
Coordinating Filters for Faster Deep Neural Networks

Wei Wen

University of Pittsburgh

wew57@pitt.edu

Cong Xu

Hewlett Packard Labs

cong.xu@hpe.com

Chunpeng Wu

University of Pittsburgh

chw127@pitt.edu

Yandan Wang

University of Pittsburgh

yaw46@pitt.edu

Yiran Chen

Duke University

yiran.chen@duke.edu

Hai Li

Duke University

hai.li@duke.edu

Abstract

Very large-scale Deep Neural Networks (DNNs) have

achieved remarkable successes in a large variety of com-

puter vision tasks. However, the high computation intensity

of DNNs makes it challenging to deploy these models on

resource-limited systems. Some studies used low-rank ap-

proaches that approximate the filters by low-rank basis to

accelerate the testing. Those works directly decomposed

the pre-trained DNNs by Low-Rank Approximations (LRA).

How to train DNNs toward lower-rank space for more ef-

ficient DNNs, however, remains as an open area. To solve

the issue, in this work, we propose Force Regularization,

which uses attractive forces to enforce filters so as to coor-

dinate more weight information into lower-rank space1. We

mathematically and empirically verify that after applying

our technique, standard LRA methods can reconstruct filters

using much lower basis and thus result in faster DNNs. The

effectiveness of our approach is comprehensively evaluated

in ResNets, AlexNet, and GoogLeNet. In AlexNet, for ex-

ample, Force Regularization gains 2× speedup on modern

GPU without accuracy loss and 4.05× speedup on CPU by

paying small accuracy degradation. Moreover, Force Reg-

ularization better initializes the low-rank DNNs such that

the fine-tuning can converge faster toward higher accuracy.

The obtained lower-rank DNNs can be further sparsified,

proving that Force Regularization can be integrated with

state-of-the-art sparsity-based acceleration methods.

1. Introduction

Deep Neural Networks (DNNs) have achieved record-

breaking accuracy in many image classification tasks [16]

[24][25][10]. With the advances of algorithms, availabil-

ity of database, and improvement in hardware performance,

1The source code is available in https://github.com/

wenwei202/caffe

Figure 1. The low-rank basis of filters in the first layer of the con-

volutional neural network [16] on CIFAR-10. The low-rank basis

is formed by the most significant principal filters that are obtained

by PCA. Top: the low-rank basis of the original network. Bottom:

the low-rank basis of the same network after applying Force Reg-

ularization. The number of red boxes indicates the required rank

to reconstruct the original filters with ≤ 20% error.

the depth of DNNs grows dramatically from a few to hun-

dreds or even thousands of layers, enabling human-level

performance [9]. However, deploying these large models on

resource-limited platforms, e.g., mobiles and autonomous

cars, is very challenging due to the high demand in the com-

putation resource and hence energy consumption.

Recently, many techniques to accelerate the testing pro-

cess of deployed DNNs have been studied, such as weight

sparsifying or connection pruning [8][7][28][23][22][6]

[19]. These approaches require delicate hardware cus-

tomization and/or software design to transfer sparsity into

practical speedup. Unlike sparsity-based methods, Low-

Rank Approximation (LRA) methods [22][4][5][12][11]

[26][27][18][30][14] directly decompose an original large

model to a compact model with more lightweight layers.

Thanks to the redundancy (correlation) among filters in

DNNs, original weight tensors can be approximated by very

low-rank basis. From the viewpoint of matrix computation,

LRA approximates a large weight matrix by the product of

two or more small ones to reduce computation complexity.

Previous LRA methods mostly focus on how to decom-

pose the pre-trained weight tensors for maximizing the re-

duction of computation complexity, meanwhile retaining

the classification accuracy. Instead, we propose to nudge

the weights by additional gradients (attractive forces) to co-

ordinate the filters to a more correlated state. Our approach

658

https://github.com/wenwei202/caffe
https://github.com/wenwei202/caffe

aims to improve the correlation among filters and therefore

obtain more lightweight DNNs through LRA. To the best of

our knowledge, this is the first work to train DNNs toward

lower-rank space such that LRA can achieve faster DNNs.

The motivation of this work is fundamental. It has been

proven that trained filters are highly clustered and corre-

lated [5][4][12]. Suppose each filter is reshaped as a vector.

A cluster of highly-correlated vectors then will have small

included angles. If we are able to coordinate these vectors

toward a state with smaller included angles, the correlation

of the filters within that cluster improves. Consequently,

LRA can produce a DNN with lower ranks and higher com-

putation efficiency.

