
Sampling Matters in Deep Embedding Learning

Chao-Yuan Wu∗

UT Austin

cywu@cs.utexas.edu

R. Manmatha

A9/Amazon

manmatha@a9.com

Alexander J. Smola

Amazon

smola@amazon.com

Philipp Krähenbühl

UT Austin

philkr@cs.utexas.edu

Abstract

Deep embeddings answer one simple question: How similar

are two images? Learning these embeddings is the bedrock

of verification, zero-shot learning, and visual search. The

most prominent approaches optimize a deep convolutional

network with a suitable loss function, such as contrastive

loss or triplet loss. While a rich line of work focuses solely

on the loss functions, we show in this paper that selecting

training examples plays an equally important role. We pro-

pose distance weighted sampling, which selects more infor-

mative and stable examples than traditional approaches. In

addition, we show that a simple margin based loss is suf-

ficient to outperform all other loss functions. We evaluate

our approach on the Stanford Online Products, CAR196,

and the CUB200-2011 datasets for image retrieval and

clustering, and on the LFW dataset for face verification.

Our method achieves state-of-the-art performance on all of

them.

1. Introduction

Models that transform images into rich, semantic repre-

sentations lie at the heart of modern computer vision, with

applications ranging from zero-shot learning [5, 41] and vi-

sual search [3, 10, 22, 29], to face recognition [6, 23, 25, 28]

or fine-grained retrieval [22, 28, 29]. Deep networks trained

to respect pairwise relationships have emerged as the most

successful embedding models [4, 6, 25, 34].

The core idea of deep embedding learning is simple: pull

similar images closer in embedding space and push dissim-

ilar images apart. For example, the contrastive loss [11]

forces all positives images to be close, while all negatives

should be separated by a certain fixed distance. However,

using the same fixed distance for all images can be quite

restrictive, discouraging any distortions in the embedding

space. This motivated the triplet loss, which only requires

negative images to be farther away than any positive images

on a per-example basis [25]. This triplet loss is currently

∗Part of this work performed while interning at Amazon.

among the best-performing losses on standard embedding

tasks [22, 25, 45]. Unlike pairwise losses, the triplet loss

does not just change the loss function in isolation, it changes

the way positive and negative example are selected. This

provides us with two knobs to turn: the loss and the sam-

pling strategy. See Figure 1 for an illustration.

In this paper, we show that sample selection in embed-

ding learning plays an equal or more important role than

the loss. For example, different sampling strategies lead to

drastically different solutions for the same loss function. At

the same time many different loss functions perform sim-

ilarly under a good sampling strategy: A contrastive loss

works almost as well as the triplet loss, if the two use the

same sampling strategy. In this paper, we analyze exist-

ing sampling strategies, and show why they work and why

not. We then propose a new sampling strategy, where sam-

ples are drawn uniformly according to their relative distance

from one another. This corrects the bias induced by the

geometry of embedding space, while at the same time en-

suring any data point has a chance of being sampled. Our

proposed sampling leads to a lower variance of gradients,

and thus stabilizes training, resulting in a qualitatively bet-

ter embedding irrespective of the loss function.

Loss functions obviously also matter. We propose a sim-

ple margin-based loss as an extension to the contrastive loss.

It only encourages all positive samples to be within a dis-

tance of each other rather than being as close as possible.

It relaxes the loss, making it more robust. In addition, by

using isotonic regression, our margin based loss focuses on

the relative orders instead of absolute distances.

Our margin based loss and distance weighted sampling

achieve state-of-the-art image retrieval and clustering per-

formance on the Stanford Online Products, CARS196, and

the CUB200-2011 datasets. It also outperforms previous

state-of-the-art results on the LFW face verification dataset

[16] using standard publicly available training data. Both

our loss function and sampling strategy are easy to imple-

ment and efficient to train.

2840



 …

ObjectiveEmbedding

CNN

CNN

CNN

Loss

Loss

Loss

 …

Sampling

Figure 1: An overview of deep embedding learning: The first stage samples images and forms a batch. A deep network then

transforms the images into embeddings. Finally, a loss function measures the quality of our embedding. Note that both the

sampling and the loss function influence the overall training objective.

2. Related Work

The idea of using neural networks to extract features that

respect certain relationships dates back to the 90s. Siamese

Networks [4] find an embedding space such that similar ex-

amples have similar embeddings and vice versa. Such net-

works are trained end-to-end, sharing weights between all

mappings. Siamese Networks were first applied to signa-

ture verification, and later extended to face verification and

dimensionality reduction [6, 11]. However, given the lim-

ited compute power at the time and their non-convex na-

ture, these approaches initially did not enjoy much atten-

tion. Convex approaches were much more popular [7, 39].

