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Abstract

In this paper, we tackle the vehicle Re-identification

(ReID) problem which is of great importance in urban

surveillance and can be used for multiple applications. In

our vehicle ReID framework, an orientation invariant fea-

ture embedding module and a spatial-temporal regulariza-

tion module are proposed. With orientation invariant fea-

ture embedding, local region features of different orienta-

tions can be extracted based on 20 key point locations and

can be well aligned and combined. With spatial-temporal

regularization, the log-normal distribution is adopted to

model the spatial-temporal constraints and the retrieval re-

sults can be refined. Experiments are conducted on public

vehicle ReID datasets and our proposed method achieves

state-of-the-art performance. Investigations of the proposed

framework is conducted, including the landmark regressor

and comparisons with attention mechanism. Both the orien-

tation invariant feature embedding and the spatio-temporal

regularization achieve considerable improvements. 1 2 3

1. Introduction

In this paper, we target on the problem of vehicle re-

identification (ReID), which aims to identify all the images

of the same vehicle from a large gallery database. Such a

task is particularly useful when the car licence plate is oc-

cluded or cannot be seen clearly. Vehicle ReID methods can

be used in these scenarios to effectively locate vehicles of

interest from surveillance databases. They have extensive
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Figure 1. Difficulties of the problem of vehicle ReID. (a-b) Vehicle

image pairs that share quite similar overall appearances. They can

only be distinguished from local regions like the wheels in (a) and

the logos in (b). (c-d) Different faces of one vehicle may have dif-

ferent visibility, which results in difficulties in aligning the features

of different faces. In our proposed orientation invariant network,

visible faces such as the right faces in (c) and the back faces in (d)

are assigned with a larger weight in the final feature embedding

process. (e) Spatio-temporal constraints of a vehicle’s appearance

should be satisfied, e.g. around 39.66 seconds between A and B

and 44.33 seconds between B and C.

applications in intelligent surveillance and attract increas-

ing attention in recent years. Compared with the problem

of person ReID, which has been studied for years, vehicle

ReID is a recently proposed research topic. There exist spe-

cific characteristics and challenges for this problem.

Firstly, some specific regions in vehicle images are im-

portant for vehicle ReID. Different from person images,

which contain rich textures, the vehicles are generally solid-

colored and sometimes the color patterns between different

vehicles can be quite similar. For example, as shown in

Fig. 1 (a-b), the cars are all red and are difficult to dis-

tinguish based on their general appearances. The wheel re-

gions in (a) and the logo regions in (b) are keys to determine

whether those vehicles are the same ones. Most existing

1379



vehicle ReID approaches [8, 9, 17] focus on the whole im-

age and such subtle differences cannot be well taken into

account. In our proposed method, region features are calcu-

lated based on 20 vehicle key point locations. In this way,

vehicles with subtle differences can be well distinguished.

Secondly, there are always some key points not visible

for vehicle images in one view. If we simply consider a ve-

hicle as a cube with four sides, at most two of them could

be visible at each time. As shown in Fig. 1 (c), the same

car is captured in two views. The frontal face is invisible

in (c1) while the left face is invisible in (c2). It is simi-

lar for the bus shown in Fig. 1 (d). Therefore, comparing

whole-image features between vehicle images with differ-

ent views is generally not optimal. In our framework, the

20 key points are clustered into four sets based on their ori-

entations (front, back, left, and right), so that the key points

in each set share the same visibility (all visible or all invis-

ible). In order to distinguish the visible key point sets from

the invisible ones, an orientation based feature calculation

module is proposed in our framework. Different learnable

weights are assigned to different key point sets according

to the orientation of the input vehicle image. For instance,

large weights are assigned to the right face in (c), as well as

the back face in (d). In this way, the visible key points can

contribute more to the final decision while the influences of

invisible key points are weakened by lower weights. In ad-

dition, orientation invariant feature embedding is proposed

to transform the weighted region features into the final ori-

entation invariant feature vector.

