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Abstract

Convolutional Neural Network (CNN) has led to signif-

icant progress in face recognition. Currently most CNN-

based face recognition methods follow a two-step pipeline,

i.e. a detected face is first aligned to a canonical one pre-

defined by a mean face shape, and then it is fed into a

CNN to extract features for recognition. The alignment step

transforms all faces to the same shape, which can cause

loss of geometrical information which is helpful in distin-

guishing different subjects. Moreover, it is hard to define

a single optimal shape for the following recognition, since

faces have large diversity in facial features, e.g. poses, illu-

mination, etc. To be free from the above problems with an

independent alignment step, we introduce a Recursive Spa-

tial Transformer (ReST) module into CNN, allowing face

alignment to be jointly learned with face recognition in an

end-to-end fashion. The designed ReST has an intrinsic re-

cursive structure and is capable of progressively aligning

faces to a canonical one, even those with large variations.

To model non-rigid transformation, multiple ReST modules

are organized in a hierarchical structure to account for dif-

ferent parts of faces. Overall, the proposed ReST can han-

dle large face variations and non-rigid transformation, and

is end-to-end learnable and adaptive to input, making it an

effective alignment-free face recognition solution. Exten-

sive experiments are performed on LFW and YTF datasets,

and the proposed ReST outperforms those two-step meth-

ods, demonstrating its effectiveness.

1. Introduction

Face recognition is one of the most important applica-

tions of computer vision. The task is to recognize or identify

a given subject based on the face appearance. As with many

other vision tasks, face recognition has benefited from the

Figure 1. Conventional face recognition pipeline

powerful deep learning models, particularly Convolutional

Neural Network (CNN), and has met prominent boost of

recognition accuracy [16, 14, 17]. Though equipped with

new models, most CNN-based face recognition approaches

still follow the conventional recognition pipeline. As illus-

trated in Fig.1, given an input image, face detection is first

performed to obtain the bounding box of each face. Then

the detected faces are aligned to a canonical one for more

robust feature extraction, and finally the aligned faces are

used to recognize the subjects.

In the step of face alignment, detected faces are trans-

formed to a canonical one according to the affine rela-

tionships between their facial landmarks and a pre-defined

mean shape. Since inferring the affine transformation is

trivial, the main task of alignment is to predict the posi-

tion of facial landmarks (i.e. face shape) with the face

appearance as input. Typical face alignment methods in-

clude Active Shape Model (ASM), Active Appearance

Model (AAM), which employ Principal Component Anal-

ysis (PCA) to build statistical models of face shape and ap-

pearance. More recently, there have been methods exploit-

ing deep neural networks to model the regression from face

appearance to face shape [15, 23], and they can achieve high

prediction accuracy even in the presence of large variations

due to pose, expression, etc.

Taking aligned faces as input, many approaches have

been designed for face recognition. Previous works mainly

employ hand-crafted features, e.g. Gabor [11] and Local

Binary Patterns (LBP) [1], and linear models, as in the clas-

sic Eigenfaces [19] and Fisherfaces [2]. In recent research,

deep learning methods have shown great superiority over
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previous ones by using learned representations and highly

non-linear models [17, 16, 14]. The pioneering DeepFace

[17] adopts CNN with locally connected layers, and it uses

a 3D alignment model to transform all detected faces to

the frontal view before they are fed into the network. The

DeepID series [16] learn an ensemble of neural networks

with different local face patches aligned in different ways,

which provides a rich set of features for face verification.

FaceNet [14] directly learns a mapping from face images

to a compact Euclidean space where distances directly cor-

respond to a measure of face similarity. PAMs [12] learns

Pose-Aware Models (PAM) for frontal, half-profile and full-

profile faces respectively to handle pose variations.

As a prerequisite step for face recognition in most cases,

face alignment helps improve the robustness of recognition,

but it also brings issues which lie in two folds. First, after

faces are aligned to the canonical one, the positions of land-

marks on all face images are almost identical. While varia-

tions between faces including those in rotation, pose and ex-

pression, which are less irrelevant to subject identification,

are eliminated, some identification-relevant characteristics

are also weakened, e.g. the geometrical structure formed by

facial landmarks. Second, though the prior alignment aims

to assist recognition by removing identification-irrelevant

variations, alignment and recognition are optimized accord-

ing to different objectives when treated separately as two

independent steps. Therefore, the transformation of align-

ing to a pre-defined mean shape may be suboptimal for the

final recognition. Moreover, it is hard to define a single opti-

mal shape for face recognition in all scenarios, since people

have great diversity in facial characteristics.