For example, the triplet loss [26, 36] is one of the most

prominent methods that emerged from convex optimization.

Given sufficient data and computational power both

schools of thought were combined into a Siamese architec-

ture using triplet losses. This leads to near human perfor-

mance in face verification [23, 25]. Motivated by the triplet

loss, some enforce constraints on even more examples. For

example, PDDM [15] and Histogram Loss [34] use quadru-

plets. Beyond that, the n-pair loss [28] and Lifted Struc-

ture [22] defines constraints on all images in a batch.

This plethora of loss functions is quite reminiscent of the

ranking problem in information retrieval. There a combina-

tion of individual, pair-wise [14], and list-wise approaches

[35] are used to maximize relevance. Of note is isotonic

regression which disentangles the pairwise comparisons for

greater computational efficiency. See [21] for an overview.

Some papers explore modeling of other properties.

Structural Clustering [29] optimizes for clustering quality.

PDDM [15] proposes a new module to model local feature

structure. HDC [41] trains an ensemble to model examples

of different “hard levels”. In contrast, here we show that

a simple pairwise loss is sufficient if paired with the right

sampling strategy.

Example selection techniques are relatively less studied.

For the contrastive loss it is common to select from all posi-

ble pairs at random [3, 6, 11], and sometimes with hard

negative mining [27]. For the triplet loss, semi-hard neg-

ative mining, first used in FaceNet [25], is widely adopted

[22,23]. Sampling has been studied for stochastic optimiza-

tion [43] with the goal of accelerating convergence to the

same global loss function. In contrast, in embedding learn-

ing the sampling actually changes the overall loss function

considered. In this paper we show how sampling affects the

real-world performance of deep embedding learning.

3. Preliminaries

Let f(xi) be an embedding of a datapoint xi ∈ R
N ,

where f : RN → R
D is a differentiable deep network with

parameters Θ. Often f(xi) is normalized to have unit length

for training stability [25]. Our goal is to learn an embedding

that keeps similar data points close, while pushing dissim-

ilar datapoints apart. Formally we define the distance be-

tween two datapoints as Dij := ‖f(xi) − f(xj)‖, where

‖ · ‖ denotes the Euclidean norm. For any positive pair of

datapoints yij = 1 this distance should be small, and for

negative pair yij = 0 it should be large.

The contrastive loss directly optimizes this distance by

encouraging all positive distances to approach 0, while

keeping negative distances above a certain threshold:

ℓcontrast(i, j) := yijD
2
ij + (1− yij) [α−Dij ]

2
+ .

One drawback of the contrastive loss is that we have to se-

lect a constant margin α for all pairs of negative samples.

This implies that visually diverse classes are embedded in

the same small space as visually similar ones. The embed-

ding space does not allow for distortions.

In contrast the triplet loss merely tries to keep all posi-

tives closer to any negatives for each example:

ℓtriplet(a, p, n) :=
[

D2
ap −D2

an + α
]

+
.

This formulation allows the embedding space to be arbitrar-

ily distorted and does not impose a constant margin α.

2841



From the risk minimization perspective, one might aim

at optimizing the aggregate loss over all O(n2) pairs or

O(n3) triples respectively. That is

R(·) :=
∑

t∈{all pairs/triplets}

ℓ(·)(t).

This is computationally infeasible. Moreover, once the net-

work converges, most samples contribute in a minor way as

very few of the negative margins are violated.

This lead to the emergence of many heuristics to accel-

erate convergence. For the contrastive loss, hard negative

mining usually offers faster convergence. For the triplet

loss, it is less obvious, as hard negative mining often leads

to collapsed models, i.e. all images have the same embed-

ding. FaceNet [25] thus proposed to use a somewhat mys-

terious semi-hard negative mining: given an anchor a and a

positive example p, obtain a negative instance n via

n⋆
ap := argmin

n:D(a,n)>D(a,p)

Dan,

within a batch. This yields a violating example that is

fairly hard but not too hard. Batch construction also mat-

ters. In order to obtain more informative triplets, FaceNet

uses a batch size of 1800 and ensures that each identity has

roughly 40 images in a batch [25]. Even how to best select

triplets within a batch is unclear. Parkhi et al. [23] use on-

line selection, so that only one triplet is sampled for every

(a, p) pair. OpenFace [2] employs offline triplet selection,

so that a batch has 1/3 of images as anchors, positives, and

negatives respectively.