We propose a Force Regularization to coordinate fil-

ters in DNNs. As demonstrated in Fig. 1, when using

the same LRA method, say, cross-filter Principal Compo-

nent Analysis (PCA) [30], applying Force Regularization

can greatly reduce the required ranks from the original de-

sign (i.e., 5 vs. 11), while keeping the same approximation

errors (≤ 20%). As we shall show in Section 5, apply-

ing Force Regularization in the training of state-of-the-art

DNNs will successfully obtain lower-rank DNNs and thus

improve computation efficiency, e.g., 4.05× speedup for

AlexNet with small accuracy loss.

The contributions of our work include: (1) We pro-

pose an effective and easy-to-implement Force Regulariza-

tion to train DNNs for lower-rank approximation. To the

best of our knowledge, this is the first work to manipulate

the correlation among filters during training such that LRA

can achieve faster DNNs; (2) DNNs manipulated by Force

Regularization can have better initialization for the retrain-

ing of LRA-decomposed DNNs, resulting in faster conver-

gence to better accuracy; (3) Those lightweight DNNs that

have been aggressively compressed by our method can be

further sparsified. That is, our method can be integrated

with state-of-the-art sparsity-based methods to potentially

achieve faster computation; (4) Force Regularization can

be easily generalized to Discrimination Regularization that

can learn more discriminative filters to improve classifica-

tion accuracy; (5) Our implementation is open-source on

both CPUs and GPUs.

2. Related work

Low-rank approximation. LRA method decomposes a

large model to a compact one with more lightweight lay-

ers by weight/tensor factorization. Denil et al. [4] studied

different dictionaries to remove the redundancy between fil-

ters and channels in DNNs. Jaderberg et al. [12] explored

filter and data reconstruction optimizations to attain opti-

mal separable basis. Denton et al. [5] clustered filters, ex-

tended LRA (e.g., Singular Value Decomposition, SVD) to

larger-scale DNNs, and achieved 2× speedup for the first

two layers with 1% accuracy loss. Many new decomposi-

tion methods were proposed [11][26][18][30] and the ef-

fectiveness of LRA in state-of-the-art DNNs were evalu-

ated [24][25]. Similar evaluations on mobile devices were

also reported [14][27]. Unlike them, we propose Force Reg-

ularization to coordinate DNN filters to more correlated

states, in which lower-rank or more compact DNNs are

achievable for faster computation.

Sparse deep neural networks. The studies on

sparse DNNs can be categorized into two types: non-

structured [20][23][22][8][6] and structured [28][21][19][1]

sparsity methods. The first category prunes each connec-

tion independently. Consequently, sparse weights are ran-

domly distributed. The level of non-structured sparsity is

usually insufficient to achieve good practical speedup in

modern hardware [28][19]. Software optimization [23][22]

and hardware customization [7] are proposed to overcome

this issue. Conversely, the structured approaches prune con-

nections group by group, such that the sparsified DNNs

have regular distribution of sparse weights. The regular-

ity is friendly to modern hardware for acceleration. Our

work is orthogonal to sparsity-based methods. More impor-

tantly, we find that DNNs accelerated by our method can

be further sparsified by both non-structured and structured

sparsity methods, potentially achieving faster computation.

3. Correlated Filters and Their Approximation

The prior knowledge is that correlation exists among

trained filters in DNNs and those filters lie in a low-rank

space. For example, the color-agnostic filters [16] learned

in the first layer of AlexNet lie in a hyper-plane, where RGB

channels at each pixel have the same value. Fig. 2 presents

the results of Linear Discriminant Analysis (LDA) of the

first convolutional filters in AlexNet and GoogLeNet. The

filters are normalized to unit vectors and colored to four

clusters by k-means clustering, and then projected to 2D

space by LDA to maximize cluster separation. The figure

indicates high correlation among filters within a cluster. A

naı̈ve approach of filter approximation is to use the centroid

of a cluster to approximate filters within that cluster, thus,

the number of clusters is the rank of the space. Essentially,

k-means clustering is a LRA [2] method, although we will

10 5 0 5 10
8

6

4

2

0

2

4

6

8

10 8 6 4 2 0 2 4 6 8
6

4

2

0

2

4

6

8

Figure 2. Linear Discriminant Analysis (LDA) of filters in the first

convolutional layer of AlexNet (left) and GoogLeNet (right).

659

…

H×W H×W

1×1

M<<N

N M N

C C

Figure 3. Cross-filter LRA of a convolutional layer.

later show that other LRA methods can give better approxi-

mation. The motivation of this work is that if we are able to

nudge filters during the training such that the filters within

a cluster are coordinated closer and some adjacent clusters

are even merged into one cluster, then more accurate filter

approximation using lower rank can be achieved. We pro-

pose Force Regularization to realize it.

