This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Transitive Invariance for Self-supervised Visual Representation Learning

Xiaolong Wang!

!Carnegie Mellon University

Abstract

Learning visual representations with self-supervised
learning has become popular in computer vision. The idea
is to design auxiliary tasks where labels are free to obtain.
Most of these tasks end up providing data to learn specific
kinds of invariance useful for recognition. In this paper,
we propose to exploit different self-supervised approaches
to learn representations invariant to (i) inter-instance vari-
ations (two objects in the same class should have similar
features) and (ii) intra-instance variations (viewpoint, pose,
deformations, illumination, etc.). Instead of combining two
approaches with multi-task learning, we argue to organize
and reason the data with multiple variations. Specifically,
we propose to generate a graph with millions of objects
mined from hundreds of thousands of videos. The objects
are connected by two types of edges which correspond to
two types of invariance: “different instances but a simi-
lar viewpoint and category” and “different viewpoints of
the same instance”. By applying simple transitivity on the
graph with these edges, we can obtain pairs of images ex-
hibiting richer visual invariance. We use this data to train
a Triplet-Siamese network with VGG16 as the base archi-
tecture and apply the learned representations to different
recognition tasks. For object detection, we achieve 63.2%
mAP on PASCAL VOC 2007 using Fast R-CNN (compare
to 67.3% with ImageNet pre-training). For the challenging
COCO dataset, our method is surprisingly close (23.5%)
to the ImageNet-supervised counterpart (24.4%) using the
Faster R-CNN framework. We also show that our network
can perform significantly better than the ImageNet network
in the surface normal estimation task.

1. Introduction

Visual invariance is a core issue in learning visual rep-
resentations. Traditional features like SIFT [36] and HOG
[6] are histograms of edges that are to an extent invariant to
illumination, orientations, scales, and translations. Modern
deep representations are capable of learning high-level in-
variance from large-scale data [42] , e.g., viewpoint, pose,
deformation, and semantics. These can also be transferred

Kaiming He?

Abhinav Gupta®
2Facebook Al Research

Inter-instance
Invariance

Intra-instance
Invariance

Intra-instance
Invariance

Transitive
Invariance

A N <--------- > . B
More Examples: Tracked Tracked
)) racke racke

ObjectA Object B (e A’ Object B

Figure 1: We propose to obtain rich invariance by apply-
ing simple transitive relations. In this example, two differ-
ent cars A and B are linked by the features that are good
for inter-instance invariance (e.g., using [9]); and each car
is linked to another view (A’ and B’) by visual tracking
[56]. Then we can obtain new invariance from object pairs
(A,B"), (A',B), and (A’, B’) via transitivity. We show
more examples in the bottom.

to complicated visual recognition tasks [17, 35].

In the scheme of supervised learning, human annotations
that map a variety of examples into a single label provide
supervision for learning invariant representations. For ex-
ample, two horses with different illumination, poses, and
breeds are invariantly annotated as a category of “horse”.
Such human knowledge on invariance is expected to be
learned by capable deep neural networks [30, 27] through

1329

carefully annotated data. However, large-scale, high-quality
annotations come at a cost of expensive human effort.

Unsupervised or “self-supervised” learning (e.g., [56, 9,

, 57,58, 32, 39]) recently has attracted increasing inter-
ests because the “labels” are free to obtain. Unlike super-
vised learning that learns invariance from the semantic la-
bels, the self-supervised learning scheme mines it from the
nature of the data. We observe that most self-supervised
approaches learn representations that are invariant to: (i)
inter-instance variations, which reflects the commonality
among different instances. For example, relative positions
of patches [9] (see also Figure 3) or channels of colors
[57, 58] can be predicted through the commonality shared
by many object instances; (ii) intra-instance variations.
Intra-instance invariance is learned from the pose, view-
point, and illumination changes by tracking a single mov-
ing instance in videos [56, 39]. However, either source of
invariance can be as rich as that provided by human annota-
tions on large-scale datasets like ImageNet.

