This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the version available on IEEE Xplore.

Unsupervised Creation of Parameterized Avatars

Lior Wolf!2, Yaniv Taigman', and Adam Polyak!

'Facebook AI Research
2The School of Computer Science, Tel Aviv University

Abstract

We study the problem of mapping an input image to a
tied pair consisting of a vector of parameters and an image
that is created using a graphical engine from the vector of
parameters. The mapping’s objective is to have the output
image as similar as possible to the input image. During
training, no supervision is given in the form of matching
inputs and outputs.

This learning problem extends two literature problems:
unsupervised domain adaptation and cross domain trans-
fer: We define a generalization bound that is based on dis-
crepancy, and employ a GAN to implement a network so-
lution that corresponds to this bound. Experimentally, our
method is shown to solve the problem of automatically cre-
ating avatars.

1. Introduction

We consider the problem of generating computer avatars
based on the user’s appearance. In order to allow the avatars
to be easily manipulated, each avatar is represented by a
set of “switches” (parameters) that select, for example, the
shape of the nose, the color of the eyes and the style of
hair, all from a predefined set of options created by artists.
The visual appearance of the avatar adheres to a set of con-
straints, which are governed by a computer graphics engine
that renders an image based on the set of parameters. More-
over, once this set is set, the avatar can be rendered in many
variations (Fig. 1).

The goal of this work is to learn to map an input image to
two tied outputs: a vector in some parameter space and the
image generated by this vector. While it is sufficient to re-
cover just the vector of parameters and then generate the im-
age, a non-intuitive result of our work is that it is preferable
to recover the analog image first. In any case, the mapping
between the input image and either of the outputs should
be learned in an unsupervised way due to the difficulty of

Figure 1. From the
image on the top left,
our method com-
putes the parameters
of the face caricature
below it, which
can be rendered
at multiple views
and with varying
expressions by the
computer graphics
engine.

obtaining supervised samples that map input images to pa-
rameterized representations. In avatar creation, it is time
consuming for humans to select the parameters that repre-
sent a user, even after considerable training. The selected
parameters are also not guaranteed to be the optimal depic-
tion of that user. Therefore, using unsupervised methods is
both more practical and holds the potential to lead to more
accurate results.

In addition, humans can learn to create parameterized
analogies without using matching samples. Understanding
possible computational processes is, therefore, an objective
of Al, and is the research question addressed. Our contribu-
tions are therefore as follows: (i) we present a highly appli-
cable and, as far as we know, completely unexplored vision
problem; (ii) the new problem is placed in the mathematical
context of other domain shift problems; (iii) a generaliza-
tion bound for the new problem is presented; (iv) an algo-
rithm that matches the terms of the generalization bound is
introduced; (v) the qualitative and quantitative success of
the method further validates the non-intuitive path we take
and (vi) the new method is shown to solve the parameterized
avatar creation problem.

1.1. Background

Generative Adversarial Networks GAN [8] methods train
a generator network G that synthesizes samples from a

1530

target distribution, given noise vectors, by jointly training
a second network d. The specific generative architecture
we employ is based on the architecture of [21]. Since
the image we create is based on an input and not on ran-
dom noise, our method is related to Conditional GANSs,
which employ GANSs in order to generate samples from a
specific class [18], based on a textual description [22], or
to invert mid-level network activations [3]. The CoGAN
method [15], like our method, generates a pair of tied out-
puts. However, this method generates the two based on a
random vector and not on an input image. More impor-
tantly, the two outputs are assumed to be similar and their
generators (and GAN discriminators) share many of the lay-
ers. In our case, the two outputs are related in a different
way: a vector of parameters and the resulting image. The
solutions are also vastly different.

A recent work, which studied the learning of 3D struc-
ture from images in an unsupervised manner, shares some
of computational characteristics with our problem [11]. The
most similar application to ours, involves a parametrization
of a 3D computer graphics object with 162 vertices, each
moving along a line, a black-box camera projecting from
3D to 2D and a set of 2D images without the corresponding
3D configuration. The system then learns to map 2D im-
ages to the set of vertices. This setting shares with us the
existence of a fixed mapping from the vector of parameters
to the image. In our case, this mapping is given as a neural
network that will be termed e, in their case, it is given as a
black box, which, as discussed in Sec. 5 is a solvable chal-
lenge. A more significant difference is that in their case,
the images generated by the fixed mapping are in the same
domain as the input, while in our case it is from a different
domain. The method employed in [11] completely differs
from ours and is based on sequential generative models [9].
Distances between distributions In unsupervised learning,
where one cannot match between an input sample and its
output, many methods rely on measuring distances between
distributions. Specifically, GANs were recently shown [6]
to implement the theoretical notion of discrepancies.