In short, sampling matters. It implicitly defines a rather

heuristic objective function by weighting samples. Such an

approach makes it hard to reproduce and extend the insights

to different datasets, different optimization frameworks or

different architectures. In the next section, we analyze some

of these techniques, and explain why they offer better re-

sults. We then propose a new sampling strategy that outper-

forms current state of the art.

4. Distance Weighted Margin-Based Loss

To understand what happens when sampling negative

uniformly, recall that our embeddings are typically con-

strained to the n-dimensional unit sphere S
n−1 for large

n ≥ 128. Consider the situation where the points are uni-

formly distributed on the sphere. In this case, the distribu-

tion of pairwise distances follows

q (d) ∝ dn−2
[

1− 1
4d

2
]

n−3

2 .

See [1] for a derivation. Figure 2 shows concentration of

measure occurring. In fact, in high dimensional space, q(d)
approaches N (

√
2, 1

2n ). In other words, if negative exam-

ples are scattered uniformly, and we sample them randomly,

0 0.5 1 1.5 2
0.00

0.05

0.10

Dij

n = 4 n = 8

n = 16 n = 32

n = 64 n = 128

Figure 2: Density of datapoints on the D-dimensional unit

sphere. Note the concentration of measure as the dimen-

sionality increases — most points are almost equidistant.

we are likely to obtain examples that are
√
2-away. For

thresholds less than
√
2, this induces no loss, and thus no

progress for learning. Learned embeddings follow a very

similar distribution, and thus the same reasoning applies.

See supplementary material for details.

Sampling negative examples that are too hard causes a

different issue. Consider a negative pair t := (a, n) or a

triplet t := (a, p, n). The gradient with respect to the nega-

tive example f(xn) is in the form of

∂f(xn)ℓ
(·) =

han

‖han‖
w(t)

for some function w(·) and han := f(xa) − f(xn). Note

that the first term han

‖han‖
determines the direction of the

gradient. A problem arises when ‖han‖ is small, and our

estimates of embedding are noisy. Given enough noise z
introduced by the training algorithm, direction han+z

‖han+z‖ is

dominated by noise. Figure 3a shows the nuclear norm

of the covariance matrix for the direction of gradient with

z ∼ N
(

0, σ2I
)

. We can see that when negative examples

are too close/hard, the gradient has high variance and it has

low signal to noise ratio. At the same time random samples

are often too far apart to yield a good signal.

Distance weighted sampling. We thus propose a new

sampling distribution that corrects the bias while controlling

the variance. Specifically, we sample uniformly according

to distance, i.e. sampling with weights q(d)−1. This gives

us examples which are spread out instead of being clustered

around a small region. To avoid noisy samples, we clip the

weighted sampling. Formally, given an anchor example a,

distance weighted sampling samples negative pair (a, n⋆)
with

Pr (n⋆ = n|a) ∝ min
(

λ, q−1 (Dan)
)

.

Figure 3b compares the simulated examples drawn from

different strategies along with their variance of gradients.

Hard negative mining always offers examples in the high-

variance region. This leads to noisy gradients that cannot

effectively push two examples apart, and consequently a

2842



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Distance between examples

∥ ∥

C
ov

(∇
f
(x

n
)
ℓ)
∥ ∥

∗

σ = 0.1 σ = 0.09

σ = 0.08 σ = 0.07

σ = 0.06 σ = 0.05

σ = 0.04 σ = 0.03

σ = 0.02 σ = 0.01

(a) Variance of gradient at different noise levels.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Distance between examples

Uniform sampling

Hard negative mining

Semi-hard negative mining

Distance weighted sampling

(b) Sample distribution for different strategies.

Figure 3: (a) shows the nuclear norm of a noisy gradient estimate for various levels of noise. High variance means the

gradient is close to random, while low variance implies a deterministic gradient estimate. Lower is better. Note that higher

noise levels have a lower variance at distance 0. This is due to the spherical projection imposed by the normalization.

(b) shows the empirical distribution of samples drawn for different strategies. Distance weighted sampling selects a wide

range of samples, while all other approaches are biased towards certain distances.

collapsed model. Random sampling yields only easy exam-

ples that induce no loss. Semi-hard negative mining finds a

narrow set in between. While it might converge quickly at

the beginning, at some point no examples are left within the

band, and the network will stop making progress. FaceNet

reports a consistent finding: the decrease of loss slows down

drastically after some point, and their final system took 80

days to train [25]. Distance weighted sampling offers a

wide range of examples, and thus steadily produce informa-

tive examples while controlling the variance. In Section 5,

we will see that distance weighted sampling brings perfor-

mance improvements in almost all loss functions tested. Of

course sampling only solves half of the problem, but it puts

us in a position to analyze various loss functions.