Even after significant advances in the field of self-
supervised learning, there is still a long way to go compared
to supervised learning. What should be the next steps? It
seems that an obvious way is to obtain multiple sources
of invariance by combining multiple self-supervised tasks,
e.g., via multiple losses. Unfortunately, this naive solution
turns out to give little improvement (as we will show by
experiments).

We argue that the trick lies not in the tasks but in the way
of exploiting data. To leverage both intra-instance and inter-
instance invariance, in this paper we construct a huge affin-
ity graph consisting of two types of edges (see Figure 1):
the first type of edges relates “different instances of similar
viewpoints/poses and potentially the same category”, and
the second type of edges relates “different viewpoints/poses
of an identical instance”. We instantiate the first type of
edges by learning commonalities across instances via the
approach of [9], and the second type by unsupervised track-
ing of objects in videos [56]. We set up simple transitive re-
lations on this graph to infer more complex invariance from
the data, which are then used to train a Triplet-Siamese net-
work for learning visual representations.

Experiments show that our representations learned with-
out any annotations can be well transferred to the object
detection task. Specifically, we achieve 63.2% mAP with
VGGI16 [45] when fine-tuning Fast R-CNN on VOC2007,
against the ImageNet pre-training baseline of 67.3%. More
importantly, we also report the first-ever result of un-/self-
supervised pre-training models fine-tuned on the challeng-
ing COCO object detection dataset [34], achieving 23.5%
AP comparing against 24.4% AP that is fine-tuned from an
ImageNet pre-trained counterpart (both using VGG16). To
our knowledge, this is the closest accuracy to the ImageNet
pre-training counterpart obtained on object detection tasks.

2. Related Work

Unsupervised learning of visual representations is a re-
search area of particular interest. Approaches to unsuper-
vised learning can be roughly categorized into two main
streams: (i) generative models, and (ii) self-supervised
learning. Earlier methods for generative models include
Anto-Encoders [38, 51, 31, 29] and Restricted Boltzmann
Machines (RBMs) [23, 4, 49, 12]. For example, Le et
al. [29] trained a multi-layer auto-encoder on a large-scale
dataset of YouTube videos: although no label is provided,
some neurons in high-level layers can recognize cats and
human faces. Recent generative models such as Generative
Adversarial Networks [20] and Variational Auto-Encoders
[26] are capable of generating more realistic images. The
generated examples or the neural networks that learn to gen-
erate examples can be exploited to learn representations of
data [11, 10].

Self-supervised learning is another popular stream for
learning invariant features. Visual invariance can be cap-
tured by the same instance/scene taken in a sequence of
video frames [56, 48, 25, 1, 37, 52, 32, 39]. For example,
Wang and Gupta [56] leverage tracking of objects in videos
to learn visual invariance within individual objects; Jayara-
man and Grauman [25] train a Siamese network to model
the ego-motion between two frames in a scene; Mathieu et
al. [37] propose to learn representations by predicting fu-
ture frames; Pathak et al. [39] train a network to segment
the foreground objects where are acquired via motion cues.
On the other hand, common characteristics of different ob-
ject instances can also be mined from data [9, 57, 58]. For
example, relative positions of image patches [9] may reflect
feasible spatial layouts of objects; possible colors can be in-
ferred [57, 58] if the networks can relate colors to object ap-
pearances. Rather than rely on temporal changes in video,
these methods are able to exploit still images.

Our work is also closely related to mid-level patch clus-
tering [46, 7, 8] and unsupervised discovery of semantic
classes [43, 47] as we attempt to find reliable clusters in
our affinity graph. In addition, the ranking function used in
this paper is related to deep metric learning with Siamese
architectures [5, 21, 19, 54, 24].