Definition 1 (Discrepancy distance). Let C be a class of
Sfunctions from A to B and let { : B x B — Ry be a
loss function over B. The discrepancy distance discc be-
tween two distributions Dy and Dy over A is defined as

discc(D1, Do) = sup,, .,ec ‘RD1 [c1,¢c2] — Rp, [01702]’,
where Rplc1,ca) = Epznp [U(cr(2), ca(x))].

Image synthesis with CNNs The supervised network of [4]
receives as input a one-hot encoding of the desired model as
well as view parameters and a 3D transformation and gener-
ates the desired view of a 3D object. DC-IGN [13] performs
a similar task with less direct supervision. The training set
of this method is stratified but not necessarily fully labeled
and is used to disentangle the image representation in an

encoder-decoder framework. Pix2pix [10] maps an image
to another domain. This methods is fully supervised and
requires pairs of matching samples from the two domains.
Style transfer In these methods [7, 25, 12], new images
are synthesized by minimizing the content loss with respect
to one input sample and the style loss with respect to one or
more input samples. The content loss is typically the encod-
ing of the image by a network training for an image catego-
rization task, similar to our work. The style loss compares
the statistics of the activations in various layers of the neural
network. We do not employ style losses in our method and
more significantly, the problem that we solve differs. This is
not only because style transfer methods cannot capture se-
mantics [23], but also because the image we generate has to
adhere to specific constraints. Similarly, the work that has
been done to automatically generate sketches from images,
e.g., [26, 28], does not apply to our problem since it does
not produce a parameter vector in a semantic configuration
space. The literature of face sketches also typically trains in
a supervised manner that requires correspondences between
sketches and photographs.

2. Problem Formulation

Problems involving domain shift receive an increasing
amount of attention, as the field of machine learning moves
its focus away from the vanilla supervised learning scenar-
ios to new combinations of supervised, unsupervised and
transfer learning. In this section, we formulate the new
computational problem that we pose “Tied Output Synthe-
sis” (TOS) and put it within a theoretical context. In the next
section, we redefine the problem as a concrete deep learning
problem. In order to maximize clarity, the two sections are
kept as independent as possible, and the reader may choose
to skip the derivations and go directly to the architecture as
presented in Sec. 3.

2.1. Related Problems

In the unsupervised domain adaptation problem [2,
17, 1], the algorithm trains a hypothesis on a source domain
and the hypothesis is tested on a different target domain.
The algorithm is aided with a labeled dataset of the source
domain and an unlabeled dataset of the target domain. The
conventional approach to dealing with this problem is to
learn a feature map that (i) enables accurate classification
in the source domain and (ii) captures meaningful invariant
relationships between the source and target domains.

Let X be the input space and) be the output space (the
mathematical notation is also conveniently tabulated in the
supplementary). The source domain is a distribution Dg
over X along with a function yg : X —). Similarly, the
target domain is specified by (D, yr). Given some loss
function ¢ :) x) — R The goal is to fit a hypothesis h
from some hypothesis space H, which minimizes the Target

1531

Input X Output Y Input X Output Y Input X Out. Y; Out. Vs
158 | {&; ~ Dp} 15 | {@; ~ D1} 150 | {xi ~ D1}
27 | {a; ~Ds} {ys(z))} 2nd {y(zj)|zj ~ Da} 2nd e(c;) {c; ~ Do}
() (b) (c)

Figure 2. The domain shift configurations discussed Sec. 2. (a) The unsupervised domain adaptation problem. The algorithm minimizes
the risk in a target domain using training samples {(z; ~ Ds,ys(z;))}j=; and {x; ~ Dr};" 4. (b) The unsupervised domain transfer
problem. In this case, the algorithm learns a function G and is being tested on D;. The algorithm is aided with two datasets: {z; ~ D1 }i%,
and {y(z;) ~ DY}7_;. For example, in the facial emoji application D; is the distribution of facial photos and Dy is the (unseen)
distribution of faces from which the observed emoji were generated. (c) The tied output synthesis problem, in which we are give a set of
samples from one input domain {z; ~ D1}, and matching samples from two tied output domains: {(e(c;), ¢;)|c; ~ D2}.

Generalization Risk, Rp.[h,yr]. Where a Generalization
Riskis defined as Rp[hi, ha] = Ex~p [£(h1(z), h2(z))]. The
distributions Dg, D7 and the target function yr : X — Y
are unknown to the learning algorithm. Instead, the learn-
ing algorithm relies on a training set of labeled samples
{(z,ys(x))}, where z is sampled from Dg as well as on
an unlabeled training set of samples x ~ D, see Fig. 2(a).

In the cross domain transfer problem, the task is to
learn a function that maps samples from the input domain
X to the output domain). It was recently presented in [23],
where a GAN based solution was able to convincingly trans-
form face images into caricatures from a specific domain.

The training data available to the learning algorithm in
the cross domain transfer problem is illustrated in Fig. 2(b).
The problem consists of two distributions, D7 and Do,
and a target function, y. The algorithm has access to
the following two unsupervised datasets: {z;~D;}7 and
{y(@j)|zj~D2}7_;. The goal is to fit a function h =
g o f € H that optimizes infrecy Rp, [h, y].