One way to deal with the problems caused by the two-

step pipeline is to directly discard the alignment step and

perform face recognition with unaligned detected faces, as

is done in FaceNet [14]. In order to cover as many face

variations as possible and build a robust recognition system

without alignment, FaceNet uses a tremendous amount of

data for training, i.e. 100M-200M face images consisting

of about 8M different identities. Considering the expensive

cost of dealing with such big data, this solution is not eco-

nomical and hardly favorable.

The spatial transformer [7] is a learnable module which

explicitly allows spatial manipulations, e.g. affine transfor-

mation, of data within CNNs. The Spatial Transformer Net-

work (ST-Net) can automatically learn an optimal transfor-

mation for classification task and has achieved state-of-the-

art performance on digital number recognition. But since

spatial transformer can only model linear affine transforma-

tions, it is still hard for ST-Net to learn complex variations,

especially non-rigid ones.

Inspired by spatial transformer, we design a novel Recur-

sive Spatial Transformer (ReST) module for CNN which

allows face alignment and recognition to be jointly opti-

Figure 2. Examples of aligned faces in each recursion of ReST.

mized in one network in an end-to-end fashion. ReST is

able to model complex transformations in a progressive

way. As illustrated in Fig.2 and Fig.3, given a detected face,

ReST transforms it recursively to make it more adequate

for recognition. In each recursion, a further transformation

is generated and performed based on the previously trans-

formed face to get one step closer to the optimal one. In

this way, large variations can be handled progressively, thus

improving the robustness of the model to large variations

among faces. Furthermore, to model non-linear, i.e. non-

rigid, variations, the proposed ReST is extended to a hierar-

chical form (HiReST) and multiple ReST modules are used

to account for different local face regions. With the whole

face divided into different local regions in different granu-

larity, the variations in each local region are approximately

rigid and thus can be modeled as an affine transformation

by a single ReST. During learning, both the transformation

parameters and the hierarchical structure are automatically

optimized according to the recognition objective, leading

to more adequate alignment and more robust recognition

model. By using ReST, the face recognition process be-

comes alignment-free and the problems with the conven-

tional two-step pipeline are naturally resolved. To demon-

strate the effectiveness of the proposed ReST for face recog-

nition, extensive experiments are performed on the Labeled

Faces in the Wild dataset (LFW) [5] and YouTube Faces

dataset (YTF) [20]. And our recognition model with ReST

outperforms those two-step methods.

The rest of the paper is organized as follows. Section 2

describes the ReST module and the extended hierarchical

form. Section 3 and 4 presents experimental analysis and

evaluations. Section 5 concludes this paper.

2. Method

As mentioned, in the typical two-step methods, a face

is first aligned via an affine transformation determined from

the automatically or manually labeled facial landmarks, and

then fed into a DCNN to recognize it. By contrast, our

proposed DCNN with Recursive Spatial Transformation at-

tempts to jointly optimize the face alignment and classifica-
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Figure 3. Overview of the proposed ReST integrated in a CNN for

alignment-free face recognition.

tion within one network.

As shown in Fig.3, our approach consists of two parts,

the Recursive Spatial Transformation (ReST) followed by

the DCNN classification. Given a detected face, the ReST

endeavors to optimize an affine transformation that can

transform the detected face to a new one based on which the

following DCNN can achieve better classification objective.

The ReST and the DCNN is optimized together with one

classification objective (such as the softmax loss) in an end-

to-end scheme, therefore the aligned face achieved from the

ReST can well match the succeeding DCNN classification

and is also adaptive for each input face promising better per-

formance. The ReST is organized in a recursive structure

attempting to characterize the variations progressively for

better alignment. Besides, this ReST module can be inte-

grated into any convolutional architecture.

Hereinafter, for clear presentation, we use boldface up-

percase, boldface lowercase, and lowercase letters to denote

a matrix (e.g. A) or a function, a vector (e.g. a), and a scalar

(e.g. a) respectively.