Lastly, spatio-temporal constraints are also helpful for

vehicle ReID. As shown in Fig. 1 (e), if a car is observed

in camera (A), it is more likely to be observed in camera

(B) with a time delay around 39.66 seconds. In the pro-

posed approach, a conditional spatio-temporal distribution

is modeled to regularize the final ReID results.

The proposed framework is evaluated on two standard

vehicle ReID datasets, i.e. VeRi-776 [9] and VehicleID [8].

Our proposed framework outperforms state-of-the-art vehi-

cle ReID methods. It achieves a mAP of 0.514 on the Veri-

776 [9] dataset, 86% higher than the the best result (0.277)

in literature [9]. For the VehicleID [8] dataset, a Top-1 ac-

curacy of 67.0% can be achieved, which is 75% higher than

the the best result (38.2%) in literature [8].

The contribution of this work can be summarized as fol-

lows. 1) A deep learning framework is proposed for ve-

hicle ReID, which contains four main components. The

orientation-based region proposal module and feature ex-

traction module are proposed to capture vehicles’ region ap-

pearance information thus different vehicles showing simi-

lar overall appearances can be better distinguished. The ori-

entation invariant feature aggregation module is proposed

so that the region features of different views can be aligned

and combined. The spatio-temporal regularization module

is proposed to utilize spatio-temporal constraints to regular-

ize the final ReID results. 2) The proposed framework is

evaluated on two vehicle ReID datasets. Significant perfor-

mance improvements over existing methods are achieved.

3) Ablation study of the proposed framework is conducted

to investigate the effectiveness of its individual compoents,

which includes investigations on the key point regressor and

the comparisons with attention mechanism.

2. Related Work

Re-identification (ReID) is widely studied in computer

vision which has various important applications. Most ex-

isting ReID methods focused on the person ReID problem,

which aims to find target persons in a large gallery set given

probe images. Many hand-crafted features are proposed to

capture visual features for pedestrians [1,5,6,12,16,28]. Re-

cently, CNN-based features [2,21,22,27] have also achieved

great progress on person ReID.

Vehicle ReID is a newly proposed research topic and

has not received much attention. Recent works on vehi-

cle ReID mainly concentrate on building retrieval pipelines

and benchmarks. Liu et al. [9] released a high-quality

multi-viewed vehicle ReID dataset (named VeRi-776) with

776 vehicle identities, and proposed a progressive retrieval

pipeline by combining vehicle appearance features, li-

cense plates, and spatio-temporal information. Another

large surveillance-nature vehicle ReID dataset (VehicleID)

is proposed by Liu et al. [8], which contains more than

20,000 identities. The Coupled Clusters Loss (CCL) is

proposed for performance evaluation on this benchmark

dataset. However, all these approaches on vehicle ReID uti-

lize global appearance features of the input vehicle but do

not focus on specific local discriminative regions.

Fine-grained vehicle model classification is relevant

to vehicle ReID. Both tasks focus on learning discrimina-

tive feature representations for vehicle appearance. Yang et

al. [23] published a large scale dataset (CompCars) for fine-

grained vehicle model classification, which is the largest

vehicle model dataset. Dominik et al. [25] and Jakub et

al. [17] proposed to using 3D-boxes for aligning different

vehicle faces and three visible faces are used for accurate

feature extraction. However, this method may introduce

ambiguities when the three visible faces are different. In

our proposed method, the local feature extraction and ag-

gregation modules is used to solve this issue.

Object key point localization has many important ap-

plications, e.g., face alignment [14] and human pose estima-

tion [13, 20]. Key point-based face alignment is conducted

in most face recognition frameworks [15, 18]. Locations of

key points are helpful as the learned features can be well

aligned by the key points. However, vehicle key points are

not well studied in existing literature. Our proposed method

shows that vehicle key points can guide the learning and
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Figure 2. Illustration of the overall feature embedding pipeline,

which consists of (a) the orientation-based region proposal mod-

ule, (b) the orientation-based feature extraction module, and (c)

the orientation-invariant feature aggregation module.

alignment of local regions in input vehicle images and im-

prove the overall vehicle ReID performance.