It is assumed that: (i) f is a fixed pre-trained feature
map and, therefore, H = {g of | gE 7—[2} for some hy-
pothesis class Ho; and (ii) y is idempotent, i.e, y o y = .
For example, in [23], f is the DeepFace representation [24]
and y maps face images to emoji caricatures. In addition,
applying y on an emoji gives the same emoji. Note that
according to the terminology of [23], D; and D, are the
source and target distributions respectively. However, the
loss Rp, [k, y] is measured over Dy, while in domain adap-
tation, it is measured over the target distribution.

Recently [5], the cross domain transfer problem was an-
alyzed using the theoretical term of discrepancy. Denoting,
for example, y o D to be the distribution of the y mappings
of samples « ~ D, then the following bound is obtained.

Theorem 1 (Domain transfer [5]). If £ satisfies the triangle
inequality' and Ho (the hypothesis class of g) is a universal

'For all y1,y2,y3 € Y it holds that £(y1,y3) < £(y1,v2) +
£(y2, y3). This holds for the absolute loss, and can be relaxed to the square
loss, where it holds up to a multiplicative factor of 3.

Lipschitz hypothesis class®, then forallh = go f € H,

Rp, [h,y] <Ryop,[h,1d] + Rp, [f o h, f]

1
+ discy(y o D2, ho D1) + A M

Here, \ = minpecy {Ryop, 1, 1d] + Rp, [h,y]} and h* =
g* o f is the corresponding minimizer.

This theorem matches the method of [23], which is
called DTN. It bounds the risk Rp, [h, y], i.e., the expected
loss (using ¢) between the mappings by the ground truth
function y and the mapping by the learned function h for
samples x ~ D;. The first term in the RH.S Ryop, [h, Id]
is the Ltpp part of the DTN loss, which, for the emoji gen-
eration application, states that emoji caricatures are mapped
to themselves. The second term Rp, [f o h, f] corresponds
to the Lconst term of DTN, which states that the Deep-
Face representations of the input face image and the result-
ing caricature are similar. The theorem shows that his con-
stancy does not need to be assumed and is a result of the
idempotency of y and the structure of h. The third term
discy(y o Do, h o Dy) is the GAN element of the DTN
method, which compares generated caricatures (h o D1) to
the training dataset of the unlabeled emoji (y o D5). Lastly,
the A factor captures the complexity of the hypothesis class
‘H, which depends on the chosen architecture of the neural
network that instantiates g. A similar factor in the general-
ization bound of the unsupervised domain adaptation prob-
lem is presented in [1].

2.2. The Tied Output Synthesis Problem

The problem studied in this paper, is a third flavor of do-
main shift, which can be seen as a mix of the two prob-
lems: unsupervised domain adaptation and the cross do-
main transfer problem. Similar to the unsupervised domain
transfer problem, we are given a set of supervised labeled
samples. The samples c; are drawn i.i.d from some distri-
bution D5 in the space) and are given together with their

2A function ¢ € C is Lipschitz with respect to ¢, if there is a constant
L > 0 such that: VYai,a2 € A : £(c(a1),c(a2)) < L-¥£(a1,a2). A
hypothesis class C is universal Lipschitz with respect to £ if all functions
¢ € C are Lipschitz with some universal constant L > 0. This holds,
for example, for neural networks with leaky ReLU activations and weight
matrices of bounded norms, under the squared or absolute loss.

1532

Face image Emoji Parameter set
X A2 Y2
y
| . '
Do eoyoDyg &——— yo Dy
f g c
Dy — foDy — gofoDy ——— > cogo foD;

Figure 3. Tied Output Synthesis. The unknown function y is
learned by the approximation h = co go f. f and e are given.
D is the distribution of input images at test time. During training,
we observe tied mappings (y(z), e(y(z))) for unknown samples
x ~ D5 as well unlabeled samples from the other distribution D, .

mappings e(c;) € V1. In addition, and similar to the cross
domain transfer problem, we are given samples z; € X
drawn i.i.d from another distribution D;. The goal is to
learn a mapping y : X —) that satisfies the following
condition y o e oy = y. The hypothesis class contains func-
tions h of the form c o g o f for some known f for g € Hy
and for ¢ € Hs. f is a pre-learned function that maps the
input sample in X’ to some feature space, g maps from this
feature space to the space), and ¢ maps from this space to
the space of parameters)5, see Fig. 2(c) and Fig. 3.

Our approach assumes that e is prelearned from the
matching samples (c;, e(c;)). However, c is learned to-
gether with g. This makes sense, since while e is a feedfor-
ward transformation from a set of parameters to an output,
c requires the conversion of an input of the form g(f(x))
where © ~ D;, which is different from the image of e for
inputs in V5. The theorem below describes our solution.