2.1. DCNN with ReST

The most important part of our proposed method is the

ReST as the succeeding DCNN can be any kind of off-the-

shelf convolutional architecture. The goal of ReST is to

optimize a spatial transformation to align the input face im-

age. The ReST follows the recursive structure including

three parts: Convolution layers C, Localization network F

and Spatial Transformation layer T.

Given an input image X ∈ R
w×h with width as w and

height as h, the convolution feature maps achieved as C(X)
through the convolutions layers are used for better repre-

sentation as they are usually more informative. Here, the

number of convolution layers can be one or more depend-

ing on the difficulty of the problem. Furthermore, the local-

ization layer predicts the spatial transformation parameter

θ ∈ R
2×3 by taking the feature maps C(X) as input:

θ = F(C(X)). (1)

The localization layer F is usually designed as fully con-

nected layer for regression. Here θ is a 6-dimensional

parameters of 2D affine transformation including rotation,

scale and translation as below:

θ =

[

θ11 θ12 θ13
θ21 θ22 θ23

]

(2)

Finally, the spatial transformation layer produces the

transformed feature map by sampling from the input X ac-

cording to the spatial transformation parameter θ, formu-

lated as T(X,θ). The new face image can be further trans-

formed by feeding it into this pipeline again, forming a re-

cursive structure ReST. For the ith (i = 1, 2, · · · ,K) recur-

sion, we have:

Xi = T(Xi−1,θi−1), (3)

θi = F(C(Xi)) (4)

where X0 = X,θ0 = I, I is the identity matrix, and K is

the maximum number of recursion. For image Xi−1, the

spatial transformation T with parameter θi−1 is computed

as follows:

(

xi

yi

)

= θi−1





xi−1

yi−1

1



 (5)

where (xi, yi) is the position index of a pixel in Xi.

With the transformed face image XK from the last recur-

sion, any kind of convolutional neural network structure can

be exploited, formulating an end-to-end learning framework

integrating both the alignment and recognition. For exam-

ple, XK can be followed by an AlexNet [9] with softmax

loss. In this whole network, the ReST and AlexNet are op-

timized together under the same softmax loss, so the ReST

can align the input face image X into a new one which is

best suitable for the following DCNN promising better clas-

sification performance. The derivatives of feedforward and

feedbackward of the ST are the same as that in [7], and

please refer to [7] for more details. An illustration of the

recursively transformed face image is shown in Fig.2.

2.2. DCNN with Hierarchical ReST

As we know, the face variations are generally non-rigid

and facial deformation caused by pose and expression can

not fully modeled by a linear affine transformation in ReST.

To well characterize the complex non-rigid variations, fol-

lowing the divide and conquer strategy we further designs

Figure 4. The structure of HiReST-3
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Figure 5. The structure of HiReST-9

a hierarchical ReST as shown in Fig.5, referred as HiReST.

In HiReST, the whole face is divided into several hierar-

chical regions, and each region is equipped with a ReST

which is used to determine rigid area and its correspond-

ing spatial transformation parameters. As observed in the

experiments, the preceding ReSTs characterize those major

affine transformation, while the succeeding ReSTs charac-

terize those non-rigid transformation by modeling part of it

as rigid affine transformation within a smaller region.

We take the AlexNet as an exemplar DCNN architecture

to illustrate two DCNN with hierarchical ReST used in this

work, HiReST-9 in Fig.5 and HiReST-3 in Fig.4. HiReST-9

is a typical hierarchical structure with three regions in each

layer and two layers in total. Straightforwardly, the sec-

ond layer can directly take the aligned image from the first

layer as input, but generally the second layer can also take

the convolution feature maps of the aligned image as in-

put such as that shown in Fig.5. HiReST-3 is a degraded

version where only one layer with three regions, and this

version is suitable for those scenarios with moderate vari-

ations. For both HiReSTs, each ReST in the hierarchical

structure is initialized with an empirically defined region as

shown in the figures, and after that the whole end-to-end

network will automatically adjust the region (including the

position, scale, rotation etc.) for each ReST according to the

objective of the whole network to promise an optimal region

and affine transformation. An illustration of the recursively

transformed face image is shown in Fig.6.