3. Methodology

Our framework consists of two main components, the

orientation invariant feature embedding component and the

spatial-temporal regularization component. The pipeline of

the orientation invariant feature embedding component is

presented in Fig. 2, including three sub-modules, i.e. the

orientation-based region proposal module (Sec. 3.1), the

orientation-based feature extraction module (Sec. 3.2), and

the orientation invariant feature aggregation module (Sec.

3.3). Firstly, vehicle images are fed into the region pro-

posal module, which produces the response maps of 20 ve-

hicle key points. The key points are then clustered into four

orientation-based region proposal masks. Afterwards, the

original image together with the four region proposal masks

are utilized by the feature learning module to obtain one

global feature vector and four region feature vectors. Fi-

nally, these features are fused by the aggregation module

that outputs an orientation invariant feature vector. Besides

learning the above mentioned appearance feature represen-

tations, a regularization strategy (Sec. 3.4) is adopted by

modeling the spatio-temporal relations between the probe

and gallery images. Training details of the proposed frame-

work are introduced in Sec. 3.5.

3.1. Orientation-based Region Proposal

As shown in Fig. 2(a), a region proposal network is in-

troduced in this section, which contains two steps, i.e. vehi-

cle key point prediction and orientation-based region mask

generation. The proposed region proposal network takes

the image as input and estimates the vehicle key point lo-

cations. Four orientation-based region proposal masks are

then generated based on the key points.
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Figure 3. Illustration of the 20 selected vehicle key points. The 20

points are clustered into four sets based on their orientations, i.e.,

the front face, the back face, the left face and the right face.

The first step of the region proposal network is to predict

one response map for each vehicle key point. As listed in

Table. 1 and shown in Fig. 3, 20 key points are specified for

the vehicle ReID task. Instead of directly predicting bound-

ary points or corner points, these key points are chosen as

some discriminative locations or some main vehicle com-

ponents, e.g. the wheels, the lamps, the logos, the rear-view

mirrors, the license plates.

Inspired by the Stacked Hourglass Networks which gen-

erate response maps of human joints in a stacked coarse-to-

fine manner for human pose estimation [13], an hourglass-

like fully convolution network is adopted to generate ve-

hicle key point response maps. The key point regressor

takes the image as input and outputs one response map

Fi ∈ R
X×Y (i ∈ 1, ..., 20) for each of the 20 key points,

where X and Y are the horizontal and vertical dimensions

of the feature maps.

The target response maps have Gaussian-like responses

around the ground truth locations of key points and used as

training supervisions. However, the Hourglass model [13]

is computational expensive. Modifications to the network

are made to reduce model complexity and also preserve the

quality of output key point response maps. The input im-

age size, the number of framework stages and the chan-

nel numbers of convolution layers are all reduced for fast

computation. The per-pixel cross entropy loss between esti-

mated response maps and the ground truth maps is adopted

for training the network.

The second step of the region proposal network is

to generate four orientation-based region masks. As

introduced in Sec. 1, there are always some invisi-

ble regions for vehicles in specific orientations. To ad-

dress the issue of invisible key points and make full

use of the geometrical relationships among key points,

the 20 key points indexed in Table 1 are assigned to

four clusters, i.e., C1 = [5, 6, 7, 8, 9, 10, 13, 14], C2 =
[15, 16, 17, 18, 19, 20], C3 = [1, 2, 6, 8, 11, 14, 15, 17], and

C4 = [3, 4, 5, 7, 12, 13, 16, 18], corresponding to the key

points belonging to the vehicle’s front face, back face, left
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1 left-front wheel 11 left rear-view mirror

2 left-back wheel 12 right rear-view mirror

3 right-front wheel 13 right-front corner of vehicle top

4 right-back wheel 14 left-front corner of vehicle top

5 right fog lamp 15 left-back corner of vehicle top

6 left fog lamp 16 right-back corner of vehicle top

7 right headlight 17 left rear lamp

8 left headlight 18 right rear lamp

9 front auto logo 19 rear auto logo

10 front license plate 20 rear license plate

Table 1. Definition of the 20 selected vehicle key points.