Theorem 2 (Tied output bound). If ¢ satisfies the triangle

inequality and Hs is a universal Lipschitz hypothesis class

with respect to {, then for allh = cogo f € H,
Rp,[eoh,eoy] <Rp,leoh,go f]+ Reoyon,[g o f,1d]

+ Rp,[fogo f.f] @
+discy(eoy o Da,go foDi)+ A,

where A = mingeqy, {Reoyon,[g© f,1d] + Rp,[go f,eoy]}

and g* is the corresponding minimizer.

Proof. By the triangle inequality, we obtain:
Rp,[ech,eoy] < Rp,[eoh,go f]+ Rp,[go f,ecy].
Applying Thm. 1 completes the proof:

RDl[gofaeoy} SREOZJODZ[gOf7Id]+RD1[fogof7f]
+discy(eoyoDa,go foDr)+ A O

Thm. 2 presents a recursive connection between the tied
output synthesis problem and the cross domain transfer
problem. This relation can be generalized for tying even
more outputs to even more complex relations among parts
of the training data. The importance of having a general-
ization bound to guide our solution stems from the plausi-
bility of many other terms such as Reoyop,[e 0 h,g o f] or

Rp,[fogof foeoh]

Comparing to Unsupervised Cross Domain Transfer
The tied output problem is a specific case of cross domain
transfer with) of the latter being }; x)s of the former.
However, this view makes no use of the network e. Com-
paring Thm. 1 and Tmm. 2, there is an additional term in the
second bound: Rp, [e o h,g o f]. It expresses the expected
loss (over samples from D;) when comparing the result of
applying the full cycle of encoding by f, generating an im-
age by g, estimating the parameters in the space) using
¢, and synthesizing the image that corresponds to these pa-
rameters using e, to the result of applying the subprocess
that includes only f and g.
Comparing to Unsupervised Domain Adaptation Con-
sider the domain X U); and learn the function e~! from
this domain to), using the samples {(e(c;), ¢;)|¢; ~ D2},
adapted to x; ~ D;p. This is a domain adaptation prob-
lem with Dg = e o Dy and Dy = D;. Our experiments
show that applying this reduction leads to suboptimal re-
sults. This is expected, since this approach does not make
use of the prelearned feature map f. This feature map is
not to be confused with the feature network learned in [6],
which we denote by p. The latter is meant to eliminate the
differences between p o Dg and p o Dp. However, the pre-
learned f leads to easily distinguishable f o Dg and fo Dp.
The unsupervised domain adaptation and the TOS prob-
lem become more similar, if one identifies p with the condi-
tional function that applies g o f to samples from X and the
identity to samples from));. In this case, the label predic-
tor of [6] is identified with our ¢ and the discrepancy terms
(i.e., the GANSs) are applied to the same pairs of distribu-
tions. However, the two solutions would still differ since (i)
our solution minimizes Rp, [e o h, g o f], while in unsuper-
vised domain adaptation, the analog term is minimized over
Dg = e o D5 and (ii) the additional non-discrepancy terms
would not have analogs in the domain adaptation bounds.

3. The Tied Output Synthesis Network

We next reformulate the problem as a neural network
challenge. For clarity, this formulation is purposefully
written to be independent of the mathematical presentation
above. We study the problem of projecting an image in one
domain to an image in another domain, in which the images
follow a set of specifications. Given a domain, X', a map-
ping e and a function f, we would like to learn a generative
function G such that f is invariant under G, i.e., fo G = f,
and that for all samples z € X, there exists a configuration
u € Y such that G(z) = e(u). Other than the functions
f and e, the training data is unsupervised and consists of a
set of samples from the source domain & and a second set
from the target domain of e, which we call));.

In comparison to the domain transfer method presented
in [23], the domain) is constrained to be the image of a
mapping e. DTN cannot satisfy this requirement, since pre-

1533

senting it with a training set t of samples generated by e is
not a strong enough constraint. Furthermore, the real-world
avataring applications require the recovery of the configu-
ration u itself, which allows the synthesis of novel samples
using an extended engine e* that generates new poses, ex-
pressions in the case of face images, etc.

3.1. The interplay between the trained networks

In a general view of GANs, assume a loss function
¢(G,d, x), for some function d that receives inputs in the
domain). G, which maps an input z to entities in)y, min-
imizes the following loss: Lgan = maxy — E, (G, d, x).
This optimization is successful, if for every function d, the
expectation of ¢(G, d,x) is small for the learned G. It is
done by maximizing this expectation with respect to d, and
minimizing it with respect to G. The two learned networks
d and G provide a training signal to each other.

Two networks can also provide a mutual signal by col-
laborating on a shared task. Consider the case in which G
and a second function ¢ work hand-in-hand in order to min-
imize the expectation of some other loss (G, ¢, z). In this
case, G “relies” on ¢ and minimizes the following expres-
sion:

L.= mcin E. UG, ¢,). 3)

This optimization succeeds if there exists a function c for
which, post-learning, the expectation E,. /(G| ¢,) is small.