Before introducing Force Regularization, we first mathe-

matically formulate LRA of DNN filters. Theoretically, al-

most all LRA methods can gain lower-rank approximation

upon our method because filters are coordinated to more

correlated state. Instead of onerously replicating all of these

LRA methods, we choose cross-filter approximation [4][30]

and a state-of-the-art work in [26] as our baselines.

Fig. 3 illustrates the cross-filter approximation of a con-

volutional layer. We assume all weights in a convolutional

layer is a tensor W ∈ R
N×C×H×W , where N and C are

the numbers of filters and input channels, and H and W
are the spatial height and width of the filters, respectively.

With input feature map I, the n-th output feature map

On =Wn ∗ I, whereWn ∈ R
1×C×H×W is the n-th filter.

Because of the redundancy (or correlation) across the fil-

ters [4], tensorWn(∀n ∈ [1...N]) can be approximated by

a linear combination of the basis Bm ∈ R
1×C×H×W (m ∈

[1...M],M ≪ N) of a low-rank space B ∈ R
M×C×H×W ,

such as

On ≈

(

M
∑

m=1

b(n)m Bm

)

∗ I =

M
∑

m=1

(

b(n)m Fm

)

. (1)

Where b
(n)
m is a scalar, and Fm = Bm ∗ I is the feature

map generated by basis filter Bm. Therefore, the output fea-

ture map On is a linear combination of Fm(m ∈ [1...M])
which can be interpreted as the feature map basis. Since the

linear combination essentially is a 1 × 1 convolution, the

convolutional layer can be decomposed to two sequential

lightweight convolutional layers as shown in Fig. 3. The

original computation complexity is O(NCHWH
′

W
′

),
where H

′

and W
′

is the height and width of output fea-

ture maps, respectively. After applying cross-filter LRA, the

computation complexity is reduced toO(MCHWH
′

W
′

+
NMH

′

W
′

). The computation complexity decreases when

O

wi

wj

Wi

Wj

fji
fji-fjiwi

Twir=1

ΔWij

Figure 4. Force Regularization to coordinate filters.

the rank M < NCHW
CHW+N

.

4. Force Regularization

4.1. Regularization by Attractive Forces

This section proposes Force Regularization from the per-

spective of physics. It is a gradient-based approach that

adds extra gradients to data loss gradients. The data loss

gradients aim to minimize classification error as traditional

DNNs do. The extra gradients introduced by Force Regular-

ization gently adjust the lengths and directions of data loss

gradients so as to nudge filters to a more correlated state.

With a good setup of hyper-parameter, our method can co-

ordinate more useful information of filters to a lower-rank

space meanwhile maintain accuracy. Inspired by Newton’s

Laws, we propose an intuitive, computation-efficient and

effective Force Regularization that uses attractive forces to

coordinate filters.

Force Regularization: As illustrated in Fig. 4, suppose

the filterWn ∈ W is reshaped as a vector Wn ∈ R
1×CHW

and normalized as wn ∈ R
1×CHW (∀n ∈ [1...N]), with

their origin at O. We introduce the pair-wise attractive force

fji = f(wj−wi) (∀i, j ∈ [1...N]) on wi generated by wj .

The gradient of Force Regularization to update filter Wi is

defined as

∆Wi =

N
∑

j=1

∆Wij = ||Wi||

N
∑

j=1

(

fji − fjiw
T
i wi

)

, (2)

where || · || is the Euclidean norm. The regularization

gradient in Eq. (2) is perpendicular to filter vector and can

be efficiently computed by addition and multiplication. The

final updating of weights by gradient descent is

Wi ←Wi − η ·

(

∂E(W)

∂Wi

− λs ·∆Wi

)

, (3)

where E(W) is data loss, η is learning rate and λs > 0 is

the coefficient of Force Regularization to trade off the rank

and accuracy. We select λs by cross-validation in this work.

The gradient of common weight-wise regularization (e.g.,

ℓ2-norm) is omitted in Eq. (3) for simplicity.