Analysis of the two types of invariance. Our generic
framework can be instantiated by any two self-supervised
methods that can respectively learn inter-/intra-instance in-
variance. In this paper we adopt Doersch et al.’s [9] con-
text prediction method to build inter-instance invariance,
and Wang and Gupta’s [56] tracking method to build intra-
instance invariance. We analyze their behaviors as follows.

The context prediction task in [9] randomly samples a
patch (blue in Figure 3) and one of its eight neighbors (red),
and trains the network to predict their relative position, de-
fined as an 8-way classification problem. In the first two

1330

—— intra-instance edge
—— inter-instance edge

I
\ parent y
\
Cluster *
N S~-27 child N /
-
S _ Ne~=-" .

-— cluster --

Figure 2: Illustrations for our graph construction. We
first cluster the object nodes into coarser clusters (namely
“parent” clusters) and then inside each cluster we perform
nearest-neighbor search to obtain “child” clusters consist-
ing of 4 samples. Samples in each child cluster are linked
to each other with the “inter-instance” edges. We add new
samples via visual tracking and link them to the original
objects by “intra-instance” edges.

examples in Figure 3, the context prediction model is able
to predict that the “leg” patch is below the “face” patch of
the cat, indicating that the model has learned some com-
monality of spatial layout from the training data. However,
the model would fail if the pose, viewpoint, or deforma-
tion of the object is changed drastically, e.g., in the third
example of Figure 3 — unless the dataset is diversified and
large enough to include gradually changing poses, it is hard
for the models to learn that the changed pose can be of the
same object type.

On the other hand, these changes can be more success-
fully captured by the visual tracking method presented in
[56], e.g., see (A, A’) and (B, B’) in Figure 1. But by
tracking an identical instance we cannot associate different
instances of the same semantics. Thus we expect the rep-
resentations learned in [56] are weak in handling the varia-
tions between different objects in the same category.

3. Overview

Our goal is to learn visual representations which cap-
ture: (i) inter-instance invariance (e.g., two instances of cats
should have similar features), and (ii) intra-instance invari-
ance (pose, viewpoint, deformation, illumination, and other
variance of the same object instance). We have tried to for-
mulate this as a multi-task (multi-loss) learning problem in
our initial experiments (detailed in Table 2 and 3) and ob-
served unsatisfactory performance. Instead of doing so, we
propose to obtain a richer set of invariance by performing
transitive reasoning on the data.

Our first step is to construct a graph that describes the
affinity among image patches. A node in the graph denotes
an image patch. We define two types of edges in the graph

X=(F"
Figure 3: The context prediction task defined in [9]. Given

two patches in an image, it learns to predict the relative po-
sition between them.

that relate image patches to each other. The first type of
edges, called inter-instance edges, link two nodes which
correspond to different object instances of similar visual ap-
pearance; the second type of edges, called intra-instance
edges, link two nodes which correspond to an identical ob-
ject captured at different time steps of a track. The solid
arrows in Figure 1 illustrate these two types of edges.

Given the built graph, we want to transit the relations via
the known edges and associate unconnected nodes that may
provide under-explored invariance (Figure 1, dash arrows).
Specifically, as shown in Figure 1, if patches (A, B) are
linked via an inter-instance edge and (A, A’) and (B, B’)
respectively are linked via “intra-instance” edges, we hope
to enrich the invariance by simple transitivity and relate
three new pairs of: (4’, B"), (A, B’), and (A, B) (Figure 1,
dash arrows).

We train a Triplet-Siamese network that encourages sim-
ilar visual representations between the invariant samples
(e.g., any pair consisting of A, A’, B, B") and at the same
time discourages similar visual representations to a third
distractor sample (e.g., a random sample C' unconnected
to A, A’,B,B’). In all of our experiments, we apply
VGG16 [45] as the backbone architecture for each branch
of this Triplet-Siamese network. The visual representations
learned by this backbone architecture are evaluated on other
recognition tasks.