In the problem of tied output synthesis, the function e
maps entities u in some configuration space)» to the tar-
get space). ¢ maps samples from); to the configuration
space, essentially inverting e. The suitable loss is:

e(c(G())]1*. @)

For such a problem, the optimal c¢ is given by ¢*(z) =
argmin,, |z—e(u)||?. This implicit function is intractable to
compute, and c is learned instead as a deep neural network.

Le(G,c,x) = |G(z) —

3.2. The complete network solution

The learning algorithm is given, in addition to two map-
pings e and f, a training set s C A&, and a training set
t C Y. Similar to [23], we define G to be composed out of
f and a second function g that maps from the output space
of fto T, ie., G = go f. The e compliance term (L. of
Eq. 3 using £, of Eq. 4) becomes:

Lo=Y" llg(f(x)) -

xres

(c(g(F@N)I? (5)

In addition, we minimize Lconst, Which advocates that for
every input x € s, f remains unchanged as G maps it to Vs :

Leonst =) [If (@) = f(G(x)|? ©)

TES

] L
i | +
i
[
- Tl aa LJ’(JHH
Wy e + £
SR E 'Lf
[]
LcowisT |
b f J -- «—
fiG)) = = €

efcfGic))

Figure 4. The training constraints of the Tied Output Synthesis
method. The learned functions are ¢, d, and G = go f, for a given
f. The mapping e is assumed to be known a-priori. Dashed lines
denote loss terms.

Algorithm 1 The TOS training algorithm.

1: Given the function e :), —), an embedding func-

tion f,and S C X, T C)} training sets.

2: Initialize networks ¢, g and d

3: while iter < numiters do

4: Sample mini-batchess C S,t C T

5. Compute feed-forward d(t), d(g(f(s)))

6: Update d by minimizing ¢(G, d, x) forz € s > Eq. 7
7: Update g by maximizing ¢(G, d, z) for z € s > Eq. 7
8
9

Update g by minimizing Lip > Eq. 8

. Update g by minimizing LconsT > Eq. 6

10: Update g by minimizing Lty
11: Compute e(c¢(z)) by feed-forwarding z := g(f(s))

12: Update c and g by minimizing L. >Eq. 5

A GAN term is added to ensure that the samples gener-
ated by G are indistinguishable from the set t. The GAN
employs a binary classifier network d, and makes use of the
training set t. Specifically, the following form of ¢ is used

in LGAN:
| | Z log[d @)

z' €t

(G, d,x) =log[l —

Like [23], the following term encourages G to be the iden-
tity mapping for samples from t.

Lo =Y llz — g(f(2))? ®)

zct

Taken together, d maximizes Lg 4n, and both g and ¢ mini-
mize Lc + aLGAN + BLCONST +’7LTID + 6LTV for some non-

negative weights «, 3, v, §, where Lrv, is the total variation
loss, which smooths the resulting image z = [z;;] = G(z):
1

Lrv(z) = > ((Zv:,j+1 — 2i5)* + (2i41,5 — Zz‘j)Q)
The method is illustrated in Fig. 4 and laid out in Alg. 1.

In the context of Thm. 2, the term L. corresponds to the
risk term Rp,[e o h,g o f] in the theorem and compares
samples transformed by the mapping g o f to the mapping
of the same samples to a configuration in s using co g o f

2

1534

and then to); using e. The term Lyyp corresponds to the
risk Reoyon,[g © f,1d], which is the expected loss over the
distribution from which t is sampled, when comparing the
samples in this training set to the result of mapping these by
g o f. The discrepancy term discy (e oy o Do, go f o Dy
matches the Lgan term, which as explained above, mea-
sures a distance between two distributions, in this case,
eoyo Do, which is the distribution from which the training
set t is taken, and the distribution of mappings by g o f of
the samples s which are drawn from D;.

~—

4. Experiments

The Tied Output Synthesis (TOS) method is evaluated
on a toy problem of inverting a polygon synthesizing engine
and on avatar generation from a photograph for two differ-
ent CG engines. The first problem is presented as a mere
illustration of the method, while the second is an unsolved
real-world challenge.

4.1. Polygons

The first experiment studies TOS in a context that is in-
dependent of f constancy. Given a set of images t €),
and a mapping e from some vector space to)V, learn a map-
ping c and a generative function G that creates random im-
ages in); that are e-compliant (Eq. 4).

We create binary 64 x 64 images of regular polygons by
sampling uniformly three parameters: the number of ver-
tices (3-6), the radius of the enclosing circle (15-30), and
a rotation angle in the range [—10, 10]. Some polygons are
shown in Fig. 5(a). 10,000 training images were created and
used in order to train a CNN e that maps the three parame-
ters to the output, with very little loss (MSE of 0.1).