660

Fig. 4 intuitively explains our method. Suppose each

vector wi is a rigid stick and there is a particle fixed at

the endpoint. The particle has unit mass, and the stick is

massless and can freely spin around the origin. Given the

pair-wise attractive forces (e.g., universal gravitation) fji,

Eq. (2) is the acceleration of particle i. As the forces are at-

tractive, neighbor particles tend to spin around the origin to

assemble together. Although our regularizer seems to col-

lapse all particles to one point which is the rank-one space

for most lightweight DNNs, there exist gradients of data

loss to avoid this. More specific, pre-trained filters orient

to discriminative directions wn (n ∈ [1...N]). In each di-

rection wn, there are some correlated filters as observed in

Fig. 2. During the subsequent retraining with our regular-

izer, regularization gradients coordinate a cluster of filters

closer to a typical direction dm (m ∈ [1...M],M ≪ N),
but data loss gradients avoid collapsing dm together so as to

maintain the filters’ capability of extracting discriminative

features. If all filters could be extremely collapsed toward

one point meanwhile maintain classification accuracy, it im-

plies the filters are over-redundant and we can attain a very

efficient DNN by decomposing it to a rank-one space.

We derive the Force Regularization gradient from the

normalized filters based on the following facts: (1) A nor-

malized filter is on the unit hypersphere, and its orientation

is the only free parameter we need to optimize; (2) The gra-

dient of Wi can be easily scaled by the vector length ||Wi||
without changing the angular velocity.

In Eq. (2), fji = f(wj−wi) is the force function related

to distance. We study ℓ2-norm Force

fℓ2(wj −wi) = wj −wi (4)

and ℓ1-norm Force

fℓ1(wj −wi) =
wj −wi

||wj −wi||
(5)

in this work. We define the force of Eq. (4) as ℓ2-norm

Force because the strength linearly decreases with the dis-

tance ||wj −wi||, just as the gradient of regularization ℓ2-

norm does. We name the force of Eq. (5) as ℓ1-norm Force

because the gradient is a constant unit vector regardless of

the distance, just as the gradient of sparsity regularization

ℓ1-norm is.

4.2. Mathematical Implications

This section explains the mathematical implications be-

hind: Force Regularization is related to but different from

minimizing the sum of pair-wise distances between normal-

ized filters.

Theorem 1 Suppose filterWn ∈ W is reshaped as a vector

Wn ∈ R
1×CHW and normalized as wn ∈ R

1×CHW (∀n ∈

Table 1. Ranks vs. scalers of step sizes of regularization gradients.

Scaler Error conv1* conv2 conv3

0 (baseline) 18.0% 17/32 27/32 55/64

||Wi|| 17.9% 15/32 22/32 30/64

1/||Wi|| 18.0% 16/32 27/32 32/64
* The first convolutional layer.

[1...N]). For each filter, Force Regularization under ℓ2-

norm force has the same gradient direction of regulariza-

tion R(W), but differs by adapting the step size to the filer’s

length, where

R(W) =
1

2

N
∑

j=1

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Wj

||Wj ||
−

Wi

||Wi||

∣

∣

∣

∣

∣

∣

∣

∣

2

. (6)

Proof : Because wj =
Wj

||Wj ||
,

∂R(W)

∂Wi

=
1

2

N
∑

j=1

∂ (wj −wi) (wj −wi)
T

∂Wi

=
1

2

N
∑

j=1

∂
(

1− 2wjw
T
i + 1

)

∂Wi

= −

N
∑

j=1

∂
(

wjw
T
i

)

∂Wi

= −

N
∑

j=1

wj

∂wT
i

∂Wi

,

(7)

where
∂wT

i

∂Wi
:= Gi is a derivative matrix with element

G
(pq)
i =

∂w
(p)
i

∂W
(q)
i

=
∂

W
(p)
i

||Wi||

∂W
(q)
i

=
1

||Wi||

(

δ(p, q)−
W

(p)
i W

(q)
i

||Wi||2

)

.

(8)

Superscripts p, q ∈ [1 . . . CHW] index the elements in

vectors wi and Wi. δ(p, q) is the unit impulse function:

δ(p, q) =

{

1 p = q

0 p 6= q
. (9)

Therefore,

Gi =
1

||Wi||

(

I−w
T
i wi

)

. (10)

Replacing Eq. (10) to Eq. (7), we have

−
∂R(W)

∂Wi

=
1

||Wi||

N
∑

j=1

(

(wj −wi)− (wj −wi)w
T
i wi

)

=
1

||Wi||









N
∑

j=1

fji



−





N
∑

j=1

fji



w
T
i wi



 ,

(11)

661

where fji = fℓ2(wj −wi) = wj −wi. Therefore, Eq. (11)

and Eq. (2) have the same direction.

Theorem 1 states that our proposed Force Regularization

in Eq. (2) is related to Eq. (11). However, the step size of

the gradient in Eq. (2) is scaled by the length ||Wi|| of the

filter instead of its reciprocal in Eq. (11). This ensures that

the filter spins the same angle regardless of its length and

avoids the issue of being divided by zero. Table 1 summa-

rizes the ranks vs. step sizes for the ConvNet [16], which is

trained by CIFAR-10 database without data augmentation.