Compared with the baseline AlexNet, HiReST-9 and

HiReST-3 have more complex structure, however the com-

putational complexity of the network excluding the ReST,

i.e., just the DCNN part, only a little bit increases as shown

in Table. 1. In the next section, we will describe a speed

up method for ReST, named as Fast ReST. With the fast

ReST, the computational complexity of our whole network

and that of the AlexNet are roughly comparable. In other

words, our proposed DCNN with Hierarchical ReST can

achieve better performance efficiently.

Figure 6. Examples of aligned faces in each recursion of Hierar-

chical ReST.

2.3. Fast ReST

To make the ReST more efficient, we speed up it from

two aspects. Firstly, we share several convolution layers

between the ReST and the following DCNN. For example,

in ReST the first two convolution layers of the DCNN are

shared with the ReST as the first two convolution layers are

more representative than discriminative so they can be used

as the common layer of both ReST and DCNN.

Secondly, we observe that the first several recursions

usually characterize those major transformation, such as ro-

tation. For these major transformation, convolution feature

maps from the transformed image are similar as directly

transforming the convolution feature maps, i.e.,

C(T(Xi,θi)) ≈ T(C(Xi),θi) (6)

Therefore, in the first several recursions, e.g. k (1 < k ≤

K), the spatial transformation is applied on the convolu-

tion feature maps rather the face image to avoid the time-

consuming convolution operations as follows:

Xi =

{

T(X,θi), i = k + 1
T(Xi−1,θi−1), i > k + 1

(7)

θi =











θi−1∗

[

F(T(C(X),θi−1))

0 0 1

]

, 0< i≤k+1

F(C(Xi)), K >i>k+1

(8)

Briefly speaking, in the first k recursions, the convolu-

tion is computed only once, i.e. C(X), and the spatial trans-

formation is directly applied on convolution feature maps

C(X), and the spatial transformation parameters are accu-

mulated together which is applied on the input image X af-

ter the k recursion. In the succeeding (> k) recursions, the

spatial transformation achieved in each recursion is directly

applied on the transformed image from previous recursion

without accumulation since that the spatial transformations

in the late recursions are usually small so the convolution

feature maps from the transformed image are different from

that achieved by directly transforming the convolution fea-

ture maps.
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Table 1. Details of HiReST. conv[N,w,s, p] denotes a convolution layer which has N filters of size w∗w, with stride s and p pixel padding;

ReST[t,s] is a ReST with recursive times t and s denotes whether to do a average pooling after ReST; FC[N] is a fully connected layer with

N units; and max[w,s] is a w ∗ w max-pooling with stride s. NUM is the number of face identities on the training set. All the convolution

layers followed by a batch normalization [6] layer. The ReST in stage 1 of HiReST shared convolution layers each other and the ReST

in stage 3 have no convolution layers. The comp.1 is the theoretical time complexity [4] excluding the ReST compared to AlexNet and

comp.2 is the theoretical time complexity when taking ReST in account.

Networks AlexNet ReST HiReST-3 HiReST-9

input 112*112*3

stage 1
ReST[4,0] 3*ReST[4,0] 3*ReST[4,0]

conv[96,7,3,2] conv[96,7,3,2] 3*conv[64,7,3,2] 3*conv[64,7,3,2]

stage 2
max[3,2] max[3,2] 3*max[3,2] 3*max[3,2]

conv[192,5,2,1] conv[192,5,2,1] 3*conv[96,5,2,1] 3*conv[96,5,2,1]

max[3,2] max[3,2] 3*max[3,2] 3*[max[3,2] +2*ReST[2, 1]]

stage 3

conv[384,3,1,1] conv[384,3,1,1] 3*conv[192,3,1,1] 9*conv[128,3,1,1]

conv[384,3,1,1] conv[384,3,1,1] 3*conv[192,3,1,1] 9*conv[128,3,1,1]

conv[256,3,1,1] conv[256,3,1,1] 3*conv[128,3,1,1] 9*conv[96,3,1,1]

concat[3] concat[9]

stage 4

max[3,2] max[3,2] max[3,2] max[3,2]

fc[4096] fc[4096] fc[4096] fc[4096]

fc[2048] fc[2048] fc[2048] fc[2048]

fc[NUM] fc[NUM] fc[NUM] fc[NUM]

softmax softmax softmax softmax

comp.1 1 1 0.86 1.09

comp.2 1 1.42 1.01 1.23

The above speeded up ReST from two aspects are re-

ferred as Fast ReST in this work. In most CNN archi-

tectures, the first several convolution layers account for

the major time complexity, and in our Fast ReST the first

several convolution layers are shared between the ReST

and DCNN, and also only few even no recursion (when

k = K − 1) need to re-compute these convolution feature

maps. Therefore, those DCNN architectures with the Fast

ReST only take very limited additional time computation

compared with the DCNN without ReST.