(a)

(b)

(c)

Figure 4. Examples of the four output response masks of the ori-

entation based region proposal module. The input image and the

corresponding four region masks, i.e. R1 of front face, R2 of the

rear face, R3 of the left face and R4 of the right face, are shown

in each row, from left to right respectively. Features of invisible

faces, e.g., R2 of (a) and (c), and R1 of (b), generally have low re-

sponse masks. A feature aggregation method is adopted to reduce

their impact on the final feature vector.

face, and right face, respectively. The final output region

masks are computed as the summation of all the feature

maps belonging to each cluster, i.e.

Ri =
∑

l∈Ci

Fl, (i = 1, 2, 3, 4). (1)

Examples of the output region masks Ri are shown in Fig.

4. From the results, we can observe that visible region

masks generally have larger responses than the invisible

ones, which demonstrate that the learned key point local-

ization model not only estimates the key point locations but

also discriminates the visible key points from the invisible

ones. As the invisible region masks may not be suitable for

feature extraction, the orientation invariant feature aggrega-

tion is proposed in Sec. 3.2 to handle such problem.

3.2. Orientation-based Feature Extraction

In the feature extraction module, deep convolutional neu-

ral network (CNN) is adopted to obtain one feature vec-

tor from the whole vehicle image and four orientation-

related region feature vectors from the four corresponding

regions. The network structure is shown in Fig. 2 (b), which

contains two convolution stages, i.e. Stage-1, and Stage-

2. The global feature and local features are extracted in a

backbone-branch fashion.

In Stage-1, input images are resized to 192 × 192 and

convolved by three convolution layers and two inception

modules [19]. The output feature map is denoted as fC1
0

with spatio size 12 × 12. In Stage-2, f1
0 is assigned to

five branches, including one global branch and four local

region branches. For the global branch, the global feature

map f1
0 is convolved by one more inception module, and

results in a set of 6 × 6 feature maps. Then global aver-

age pooling is applied on these feature maps to obtain a

1536-dimensional global feature vector f2
0 . For each local

branch, the corresponding orientation-related region masks

Ri(i = 1, 2, 3, 4) is resized to the same size as f1
0 , and f1

0

is element-wisely multiplied by the region masks to obtain

the local feature maps, i.e. f1
i = f1

0 · Ri(i = 1, 2, 3, 4).
The results f1

i is further convolved by one more inception

module. Global max pooling is adopted since the maximum

responses are more suitable for guiding feature extraction

from local regions. Every region branch outputs a 1536-

dimensional feature vector f2
i (i = 1, 2, 3, 4).

3.3. Orientation Invariant Feature Aggregation

As shown in Fig. 2(c), the feature aggregation mod-

ule takes the five 1536-dimensional feature vectors, includ-

ing one global feature f2
0 and four local features f2

i , (i =
1, 2, 3, 4), as input and computes one 256-dimensional fea-

ture vector as output. In the aggregation module, the four lo-

cal feature vectors are first concatenated and passed through

a fully connected layer, yielding a set of scalars {ei}. Then

{ei} pass through the Softmax operator, producing a set of

weights {wi}, where
∑

i wi = 1, (i = 1, 2, 3, 4). The four

local feature vectors are weighted by {wi} and concatenated

together with the global feature vector f2
0 . The concatena-

tion result [f2
0 , w1f

2
1 , w2f

2
2 , w3f

2
3 , w4f

2
4 ]

T , is then fed into

a fully connected layer and the output dimension is reduced

to 256. The 256-dimensional feature vector is the final ag-

gregated feature vector of the whole image, including the

four local region features and one global region feature.

Examples in Fig. 5 demonstrates the effectiveness of the

proposed orientation invariant feature aggregation module.