A training set t of a similar size is collected by sampling
in the same way. As a baseline method, we employ DC-
GAN [21], in which the generator function G has four de-
convolution layers (the open code of https://github.
com/soumith/dcgan.torch is used), and in which
the input is a random vector in [—1, 1]1%°, The results are
shown in Fig. 5(b). While the generated images are similar
to the class of generated polygons, they are not from this
class and contain visible artifacts such as curved edges.

A TOS is then trained by minimizing Eq. 4 with the
additional GAN constraints. The optimization minimizes
L. + aLgan, for « = 1 (LconsT and Lrrp are irrele-
vant to this experiment), and with the input distribution Dy
of random vectors sampled uniformly in the [—1, 1] hyper-
cube in 100D. The results, as depicted in Fig. 5(c), show
that TOS, which enjoys the additional supervision of e, pro-
duces results that better fit the polygon class.

4.2. Face Emoji

The proposed TOS method is evaluated for the task of
generating specification-compliant emoji. In this task, we

{® 8 »e 4y
g0 ve < ve
jre8edve

Figure 5. Toy problem. (a) Polygon images with three random
parameters: number of vertices, radius of enclosing circle and ro-
tation. (b) GAN generated images mimicking the class of polygon
images. (c¢) G(x) images created by TOS. The TOS is able to
benefit from the synthesis engine e and produces images that are
noticeably more compliant than the GAN.

transfer an “in-the-wild” facial photograph to a set of pa-
rameters that defines an emoji. As the unlabeled training
data of face images (domain &’), we use a set s of one mil-
lion random images without identity information. The set
t consists of assorted facial avatars (emoji) created by an
online service (bitmoji.com). The emoji images were
processed by an automatic process that detects, based on a
set of heuristics, the center of the irises and the tip of the
nose [23]. Based on these coordinates, the emoji were cen-
tered and scaled into 152 x 152 RGB images.

The emoji engine of the online service is mostly addi-
tive. In order to train the TOS, we mimic it and have cre-
ated a neural network e that maps properties such as gender,
length of hair, shape of eyes, etc. into an output image. The
architecture is detailed in the supplementary.

As the function f, we employ the representation layer
of the DeepFace network [24]. This representation is 256-
dimensional and was trained on a labeled set of four million
images that does not intersect the set s. Network ¢ maps a
64 x 64 emoji to a configuration vector. It contains five con-
volutional layers, each followed by batch normalization and
a leaky ReLU with a leakiness coefficient of 0.2. Network
g maps f’s representations to 64 x 64 RGB images. Fol-
lowing [23], this is done through a network with 9 blocks,
each consisting of a convolution, batch-normalization and
ReLU. The odd blocks 1,3,5,7,9 perform upscaling convo-
lutions. The even ones perform 1 x 1 convolutions [14].
Network d takes 152 x 152 RGB images (either natural or
scaled-up emoji) and consists of 6 blocks, each containing a
convolution with stride 2, batch normalization, and a leaky
ReLU. We set & = 0.01, 8 = 100, v = 1, § = 0.0005 as
the tradeoff hyperparameters, after eyeballing the results of
the first epoch of a very limited set of experiments.

For evaluation purposes only, we employ the benchmark
of [23], which contains manually created emoji of 118 ran-
dom images from the CelebA dataset [16]. The benchmark
was created by a team of professional annotators who used

1535

Method Emoji Avatars
g(f(x)) e(.(x) | g(f(x) e(.(x)
Manual NA 16,311 NA NA
DANN [6] NA 59,625 NA 52,435
DTN [23] 16 18,079 195 38,805
TOS 30 3,519 758 11,153
TOS fixed ¢ 26 14,990 253 43,160

Table 1. Comparison of median rank for retrieval out of a set of
100,001 face images for either manually created emoji, or emoji
and VR avatars created by DTN or TOS. Results are shown for the
“raw” G(z) as well as for the configuration compliant e(..(x)).
Since DTN does not produce a configuration-compliant emoji, we
obtain the results for the e(..(x)) column by applying to its output
a pretrained network ¢ that maps emoji to configurations. Also
shown are DANN results obtained when training such a mapping
¢ that is adapted to the samples in s.

the web service that creates the emoji images. Fig. 6 shows
side by side samples of the original image, the human gen-
erated emoji, the emoji generated by the generator function
of DTN [23], and the emoji generated by both the generator
G = go f and the compound generator e o co G of our TOS
method. As can be seen, the DTN emoji tend to be more in-
formative, albeit less restrictive than the ones created manu-
ally. TOS respects the configuration space and creates emoji
that are similar to the ones created by the human annotators,
but which tend to carry more identity information.

In order to evaluate the identifiability of the resulting
emoji, the authors of [23] have collected a second exam-
ple for each identity in the set of 118 CelebA images and a
set s’ of 100,000 random face images (unsupervised, with-
out identity), which were not included in s. The VGG face
CNN descriptor [20] is then used in order to perform re-
trieval as follows. For each image « in the manually anno-
tated set, a gallery s’ U 2’ is created, where 2’ is the other
image of the person in x. Retrieval is then performed using
VGG faces and either the manually created emoji, G(z), or
e(c(G(x))) as the probe.