2.4. Discussion

Advantages of ReST. The proposed end-to-end learning

approach of DCNN with ReST has several advantages: 1) It

is an end-to-end learning framework, so the face alignment

is optimized to be most suitable for the following DCNN

classification. 2) The recursive structure of ReST makes the

detected face been aligned progressively, meaning an eas-

ier task in each recursion, and thus obtains a better align-

ment. 3) The hierarchically structured ReST disperses the

non-rigid transformation into multiple rigid transformations

leading to more accurate alignment. 4) The ReST is a gen-

eral module, and several existing methods can be reformu-

lated in this framework: when the depth of recursion is 0,

i.e. no recursion, the proposed ReST method degenerates to

a typical CNN, such as AlexNet; when the depth of recur-

sion is 1, the proposed method is a kind of DCNN equipped

with the so-called spatial transformer layer [7]; generally

the depth of recursion can be larger than 1 for better perfor-

mance.

Differences with the ST [7]. 1) The ST can be con-

sidered as a special case of our ReST when the recursion

depth is 1. Our recursive ST is more general with better

non-linearity for large transformations. 2) Besides, multi-

stream ST in [7] is organized in parallel structure while ours

is organized in hierarchical structure which is more flexible

for complex non-rigid transformation.

Differences with the typical two-step methods. 1) In

the typical two-step methods, the face alignment and the

face recognition is conducted separately and with different

objective, so the face alignment is not necessarily optimal

for the following recognition. In contrast, in our ReST, the

face alignment is learnable and jointly optimized with the

DCNN classification under the same objective, and thus the

optimized face alignment can well match with the classifi-

cation leading to better performance. 2) In the face align-

ment step of the two-step methods, usually all faces are

aligned to a pre-defined mean shape, which means that the

geometry information between the landmarks is lost after

alignment which actually reduces the distinguishability of

different subjects. On the contrary, in our ReST, the affine

transformation of each face is adaptively determined by the

ReST which can preserve those beneficial geometry.
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3. Experiments

In this section, we will investigate the proposed DCNN

with ReST by evaluating the performance w.r.t. different ar-

chitectures and comparing with the state-of-the-art methods

on two wild challenging datasets.

3.1. Datasets and Experimental Settings

In all experiments, three wild face datasets are used,

i.e., CASIA-WebFace [21], Labeled Faces in the Wild

database(LFW) [5] and YouTube Faces(YTF) dataset [20].

Among them, the CASIA-WebFace is used for training,

LFW and YTF are used for testing.

The CASIA-WebFace dataset [21] is a large-scale

dataset containing about 10,575 subjects and 500,000 im-

ages from Internet. This unconstrained dataset has acceler-

ated the development of face recognition in the wild.

The LFW dataset [5] is a large dataset collected in the

unconstrained environment for evaluating face verification

in the wild, which has 13,233 images from 5,749 individu-

als. On this dataset, we follow the standard evaluation pro-

tocol of unrestricted with labeled outside data, i.e., training

on the outside labeled CASIA-WebFace, and testing on the

10 folds verification set in view 2 of LFW. For this face ver-

ification evaluation, the performance is reported in terms of

the mean accuracy (mAC) according to the standard pro-

tocol. Furthermore, Best Rowden et al. develop a face

identification protocol on this LFW dataset [3], including

close-set face identification measured by rank-1 recognition

rate and open-set face identification measured by the Detec-

tion and Identification Rate (DIR) as well as False Alarm

Rate (FAR). This identification protocol is also used for the

evaluation. More details about the standard protocol can be

found in [5] and [3].