Features of selected vehicle images in the VeRi-776 test set

are projected to 2-dimensional space using t-SNE [10] and

are visualized in Fig. 5(b). We can observe that features

of the same identity can be clustered together, no matter

which orientation the vehicle image is. Moreover, the input

vehicle images and the corresponding learned weights of

two clusters are shown in Figs. 5(a) and (c). For each image,

the weights are learned for the four side faces, i.e. front,

back, left, and right, and then the local features are fused

based on these weights. We can observe that visible face

are more likely to have higher weights than invisible ones.
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Figure 5. Illustration of the orientation invariant features with

t-SNE [10]. (a,c) The input images of two different vehicles

and their corresponding learned weights for different orientations,

where visible faces are more likely to have higher weights. (b) 2D

feature projections of selected vehicle images in the VeRi-776 test

set using t-SNE.

3.4. Regularization by spatio-temporal Modeling

In real-world scenarios, appearance features may not be

adequate enough to distinguish one vehicle from others, es-

pecially when the vehicles are of the same model without

personalized decorations. However, in surveillance appli-

cations, the location and time information of a vehicle is

easy to obtain. It is possible to refine vehicle search results

with the help of such spatio-temporal information.

In order to investigate whether the spatio-temporal con-

straints are effective for vehicle ReID, we analyze the vehi-

cle transition interval between pairs of cameras. For each

camera pair, the transition interval can be modeled as a

random variable that follows some probability distribution.

Due to the Gaussian-like and long tail property of the transi-

tion interval, the logarithmic normal distribution is adopted

to model this random variable. Given l and e as the leav-

ing and entering cameras, the conditional probability of the

transition interval τ between l and e can be estimated as the

log-normal distribution p(τ |l, e),

p(τ |l, e;µl,e, σl,e) = lnN (τ ;µl,e, σl,e)

=
1

τσl,e

√
2π

exp

[

− (ln τ − µl,e)
2

2σ2
l,e

]

, (2)

where µl,eandσl,e are the parameters to be estimated for

each camera pair (l, e). The model parameters can be esti-

mated by maximizing the following log-likelihood function,

L(τ |l, e;µl,e, σl,e) =
N
∏

n=1

(

1

τn

)

N (ln τn;µl,e, σl,e), (3)
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Figure 6. Illustration of the proposed spatio-temporal regulariza-

tion step. Images in the first row are the query image and the

top-5 retrieval results without spatio-temporal regularization. The

green box represents the correct hit while red ones denote non-

corresponding vehicles. The spatio-temporal distance Ds between

probe and gallery images are computed using the estimated log-

normal distribution. The gallery images are regularized, and the

results after regularization are shown in the bottom row.

where τn ∈ τ (n = 1, 2, 3, ..., N) is transition interval be-

tween camera pair (l, e) sampled from the training set, and

τ contains all the time interval samples between the two

cameras in the training set.

During the retrieval process, the appearance distance Da

is first computed via the proposed orientation-invariant fea-

ture aggregation framework. The spatio-temporal distance

Ds is then computed for regularization. As shown in Fig.

6, the transition time interval between two cameras (l, e)
can be computed as τ = |tl − te|, where tl, te are the ap-

pearance time of this vehicle at these two cameras. The

spatio-temporal probability can be computed as

p(τ |l, e;µl,e, σl,e) = lnN (τ ;µl,e, σl,e). (4)

High probabilities corresponds to small distances, thus

Ds = 1/(1 + e
α(p(τ |l,e;µl,e,σl,e)−0.5)). (5)

Finally the overall similarity distance between the probe and

gallery images are calculated as the weighted summation,

D = Da + βDs, (6)

where α is set to 2 and β is set to 0.1 in our experiments.

3.5. Training Scheme

An alternative training strategy is adopted to train the

proposed network, which include the following four steps.
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Figure 7. Datasets used for training the proposed model, including

(a) VeRi-776 [9], (b) VehicleID [8], (c) BoxCars21k [17],and (d)

CompCars [23].