The original ConvNet has 32, 32, and 64 filters in each con-

volutional layer, respectively. The rank is the smallest num-

ber of basis filters (in Fig. 3) obtained by PCA with ≤ 5%
reconstruction error. Therefore, ||Wi|| works better than its

reciprocal when coordinating filters to a lower-rank space.

Following the same proof procedure, we can easily find

that Force Regularization under ℓ1-norm Force has the same

conclusion when

R(W) =
N
∑

j=1

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

Wj

||Wj ||
−

Wi

||Wi||

∣

∣

∣

∣

∣

∣

∣

∣

. (12)

5. Experiments

5.1. Implementation

Our experiments are performed in Caffe [13] using

CIFAR-10 [15] and ILSVRC-2012 ImageNet [3]. Pub-

lished models are adopted as the baselines: In CIFAR-10,

we choose ConvNet without data augmentation [16] and

ResNets-20 with data augmentation [10]. We adopt the

same shortcut connections in [28] for ResNets-20. For Im-

ageNet, we use AlexNet and GoogLeNet models trained by

Caffe, and report accuracy using only center crop of images.

Our experiments of Force Regularization show that, with

the same maximum iterations, the training from the baseline

can achieve a better tradeoff between accuracy and speedup

comparing with the training from scratch, because the base-

line offers a good initial point for both accuracy and filter

correlation. During the training with Force Regularization

on CIFAR-10, we use the same base learning rate as the

baseline; while in ImageNet, 0.1× base learning rate of the

baseline is adopted.

0

20

40

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Baseline L2-norm force

0

100

200

300

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Convolutional layer #

ResNets-20

GoogLeNet

Figure 5. The rank M in each convolutional layer of ResNets-20

and GoogLeNet. Red bar overlaps blue bar. The accuracy loss is

0.75% for ResNets-20 and 2.46% (top-5) for GoogLeNet.

5.2. Rank Analysis of Coordinated DNNs

In light of various low-rank approximation methods,

without losing the generalization, we first adopt Principal

Component Analysis (PCA) [30][22] to evaluate the effec-

tiveness of Force Regularization. Specifically, the filter

tensor W can be reshaped to a matrix W ∈ R
N×CHW ,

the rows of which are the reshaped filters Wn (∀n ∈
[1...N]). PCA minimizes the least square reconstruction

error when projecting a column (RN) of W to a low-

rank space R
M (M ≪ N). The reconstruction error is

eM =
∑N

i=M+1 λi, where λi is the i-th largest eigenvalue

of covariance matrix WW
T

CHW−1 . Under the constraint of error

percentage eM
e0

(e.g., eM
e0
≤ 5%), lower-rank approximation

can be obtained if the minimal rank M can be smaller. In

this section, without explicit explanation, we define rank M
of a convolutional layer as the minimal M which has ≤ 5%
reconstruction error by PCA.

Table 2 summarizes the rank M in each layer of Con-

vNet and AlexNet without accuracy loss after Force Regu-

larization. In the baselines, the learned filters in the front

layers are intrinsically in a very low-rank space but the rank

M in deeper layers is high. This could explain why only

speedups of the first two convolutional layers were reported

in [5]. Fortunately, by using either ℓ2-norm or ℓ1-norm

force, our method can efficiently maintain the low rank M
in the first two layers (e.g., conv1-conv2 in AlexNet), mean-

while significantly reduce the rank M of deeper layers (e.g.,

conv3-conv5 in AlexNet). On average, our method can re-

duce the layer-wise rank ratio by ∼ 50%. The effective-

ness of our method on deep layers is very important as the

Table 2. The rank M in each convolutional layer after Force Regularization.

Net Force Top-1 error conv1 conv2 conv3 conv4 conv5 Average rank ratio ‡

ConvNet None (baseline)† 18.0% 17/32‡ 27/32 55/64 – – 74.48%

ConvNet ℓ2-norm 17.9% 15/32 22/32 30/64 – – 54.17%

ConvNet ℓ1-norm 18.0% 17/32 25/32 20/64 – – 54.17%

AlexNet None (baseline) 42.63% 47/96 164/256 306/384 318/384 220/256 72.29%

AlexNet ℓ2-norm 42.70% 49/96 143/256 128/384 122/384 161/256 46.98%

AlexNet ℓ1-norm 42.45% 49/96 155/256 157/384 108/384 178/256 50.03%
†The baseline without Force Regularization. ‡M /N : Low rank M over full rank N , which is defined as rank ratio.

662