The YTF dataset [20] is a large unconstrained video

dataset which collects 3,425 YouTube videos of 1,595 sub-

jects(a subset of the celebrities in the LFW). All the videos

were downloaded from YouTube. On the average, there are

2.15 videos for each subject and the length of each video

clip is about 181 frames. The standard protocol is similar as

that on LFW, i.e., face video verification, which consists of

5,000 video pairs organized into 10 splits. On this dataset,

the performance is also reported in terms of the mean accu-

racy (mAC) according to the standard protocol [20].

For all three datasets, we employ the SURF Cascade [10]

to do face detection, and then resize the detected face into

128 × 128. For those methods that do not need face align-

ment, the detected faces are directly used, while for those

that need prerequisite face alignment, we use the CFAN

[23] to detect five landmarks (2 eye centers, 1 nose tip, and 2

mouth corners) and then align the face images via the affine

transformation according to the detected facial landmarks.

In all experiments, for our proposed ReST, the DCNN

follows the AlexNet architecture [9]. Three different ar-

Table 2. Face verification and open-set face identification of the

proposed ReST on LFW dataset w.r.t. different numbers of recur-

sions.

#Recursions mAC(%)
DIR(%)@ DIR(%)

FAR=1% FAR=5‰

0 97.37 ± 0.13 53.3 48.3

1 98.03 ± 0.26 60.4 53.0

2 98.08 ± 0.22 61.3 55.1

3 98.25 ± 0.21 64.5 59.4

4 98.38 ± 0.15 65.4 60.9

5 98.20 ± 0.28 64.0 58.7

chitectures are investigated, i.e. ReST, HiReST-3, and

HiReST-9, and the detailed network structures are shown

in Table 1. Fast-ReST is employed for all architectures with

k = K as illustrated in Sec. 2.3. All models are trained

on CASIA-WebFace and tested on LFW and YTF. Source

code will be available along with this work.

3.2. Investigation of ReST w.r.t. Different Settings

3.2.1 Depth of Recursion for ReST.

One of the most important parameters in our ReST is the

number of recursion as it determines the fitting ability of

the ReST. Here, we evaluate the performance of ReST w.r.t.

the number of recursion on the LFW dataset. The ReST

is equipped with AlexNet without hierarchical structure, as

shown in Fig.3. The results are shown in Table.2. When

the number of recursion is 0, i.e., the DCNN with no recur-

sive ReST, the network actually degenerates to the AlexNet

itself. When with only one recursion, our ReST degen-

erates to the ST-Net [7]. The proposed ReST with more

than one recursions outperforms it with no or only one re-

cursions, demonstrating the effectiveness of our recursive

spatial transformations. Besides, the performance increases

when with more recursions benefited from the progressively

aligning the detected face promising a better transformed

face for the following DCNN, but a little degenerates when

with too many recursions as only very little variations are

left to characterize which is hard to formulate a reliable

transformation. In the following experiments, the number

of recursions is set as 4 for all ReSTs.

3.2.2 HiReST for Alignment-free Face Recognition.

In the HiReST, the hierarchical structure plays an impor-

tant role as it determines the grain of the rigid transfor-

mations. Here, we compare three different hierarchical

structures, ReST (i.e., no hierarchy), HiReST-3 (1-layered

hierarchy), and HiReST-9 (2-layered hierarchy). In the

HiReST, there are two factors that could affect the perfor-

mance, i.e. the hierarchy and the recursive ST. For com-

prehensive comparison, we also evaluate the DCNN with
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Table 3. Face verification and open-set face identification of the proposed HiReST on LFW dataset w.r.t. different hierarchical structures

with and without alignment respectively.

Method

With Alignment (0 recursion) Alignment-free (4 recursions)

mAC(%)
DIR(%)@ DIR(%)@

mAC(%)
DIR(%)@ DIR(%)@

FAR=1% FAR=5‰ FAR=1% FAR=5‰

AlexNet 98.06 55.2 48.6 97.37 53.3 48.3

ReST 98.06 55.2 48.6 98.38 65.4 60.9

HiReST-3 98.45 62.1 56.2 98.62 71.1 66.5

HiReST-9 98.70 63.2 58.2 98.90 77.2 72.8

Table 4. The comparisons of face verification on LFW and YTF.

Method LFW YTF #Nets #Train Images Train Align. Test Align.

