke depict that the proposed TR-ALS achieves better
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Figure 1: Completion for synthetic data. Synthetic data is a 4th order tensor of dimension 20× 20× 20× 20 with TR-Rank being 8.
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(a) The recovery error versus rank for TR-ALS and TT-ALS under

observation ratio 5%, 10%, 20%, 30%.

(b) Einstein image completion when 10% of pixels are randomly ob-

served. (a) and (f) are the original Einstein image and the Einstein

image with 10% randomly observed entries. (b)-(e) are the completed

images via TR-ALS with TR-Rank 2, 10, 18, 28 and completion er-

rors 33.97%, 14.03%,10.83%, 14.55% respectively. (g)- (j) are the

completed images via TT-ALS with TT-Rank 2, 10, 18, 28 and com-

pletion errors 38.51%, 22.89%,20.70%, 23.19% respectively.

Figure 2: Completion for Einstein image. Einstein image is of size 600 × 600 × 3, and is reshaped into a 7-order tensor of size

6× 10× 10× 6× 10× 10× 3 tensor for tensor ring completion

Rank 5 10 15 20 25 30

TT-ALS (R6⇥8⇥6⇥7⇥8⇥8⇥19⇥2) 37.08% 29.65% 27.91% 26.84% 26.16% 25.55%
TR-ALS (R6⇥8⇥6⇥7⇥8⇥8⇥19⇥2) 33.45% 24.67% 20.72% 18.47% 16.92% 16.25%

TR-ALS (R2⇥3⇥2⇥4⇥2⇥3⇥7⇥8⇥8⇥19⇥2) 33.73% 25.08% 21.20% 18.97% 17.34% 16.34%
TR-ALS (R48⇥42⇥64⇥38) 30.36% 26.08% 23.74% 22.22% 21.48% 21.57%

Table 1: Completion error of 10% observed Extended YaleFace data via TT-ALS and TR-ALS under rank 5, 10, 15, 20, 25, 30.

Rank 10 15 20 25 30

TT-ALS 19.16% 14.83% 16.42% 16.86% 16.99%
TR-ALS 13.90% 10.12% 8.13% 6.88% 6.25%

Table 2: Completion error of 10% observed Video data via TT-ALS and TR-ALS under rank 10, 15, 20, 25, 30.
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Figure 3: YaleFace dataset is sub-sampled to formulate into a tensor of size 48 × 42 × 64 × 38, which is reshaped into a 8-order tensor

of size 6× 8× 6× 7× 8× 8× 19× 2 for tensor ring completion. 90% of the pixels are assumed to be randomly missing. From top to

bottom are original images, missing images, TR-ALS completed images with TR-Ranks 10, 20, 30, and TT-ALS completed images with

TT-Ranks 10, 20, 30.

Figure 4: Gun Shot is a video of size 100 × 260 × 3 × 80 download from Youtube, which is reshaped into a 11-order tensor of size

5×2×5×2×13×2×5×2×3×5×17 for tensor ring completion. 90% of the pixels are assumed to be randomly missing. (a) and (g)

are the first frame of the original video and missing video. (b)-(f) are the completed frame via TR-ALS using TR-Rank 10, 15, 20, 25, 30.

(h)-(l) are the completed frame via TT-ALS using TR-Rank 10, 15, 20, 25, 30.

completion results as compared to the TT-ALS algorithm.

5. Conclusion

We propose a novel algorithm for data completion using

tensor ring decomposition. This is the first paper on data

completion exploiting this structure which is a non-trivial

extension of the tensor train structure. Our algorithm ex-

ploits the matrix product state representation and uses alter-

nating minimization over the low rank factors for comple-

tion. The evaluation of the proposed approach on a variety

of datasets, including Einstein’s image, Extended YaleFace

Dataset B, and video completion demonstrates the signifi-

cant improvement of tensor ring completion as compared to

tensor train completion.

Deriving provable performance guarantees on tensor

completion using the proposed algorithm is left as further

work. In this context, the statistical machinery for prov-

ing analogous results for the matrix case [10, 8] can be used.
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