In these experiments, the VGG network is used in order
to avoid a bias that might be caused by using f both for
training the DTN and the TOS methods and for evaluation.
The results are reported in Tab. 1. As can be seen, the G(x)
emoji generated by DTN are extremely discriminative and
obtain a median rank of 16 in cross-domain identification
out of 10° distractors. However, DTNs are not compati-
ble with any configuration vector. In order to demonstrate
this, we trained a network ¢ that maps emoji images to con-
figurations. When applied to the emoji generated by DTN
and transforming the results, using e, back to an emoji, the
obtained images are less identifiable than the emoji created
manually (Tab. 1, under e(..(z))). By comparison, the me-
dian rank of the emoji created by the configuration vector
¢(G(x)) of TOS is much better than the result obtained by
the human annotators. As expected, DTN has more iden-

tifiable results than TOS when considering the output of
g(f(x)) directly, since TOS has additional terms and the
role of Lconst in TOS is naturally reduced.

The need to train ¢ and G jointly, as is done in the TOS
framework, is also verified in a second experiment, in which
we fixed the network c of TOS to be the pretrained network
c. The results of rendering the configuration vector were
also not as good as those obtained by the unmodified TOS
framework. As expected, querying by G(z) directly, pro-
duces results that are between DTN and TOS.

It should be noted that using the pretrained ¢ directly on
inputs faces, leads to fixed configurations (modes), since ¢
was trained to map from); and not from X’. This is also
true when performing the prediction based on f mappings
of the input and when training a mapping from X to)»
under the f distance on the resulting avatar. This situation
calls for the use of unsupervised domain adaptation (Sec. 2)
to learn a mapping from X to), by adapting a mapping
from);. Despite some effort, applying the domain adap-
tation method of [6] did not result in satisfactory results
(Tab. 1 and supplementary). The best architecture found for
this network follows the framework of domain-adversarial
neural networks [6]. Our implementation consists of a fea-
ture network p that resembles our network c - with 4 con-
volution layers, a label predictor [which consists of 3 fully
connected layers, and a discriminative network d that con-
sists of 2 fully connected layers. The latter is preceded by
a gradient reversal layer to ensure that the feature distribu-
tions of both domains are made similar. In both [and d,
each hidden layer is followed by batch normalization.

Human rating Finally, we asked a group of 20 volunteers
to select the better emoji, given a photo from celebA and
two matching emoji: one created by the expert annotators
and one created by TOS (eoco). The raters were told that
they are presented with the results of two algorithms for au-
tomatically generating emoji and are requested to pick their
favorable emoji for each image. The images were presented
printed out, in random order, and the raters were given an
unlimited amount of time. In 39.53% of the answers, the
TOS emoji was selected. This is remarkable considering
that in a good portion of the celebA emoji, the TOS created
very dark emoji in an unfitting manner (since f is invariant
to illumination and since the configuration has many more
dark skin tones than lighter ones). TOS, therefore, not only
provides more identifiable emoji, but is also very close to be
on par with professional annotators. It is important to note
that we did not compare to DTN in this rating, since DTN
does not create a configuration vector, which is needed for
avatar applications (Fig 1).

Multiple Images Per Person Following [23], we evaluate
the results obtained per person and not just per image on the
Facescrub dataset [19]. For each person ¢, we considered
the set of their images X, and selected the emoji that was

1536

DTN
Blf(x})

DTN
Bifix})

TOS
gifix))

TOS
elclglfix)))

Manual
Emaiji

Input
Image

A
@)y

&

]

%
%
&

most similar to their source image, i.e., the one for which:
argmin,c x_|[f(z) — f(e(c(G(z))))||- The qualitative re-
sults are appealing and are shown in Fig. 7.

4.3. VR Avatars

We next apply the proposed TOS method to a com-
mercial avatar generator engine, see Fig. 6(c). We sam-
ple random parameterizations and automatically align their
frontally-rendered avatars into 64 x 64 RGB images to form
the training set t. We then train a CNN e to mimic this
engine and generate such images given their parameteriza-
tion. Using the same architectures and configurations as in
Sec. 4.2, including the same training set s, we train g and ¢
to map natural facial photographs to their engine-compliant
set of parameters. We also repeat the same identification
experiment and report median rankings of the analog exper-
iments, see Tab. 1(right). The 3D avatar engine is by design
not as detailed as the 2D emoji one, with elements such as
facial hair still missing and less part shapes available. In ad-
dition, the avatar model style is more generic and focused
on real time puppeteering and not on cartooning. Therefore,
the overall numbers are lower for all methods, as expected.
TOS seems to be the only method that is able to produce

TOS
gifix))

TOS
elc(glf(xi)

TOS
30 Avatar

< Figure 6. Shown, side by side, are (a)
sample images from the CelebA dataset.
(b) emoji, from left to right: the images
created manually using a web interface (for
evaluation only), the result of DTN, and
the two results of our TOS: G(z) and then
e(c(G(z))). (c) VR avatar results: DTN,
the two TOS results, and a 3D render-
ing of the resulting configuration file. See
Tab. 1 for retrieval performance. The re-
sults of DANN [6] are not competitive and
are shown in the supplementary.