DeepFace [17] 97.35 91.4 3 4M Yes Yes

DeepID2+ [16] 99.47 93.2 200 0.3M Yes Yes

FaceNet [14]+Align. 99.63 95.1 1 200M No Yes

VGG [13] 97.27 91.6 1 2.6M No Yes

VGG [13]+Embed. 98.95 97.3 1 2.6M No Yes

FaceNet [14] 98.87 - 1 200M No No

HiReST-9+(Ours) 99.03 95.4 1 0.5M No No

the same hierarchy structure but without ReST, i.e. setting

the recursion number as 0 based on the pre-aligned face im-

ages. When with no recursion the ReST degenerates to the

AlexNet, meaning the same performance. All results are

shown in Table 3. From the comparisons, we can see that

the proposed HiReST which models the face alignment and

recognition together in an end-to-end framework performs

much better than those two-steps methods with the same

architecture, with an improvement even up to 14% under

the open-set identification protocol with HiReST architec-

ture. On the more challenging IJB-A [8] dataset, HiReST-

9 achieves significant improvement on both verification

and recognition tasks, up to 18.3%(TAR@FAR=0.001),

6.4%(TAR@FAR=0.01), and 2.6%(Rank-1) compared with

AlexNet. Besides, the HiReST-9 performs the best demon-

strating the effectiveness of the proposed hierarchical spa-

tial transformation module as it can flexibly characterize

those non-rigid transformations. These comparisons also

show that the proposed ReST or HiReST is an effective end-

to-end framework for alignment-free face recognition.

4. Comparison with Existing Methods

Furthermore, the proposed ReST is compared with

the state-of-the-art methods, including DeepFace [17],

DeepID2+ [16], FaceNet [14], VGG [13], COTS [3], and

WST Fusion [18] on both LFW and YTF datasets. As most

of these Deep networks are much deeper than the AlexNet,

we modify the AlexNet to a deeper one, by replacing the

5×5 filters in HiReST-9 with two 3×3 filters and inserting

a 1×1 convolution layer before each 3×3 convolution layer

following the work [22]. This deeper structure of HiReST-9

is denoted as HiReST-9+, and it has almost the same com-

plexity as HiReST-9.

The comparisons for face verification on LFW and YTF

are shown in Table 4. Among these methods, only FaceNet

and our HiReST are fully alignment-free, i.e. both training

and testing data are not pre-aligned, and our method outper-

forms FaceNet even with much less training data. Besides,

our method outperforms DeepFace and VGG, and is com-

parable to DeepID2+ which ensembles about 200 networks.

Moreover, the proposed method is also compared with

the state-of-the-art methods for face identification on LFW

as shown in Table 5. Our method achieves the best per-

Table 5. The performance of closed-set and open-set face identifi-

cation on LFW.

Method Rank-1(%)
DIR(%)@

#Nets
FAR=1%

COTS-s1 [3] 56.7 25 1

COTS-s1+s4 [3] 66.5 35 2

DeepFace [17] 64.9 44.5 3

WST Fusion [18] 82.5 61.9 1

DeepID2+ [16] 95.0 80.7 200

HiReST-9+(Ours) 93.4 80.9 1
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formance of open-set face identification, and in the experi-

ments of closed-set face identification, our method outper-

forms COTS, DeepFace and WST Fusion. As observed,

our method is only a little worse than DeepID2+, but our

method uses only one network and is fully alignment-free.

As seen from these comparisons, our proposed ReST

method achieves quite promising performance for the to-

tally alignment-free face recognition, demonstrating the ef-

fectiveness of the proposed.

5. Conclusions and Future Works

In this work, we propose a Recursive Spatial Trans-

former (ReST) module in the DCNN architecture forming

an end-to-end learning framework which can jointly op-

timize the face alignment and face recognition under the

same objective for alignment-free face recognition. The

proposed ReST is recursive, learnable, and adaptive for

each input face image. Moreover, it it applicable for non-

rigid transformation by being designed hierarchically , and

thus make the HiReST an effective alignment-free face

recognition model. As evaluated on several datasets, the

proposed HiReST outperforms those two-steps methods.

In future, we will endeavor to design non-linear transfor-

mation rather than affine transformation in the end-to-end

learning framework to better characterize those quite chal-

lenging variations.
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