(i) The backbone of Stage-1 and the global branch of Stage-

2 are trained from random initialization, by applying super-

vision to the global feature of full image region. (ii) With

Stage-1 fixed, the four orientation branches are trained with

parameters initialized as the global branch of Stage-2, since

the global branch and the orientation branches in Stage-2

share the same structure. The four branches are trained sep-

arately by giving the classification label as supervision. (iii)

With Stage-1 and all branches of Stage-2 fixed, the orienta-

tion invariant feature aggregation module is trained. (iv) Ini-

tializing all the modules with parameters learned from the

above steps, and all the parameters are jointly fine-tuned.

When training the model, existing vehicle datasets are used

and the cross-entropy classification loss is adopted.

4. Experiments

4.1. Datasets

Four existing vehicle datasets are used to train the pro-

posed orientation invariant network, including VeRi-776

[9], VehicleID [8], BoxCars21k [17], and CompCars [23].

VeRi-776 [9] is a benchmark dateset for vehicle ReID that is

collected from real-world surveillance scenarios, with over

50,000 images of 776 vehicles in total. VehicleID [8] is

a surveillance dataset, which contains 26,267 vehicles and

22,1763 images in total. BoxCars21k [17] is designed for

fine-grained vehicle make and model recognition. The im-

ages of BoxCars21k are ordered by identities thus can also

be used for vehicle ReID. This dataset contains 21,250 vehi-

cle identities and 63,750 images. CompCars [23] is also de-

signed for fine-grained vehicle model classification, which

consists of both web images and surveillance images. How-

ever, we only utilize its surveillance data for training. Im-

ages in this dataset are sorted by vehicle model and color

annotations are also provided. We can roughly regard ve-

hicles with specific model and specific color as a specific

Dataset #Trn ID/img #Prb ID/img #Gal ID/img

VeRi-776 [9] 576/30188 200/1678 200/11579

VehicleID [8] 13164/100182 2400/17638 2400/2400

BoxCars [17] 21250/63750 - / - - / -

CompCars [23] 1118/31148 - / - - / -

Table 2. Statistics of the four datasets used in our experiment. The

number of train identities and images, together with the number of

query and gallery identities and images are listed.

identity to train our ReID network.

We merge the training samples from VeRi-776 [9] and

VehicleID [8], together with all the samples from Box-

Cars21k [17] and CompCars [23] into one large training set

to train our orientation invariant network. The training set

contains around 225,268 images of 36,108 identities in to-

tal. Selected samples of these datasets are shown in Fig. 7

and the statistical information are listed in Table 2.

4.2. Evaluation results

The proposed framework is compared with two state-

of-the-art vehicle ReID approaches, i.e. PROVID [9] and

DRDL [8], together with several conventional person ReID

methods, i.e. Bag of Words with Color Name Descriptor

(BOW-CN) [28], the LOMO feature [6], and the KEPLER

method [11], which learns salient regions for construct-

ing discriminative features. Performance evaluation is con-

ducted on VeRi-776 [9] and VehicleID [8], and multiple

evaluation metrics are applied.

For the VeRi-776 dataset, cumulative match curve

(CMC) metric [3] is adopted for evaluation. For each iden-

tity, one image is random selected from all the gallery im-

ages to generate the gallery set, while the probe set remains

unchanged. The random selection procedure was repeated

for 100 times to obtain an average CMC result. The image-

to-track metric (HIT) introduced in [9] is also evaluated,

and there is no random gallery selection process for the HIT

evaluation. Mean average precision (mAP) is also adopt for

evaluation following [9].

For the VehicleID dataset, standard CMC metric is

adopted with random gallery selection. Only the Large test

set of VehicleID is evaluated since it is the most challenging

set. During testing, one image is randomly selected from

one identity to obtain a gallery set with 2,400 images, then

the remaining 17,638 images are all used as probe images.