4. Graph Construction

We construct a graph with inter-instance and intra-
instance edges. Firstly, we apply the method of [56] on
a large set of 100K unlabeled videos (introduced in [56])
and mine millions of moving objects using motion cues
(Sec. 4.1). We use the image patches of them to construct
the nodes of the graph.

We instantiate inter-instance edges by the self-
supervised method of [9] that learns context predictions on
a large set of still images, which provide features to cluster
the nodes and set up inter-instance edges (Sec. 4.2). On the
other hand, we connect the image patches in the same visual
track by intra-instance edges (Sec. 4.3).

1331

Figure 4: Some example clustering results. Each row shows
the 4 examples in a child cluster (Sec. 4.2).

4.1. Mining Moving Objects

We follow the approach in [56] to find the moving ob-
jects in videos. As a brief introduction, this method first ap-
plies Improved Dense Trajectories (IDT) [53] on videos to
extract SURF [2] feature points and their motion. The video
frames are then pruned if there is too much motion (indicat-
ing camera motion) or too little motion (e.g., noisy signals).
For the remaining frames, it crop a 227 x227 bounding box
(from ~600x400 images) which includes the most number
of moving points as the foreground object. However, for
computational efficiency, in this paper we rescale the image
patches to 96 x 96 after cropping and we use them as inputs
for clustering and training.

4.2. Inter-instance Edges via Clustering

Given the extracted image patches which act as nodes,
we want to link them with extra inter-instance edges. We
rely on the visual representations learned from [9] to do this.
We connect the nodes representing image patches which are
close in the feature space. In addition, motivated by the
mid-level clustering approaches [46, 7], we want to obtain
millions of object clusters with a small number of objects in
each to maintain high “purity” of the clusters. We describe
the implementation details of this step as follows.

We extract the pool5 features of the VGG16 network
trained as in [9]. Following [9], we use ImageNet without
labels to train this network. Note that because we use a
patch size of 96x96, the dimension of our pool5 feature
is 3x3x512=4608. The distance between samples is cal-
culated by the cosine distance of these features. We want
the object patches in each cluster to be close to each other
in the feature space, and we care less about the differences
between clusters. However, directly clustering millions of
image patches into millions of small clusters (e.g., by K-

means) is time consuming. So we apply a hierarchical clus-
tering approach (2-stage in this paper) where we first group
the images into a relatively small number of clusters, and
then find groups of small number of examples inside each
cluster via nearest-neighbor search.

Specifically, in the first stage of clustering, we apply K-
means clustering with K = 5000 on the image patches. We
then remove the clusters with number of examples less than
100 (this reduces K to 546 in our experiments on the im-
age patches mined from the video dataset). We view these
clusters as the “parent” clusters (blue circles in Figure 2).
Then in the second stage of clustering, inside each parent
cluster, we perform nearest-neighbor search for each sam-
ple and obtain its top 10 nearest neighbors in the feature
space. We then find any group of samples with a group size
of 4, inside which all the samples are each other’s top-10
nearest neighbors. We call these small clusters with 4 sam-
ples “child” clusters (green circles in Figure 2). We then
link these image patches with each other inside a child clus-
ter via “inter-instance” edges. Note that different child clus-
ters may overlap, i.e., we allow the same sample to appear
in different groups. However, in our experiments we find
that most samples appear only in one group. We show some
results of clustering in Figure 4.

4.3. Intra-instance Edges via Tracking

To obtain rich variations of viewpoint and deformation
changes of the same object instance, we apply visual track-
ing on the mined moving objects in the videos as in [56].
More specifically, given a moving object in the video, it ap-
plies KCF [22] to track the object for N = 30 frames and
obtain another sample of the object in the end of the track.
Note that the KCF tracker does not require any human su-
pervision. We add these new objects as nodes to the graph
and link the two samples in the same track with an intra-
instance edge (purple in Figure 2).