1Figure 7. Multi-image results on Face-
scrub. Shown, side by side, are (i) the
image selected to create the TOS and the
DTN emoji, (ii) the DTN emoji, and (iii)
the TOS emoji, obtained by e o co g o f.
See also Supplementary.

identifiable configurations, while the other methods lead to
ranking that is close to random.

5. Conclusions

With the advent of better computer graphics engines and
the plethora of available models, and the ability of neu-
ral networks to compare cross-domain entities, the miss-
ing element for bridging between computer vision and com-
puter graphics is the ability to link image data to a suitable
parametrization. The previously presented DTN method
created analogies without explicit supervision. Highly iden-
tifiable emoji were generated; However, emoji applications
call for parametrized characters, which can then be trans-
formed by artists to other views and new expressions. The
TOS method that we present is able to generate identifiable
emoji that are coupled with a valid configuration vector.

While TOS was presented in a way that requires the ren-
dering function e to be differentiable, working with black-
box renderers using gradient estimation techniques is a
common practice, e.g., in Reinforcement Learning, and the
simple REINFORCE [27] method can be readily used.

1537

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

[14]
[15]

[16]

(7]

(18]
[19]

(20]

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira,
and J. W. Vaughan. A theory of learning from different do-
mains. Machine Learning, 79(1-2):151-175, 2010.

K. Crammer, M. Kearns, and J. Wortman. Learning from
multiple sources. J. Mach. Learn. Res., 9:1757-1774, June
2008.

A. Dosovitskiy and T. Brox. Generating images with per-
ceptual similarity metrics based on deep networks. arXiv
preprint arXiv:1602.02644, 2016.

A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning
to generate chairs with convolutional neural networks. In
CVPR, pages 1538-1546, 2015.

T. Galanti and L. Wolf. A theory of output-side unsupervised
domain adaptation. arXiv preprint arXiv:1703.01606, 2017.
Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle,
F. Laviolette, M. Marchand, and V. Lempitsky. Domain-
adversarial training of neural networks. J. Mach. Learn. Res.,
17(1):2096-2030, 2016.

L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In CVPR, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In NIPS, pages 2672-2680. 2014.
K. Gregor, 1. Danihelka, A. Graves, D. Rezende, and
D. Wierstra. Draw: A recurrent neural network for image
generation. In /CML, pages 1462-1471, 2015.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In CVPR,
2017.

D. Jimenez Rezende, S. M. A. Eslami, S. Mohamed,
P. Battaglia, M. Jaderberg, and N. Heess. Unsupervised
learning of 3d structure from images. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems 29,
pages 4996-5004. Curran Associates, Inc., 2016.

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In ECCV, 2016.
T. D. Kulkarni, W. F. Whitney, P. Kohli, and J. Tenenbaum.
Deep convolutional inverse graphics network. In NIPS,
pages 2539-2547. 2015.

M. Lin, Q. Chen, and S. Yan. Network In Network. In ICLR,
2014.

M.-Y. Liu and O. Tuzel. Coupled generative adversarial net-
works. In NIPS, pages 469-477. 2016.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face
attributes in the wild. In Proceedings of International Con-
ference on Computer Vision (ICCV), 2015.

Y. Mansour, M. Mohri, and A. Rostamizadeh. Domain adap-
tation: Learning bounds and algorithms. In COLT - The 22nd
Conference on Learning Theory, 2009.

M. Mirza and S. Osindero. Conditional generative adversar-
ial nets. arXiv preprint arXiv:1411.1784, 2014.

H. Ng and S. Winkler. A data-driven approach to cleaning
large face datasets. In ICIP, 2014.

O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face
recognition. In British Machine Vision Conference, 2015.

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

1538

A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. arXiv preprint arXiv:1511.06434, 2015.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and
H. Lee. Generative adversarial text to image synthesis. In
ICML, 2016.

Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-
domain image generation. In International Conference on
Learning Representations (ICLR), 2017.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifica-
tion. In CVPR, 2014.

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-
ture networks: Feed-forward synthesis of textures and styl-
ized images. In ICML, 2016.

N. Wang, D. Tao, X. Gao, X. Li, and J. Li. Transductive
face sketch-photo synthesis. IEEE transactions on neural
networks and learning systems, 24(9):1364-1376, 2013.

R. J. Williams. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8:229-256, 1992.

Y. Zhang, N. Wang, S. Zhang, J. Li, and X. Gao. Fast face
sketch synthesis via kd-tree search. In G. Hua and H. Jégou,
editors, ECCV, 2016.