Evaluation results on both datasets are listed in Table

3. The proposed approach achieves the best performance

on both datasets, which is much better than the compared

methods. Three experiments are conducted to demonstrate

the effectiveness of the proposed main modules. Firstly,

a baseline single-branch appearance model (“Baseline”) is

evaluated to investigate the performance of our proposed

network. Significant performance gain can be observed
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VeRi-776 mAP HIT@1 CMC@1 CMC@5

BOW-CN [28] 12.20 33.9 - -

LOMO [6] 9.64 25.3 - -

KEPLER [11] 33.53 68.7 48.2 64.3

PROVID [9] 27.77 61.4 - -

Baseline 45.50 88.66 62.8 86.7

Ours 48.00 89.43 65.9 87.7

Ours + ST 51.42 92.35 68.3 89.7

VehicleID CMC@1 CMC@5

KEPLER [11] 45.4 68.9

VGG + Triplet Loss [8] 31.9 50.3

VGG + CCL [8] 32.9 53.3

Mixed Diff + CCL [8] 38.2 61.6

Baseline 63.2 80.6

Ours 67.0 82.9

Table 3. Experiment results of the proposed method and other

compared methods on the VeRi-776 dataset and VehicleID dataset.

Multiple evaluation criteria are adopted, including mAP, HIT ac-

curacy, and CMC accuracy. “Baseline” refers to our single main-

branch model without region features, “Ours” denotes the pro-

posed orientation invariant network, and “Ours+ST” indicates the

overall pipeline with the proposed spatio-temporal regularization

model.

compared with other methods. Secondly, the proposed ori-

entation invariant network (“Ours”) is tested by using the

proposed orientation invariant appearance features. Region

features are introduced and the performance can be fur-

ther improved. Finally, the overall framework (“Ours+ST”)

is evaluated by adding the spatio-temporal regularization

module. This experiment is only conducted on VeRi-776

since no spatio-temporal information is provided on Vehi-

cleID. Experimental result demonstrates that the regulariza-

tion module results in significant improvements.

Note that the HIT@1 results of the proposed method

in Table 3 outperform existing methods by large margins.

This is because the HIT@1 metric is based on image-to-

track search, and all gallery images (which contain multiple

ground truth results) are searched to identify the probe iden-

tity. If there exists one gallery image of this identity that

shares similar orientation as the probe image, such gallery

images can be easily found. In this case, CMC should be

a more proper metric for vehicle ReID evaluation, since the

image-to-track search may always obtain search results with

similar orientation as the probe image.

5. Ablation Study

5.1. Investigations on the Key point Regressor

In this section, the proposed key point regressor is thor-

oughly investigated, in terms of the regression accuracy and

relationship between landmarks and orientations. In order

to train and evaluate the key point regressor, locations of

Models r0 = 5 r0 = 3

L2-Loss 90.50 87.4

Cross-Entropy Loss 92.05 88.8

Table 4. Evaluation results of the landmark regressor.

(a) (b)

Figure 8. (a) Annotation examples. (b) Regression results.

20 key points are annotated manually on the images of the

whole VeRi-776 [9] dataset and some annotation results are

shown in Fig. 8 (a). During the testing stage, response maps

of the testing images are extracted and the key points are

predicted as the locations with maximum response value. If

the distance between the regressed landmark location and

the ground truth location is smaller than a threshold r0, this

key point is considered as correctly predicted, otherwise the

key point is wrongly predicted. Invisible key points are ig-

nored in the evaluation step since they are expected to be

handled by the proposed orientation invariant module. The

prediction accuracy of visible key points are listed in Table

4, and two loss functions are adopted to train the landmark

model. We can observe that 88.8% key points can be cor-

rectly predicted within r0 = 3 pixels to the ground truth

(the final response map is of size 48× 48). Some key point

prediction results are shown in Fig. 8 (b).

Investigations are also conducted on the relationship be-

tween key point locations and orientation classes. Since

no orientation information is provided for the VeRi-776

dataset, four orientations, i.e. front, back, left, right, are

manually annotated for the VeRi-776 dataset. With the an-

notated training images, a vehicle orientation classifier is

trained by using the 20 landmark response maps as input.

The trained classifier yields a 93.2% accuracy on the testing

images, which demonstrates our key point response maps

contain sufficient information to infer vehicles’ orientation.

It also validates that clustering landmarks by orientation

is reasonable in the proposed orientation-based region pro-

posal module.