5. Learning with Transitions in the Graph

With the graph constructed, we want to link more image
patches (see dotted links in Figure 1) which may be related
via the transitivity of invariance. Objects subject to differ-
ent levels of invariance can thus be related to each other.
Specifically, if we have a set of nodes { A, B, A’, B’} where
(A, B) are connected by an inter-instance edge and (A4, A’)
and (B, B’) are connected by an intra-instance edge, by as-
suming transitivity of invariance we expect the new pairs of
(A, B"), (A, B), and (A’, B’) to share similar high-level
visual representations. Some examples are illustrated in
Figure 1 and 5.

We train a deep neural network (VGG16) to gener-
ates similar visual representations if the image patches are
linked by inter-instance/intra-instance edges or their transi-
tivity (which we call a positive pair of samples). To avoid a

1332

e . ‘ ‘ = :
o .‘ ﬁ%ﬁ;
Tracked g 1
Object A N/ P

\ S i
Tracked ; i
Object B g 0)

“ ol o8 L :

Figure 5: Examples used for training the network. Each
column shows a set of image patches {A, B, A’, B'}. Here,
A and B is linked by an inter-instance edge, and A'/B’ is
linked to A/B via intra-instance edges.

2 conv

(A,4,C) (A4B,0) 2 conv

; 4096 1024
3conv 3 cony

4 l)
sharing
~
1)
| I , o
sharing
—

Figure 6: Our Triplet-Siamese network. We can feed in the
network with different combinations of examples.

trivial solution of identical representations, we also encour-
age the network to generate dissimilar representations if a
node is expected to be unrelated. Specifically, we constrain
the image patches from different “parent” clusters (which
are more likely to have different categories) to have differ-
ent representations (which we call a negative pair of sam-
ples). We design a Triplet-Siamese network with a ranking
loss function [54, 56] such that the distance between related
samples should be smaller than the distance of unrelated
samples.

Our Triplet-Siamese network includes three towers of
a ConvNet with shared weights (Figure 6). For each
tower, we adopt the standard VGG16 architecture [45] to
the convolutional layers, after which we add two fully-
connected layers with 4096-d and 1024-d outputs. The
Triplet-Siamese network accepts a triplet sample as its in-
put: the first two image patches in the triplet are a positive
pair, and the last two are a negative pair. We extract their
1024-d features and calculate the ranking loss as follows.

Given an arbitrary pair of image patches A and B, we de-

i : — F(A) F(B)
fine their distance as: D(A,B) =1 — TEATTE®T

F'(+) is the representation mapping of the network. With a
triplet of (X, X, X~) where (X, X 1) is a positive pair
and (X, X) is a negative pair as defined above, we mini-
mize the ranking loss:

where

L(X, X", X7) =max{0,D(X,XT)=D(X,X) +m},

where m is a margin set as 0.5 in our experiments. Al-
though we have only one objective function, we have dif-
ferent types of training examples. As illustrated in Figure
6, given the set of related samples {4, B, A’, B’} (see Fig-
ure 5) and a random distractor sample C' from another par-
ent cluster, we can train the network to handle, e.g., view-
point invariance for the same instance via £(A4, A’, C) and
invariance to different objects sharing the same semantics
via L(A, B, C).

Besides exploring these relations, we have also tried to
enforce the distance between different objects to be larger
than the distance between two different viewpoints of the
same object, e.g., D(A, A") < D(A, B’). But we have not
found this extra relation brings any improvement. Inter-
estingly, we found that the representations learned by our
method can in general satisfy D(A, A’) < D(A, B’) after
training.

6. Experiments

We perform extensive analysis on our self-supervised
representations. We first evaluate our ConvNet as a fea-
ture extractor on different tasks without fine-tuning . We
then show the results of transferring the representations to
vision tasks including object detection and surface normal
estimation with fine-tuning.