5.2. Comparison with Attention Mechanism

Besides the proposed orientation-based region proposal

module, attention mechanism is another possible way to se-

lect the salience regions and to obtain local region features.

Experiments are conducted to compare the soft attention

mechanism and the proposed orientation based region pro-

posal framework.

We follow the standard strategy as [24] to implement the
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(a)

(b)

Figure 9. Comparison between the learned salience masks by the

attention mechanism (in red boxes) and the orientation based re-

gion proposals (in green boxes).

attention module. 1 × 1 convolution layers are employed

to produce salience masks from the input feature maps. For

these salience masks, locations with larger value represent

salience regions that are useful for feature extraction. The

salience masks are then passed through a sigmoid nonlinear

unit, yielding values in the range (0, 1). Finally, element-

wise multiplication is applied between the input feature

maps and the salience mask to output the local feature maps

of the salience regions.

The compared attention network is similar with the pro-

posed pipeline in terms of network architecture. The only

difference is that the 4 orientation-based region proposals

are replaced with N attention masks. The attention module

takes the feature maps f1
0 as input and output N attention

masks. Experiments are conducted by setting the number

of attention mask N = 2, 4, 8 for comparison and CMC

results are reported in Table 5.

The compared attention network and the proposed orien-

tation invariant network is different. In attention network,

the salience regions are learned by the attention module

automatically, while in our proposed network the region

masks are defined based on orientation information (four

side faces of the vehicle with different landmark points) and

the landmarks are regressed by the trained landmark regres-

sor.

The orientation based region proposals and the salience

masks learned by the attention modules are visualized in

Fig. 9, which are also different. Attention masks are rea-

sonable but not stable, i.e., different attention blocks may

provide quite similar salience masks (the first and the last

mask in Fig. 9(b)). However, our orientation based region

proposals is much more stable, because they are designed

to focus on different faces. Experimental results in Table 5

also demonstrate that the orientation based region proposals

outperform attention mechanism.

Models VeRi-CMC@1 VehicleID-CMC@1

attention-2branch 63.6 64.3

attention-4branch 64.8 65.6

attention-8branch 62.7 63.8

Ours 65.9 66.6

Table 5. Quantitative results by replacing orientation based region

proposal with attention masks.

Models VeRi-CMC@1 VID-CMC@1

base 88.66 63.2

global+KISSME [4] 89.02 63.5

global+MLAPG [7] 87.89 63.1

global+Zhang et al. [26] 89.11 63.8

final 89.43 67.7

final+KISSME [4] 89.75 67.8

final+MLAPG [7] 88.89 67.1

final+Zhang et al. [26] 90.05 68.0

Table 6. Experimental results with and without metric learning.

The first group of experiments are based on our global features

while the second group are based on our global + local features

5.3. Metric Learning Methods

In person Re-ID methods, metric learning is usually uti-

lized to refine the final search results. In this section, we

tested some popular metric learning methods utilized in per-

son Re-ID methods, including KISSME [4], MLAPG [7]

and Zhang et al. [26]. We utilized the three metric learn-

ing algorithms on features extracted from both our baseline

model (global feature) and final model (global + local fea-

ture) and conducted two groups of experiments. The results

on both the VeRi and VehicleID (VID) datasets are listed in

Table 6:

As show in the table, metric learning methods do lead

to additional performance gain based on our features. Note

that in the second group of experiments performance gains

by metric learning methods are smaller, which suggest that

our global+local features are more discriminative than the

global ones.

6. Conclusion

In this paper, a novel framework is proposed for ve-

hicle ReID, which consists of two main components, i.e.

the orientation invariant feature embedding and the spatial-

temporal regularization. Local region features are extracted

based on the locations of key points. Th features are aligned

and combined to form orientation invariant feature repre-

sentations. Spatio temporal regularization is adopted for re-

fining the retrieval results. The proposed framework is eval-

uated on two public vehicle ReID datasets and state-of-the-

art performance is achieved. Detailed investigations of the

proposed methods are conducted in terms of the landmark

regressor and the comparisons with attention mechanism.
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