Implementation Details. To prepare the data for train-
ing, we download the 100K videos from YouTube using the
URLSs provided by [33, 56]. By mining the moving objects
and tracking in the videos, we obtain ~10 million image
patches of objects. By applying the transitivity on the graph
constructed, we obtain 7 million positive pairs of objects
where each pair of objects are two different instances with
different viewpoints. We also randomly sample 2 million
object pairs connected by the intra-instance edges.

We train our network with these 9 million pairs of images
using a learning rate of 0.001 and a mini-batch size of 100.
For each pair we sample the third distractor patch from a
different “parent cluster” in the same mini-batch. We use
the network pre-trained in [9] to initialize our convolutional
layers and randomly initialized the fully connected layers.
We train the network for 200K iterations with our method.

6.1. Qualitative Results without Fine-tuning

We first perform nearest-neighbor search to show qual-
itative results. We adopt the pool5 feature of the VGG16

1333

Query (a) Context Prediction Network

(b) Our Network

(c) ImageNet Pre-trained Netwo

Figure 7: Nearest-neighbor search on the PASCAL VOC dataset. We extract three types of features: (a) context prediction
network from [9], (b) network trained with our self-supervised method, and (c) the network pre-trained in the annotated
ImageNet dataset. We show that our network can represent a greater variety (e.g., viewpoints) of objects of the same category.

Figure 8: Top 6 responses for neurons in 4 different convo-
lutional units of our network, visualized using [59].

network for all methods without any fine-tuning (Figure 7).
We do this experiment on the object instances cropped from
the PASCAL VOC 2007 dataset [13] (trainval). As Fig-
ure 7 shows, given an query image on the left, the network
pre-trained with the context prediction task [9] can retrieve
objects of very similar viewpoints. On the other hand, our
network shows more variations of objects and can often re-
trieve objects with the same class as the query. We also
show the nearest-neighbor results using fully-supervised
ImageNet pre-trained features as a comparison.

We also visualize the features using the visualization
technique of [59]. For each convolutional unit in conv5_3,
we retrieve the objects which give highest activation re-
sponses and highlight the receptive fields on the images. We
visualize the top 6 images for 4 different convolutional units
in Figure 8. We can see these convolutional units are cor-
responding to different semantic object parts (e.g., fronts of
cars or buses wheels, animal legs, eyes or faces).

6.2. Analysis on Object Detection

We evaluate how well our representations can be trans-
ferred to object detection by fine-tuning Fast R-CNN
[16] on PASCAL VOC 2007 [13]. We use the standard
trainval set for training and test set for testing with
VGG16 as the base architecture. For the detection network,
we initialize the weights of convolutional layers from our
self-supervised network and randomly initialize the fully-
connected layers using Gaussian noise with zero mean and
0.001 standard deviation.

During fine-tuning Fast R-CNN, we use 0.00025 as the
starting learning rate. We reduce the learning rate by 1/10
in every 50K iterations. We fine-tune the network for 150K
iterations. Unlike standard Fast R-CNN where the first few
convolutional layers of the ImageNet pre-trained network
are fixed, we fine-tuned all layers on the PASCAL data as
our model is pre-trained in a very different domain (e.g.,
video patches).

We report the results in Table 1. If we train Fast R-
CNN from scratch without any pre-training, we can only
obtain 39.7% mAP. With our self-supervised trained net-
work as initialization, the detection mAP is increased to
63.2% (with a 23.5 points improvement). Our result com-
pares competitively (4.1 points lower) to the counterpart us-
ing ImageNet pre-training (67.3% with VGG16).

As we incorporate the invariance captured from [56] and
[9], we also evaluate the results using these two approaches
individually (Table 1). By fine-tuning the context predic-
tion network of [9], we can obtain 61.5% mAP. To train
the network of [56], we use exactly the same loss function
and initialization as our approach except that there are only
training examples of the same instance in the same visual
track (i.e., only the samples linked by intra-instance edges
in our graph). Its results is 60.2% mAP. Our result (63.2%)

1334