Figure 4a and Figure 4b depict the contrastive loss and

the triplet loss. There are two key differences, which in

general explain why the triplet loss outperforms contrastive

loss: The triplet loss does not assume a predefined thresh-

old to separate similar and dissimilar images. Instead, it

enjoys the flexibility to distort the space to tolerate outliers,

and to adapt to different levels of intra-class variance for

different classes. Second, the triplet loss only requires pos-

itive examples to be closer than negative examples, while

the contrastive loss spends efforts on gathering all positive

examples as close together as possible. The latter is not nec-

essary. After all, maintaining correct relative relationship is

sufficient for most applications, including image retrieval,

clustering, and verification.

On the other hand, in Figure 4b we also observe the con-

cave shape of the loss function for negative examples in the

triplet loss. In particular, note that for hard negatives (with

small Dan), the gradient with respective to negative exam-

ple is approaching zero. It is not hard to see why hard nega-

tive mining results in a collapsed model in this case: it gives

large attracting gradients from hard positive pairs, but small

repelling gradients from hard negative pairs, so all points

are eventually gathered to the same point. To make the loss

stable for examples from all distances, one simple remedy

is to use ℓ2 instead of ℓ22, i.e.

ℓtriplet,ℓ2 := (Dap −Dan + α)+ .

Figure 4c presents the loss function. Now its gradients with

respect to any embedding f(x) will always have length one.

See e.g. [12, 20] for more discussions about the benefits of

using gradients of a fixed length. This simple fix together

with distance weighted sampling already outperforms the

traditional ℓ22 triplet loss, as shown in Section 5.

Margin based loss. These observations motivate our de-

sign of a loss function which enjoys the flexibility of the

triplet loss, has a shape suitable for examples from all dis-

tances, while offering the computational efficiency of a con-

trastive loss. The basic idea can be traced back to the in-

sight that in ordinal regression only the relative order of

scores matters [17]. That is, we only need to know the

crossover between both sets. Isotonic regression exploits

this by estimating such a threshold separately and then pe-

nalizes scores relative to the threshold. We use the same

trick, now applied to pairwise distances rather than score

functions. The adaptive margin based loss is defined as

ℓmargin(i, j) := (α+ yij(Dij − β))+ .

Here β is a variable that determines the boundary between

positive and negative pairs, α controls the margin of separa-

tion, and yij ∈ {−1, 1}. Figure 4d visualizes this new loss

function. We can see that it relaxes the constraint on posi-

tive examples from contrastive loss. It effectively imposes a

2843



α

(a) Contrastive loss [11]

Dan − α Dap + α

(b) Triplet loss ℓ22 [25]

Dan − α Dap + α

(c) Triplet loss ℓ2

α αβ

(d) Margin based loss

Figure 4: Loss vs. pairwise distance. The solid blue lines show the loss function for positive pairs, the dotted green for

negative pairs. Our loss finds an optimal boundary β between positive and negative pairs, and α ensures that they are

separated by a large margin.

large margin loss on the shifted distance Dij − β. This loss

is very similar to a support vector classifier (SVC) [8].

To enjoy the flexibility as a triplet loss, we need a more

flexible boundary parameter β which depends on class-

specific β(class) and example-specific β(img) terms.

β(i) := β(0) + β
(class)
c(i) + β

(img)
i

In particular, the example-specific offset β
(img)
i plays the

same role as the threshold in a triple loss. It is infeasible

to manually select all the β
(class)
c s and β

(img)
i s. Instead, we

would like to jointly learn these parameters. Fortunately,

the gradient of β can be easily calculated as

∂βℓ
margin(i, j) = −yij1 {α > yij(β −Dij)}

It is clear that larger values of β are more desirable, since

they amount to a better use of the embedding space. Hence,

to regularize β, we incorporate a hyperparameter ν, and it

leads to the optimization problem

minimize
∑

(i,j)

ℓmargin(i, j) + ν
(

β(0) + β
(class)
c(i) + β

(img)
i

)

Here ν adjusts the difference between the number of points

that violate the margin on the left and on the right. This can

be seen by observing that their gradients need to cancel out

at an optimal β. Note that the use of ν here is very similar

to the ν-trick in ν-SVM [24].

Relationship to isotonic regression. Optimizing the mar-

gin based loss can be viewed as solving a ranking problem

for distances. Technically it shares similarity with learning-

to-rank problems in information retrieval [21, 44]. To see

this first note at optimal β, the empirical risk can be written

as

Rmargin := min
β

∑

(i,j)

(α+ yij(Dij − β))+ .

One can show that Rmargin =
∑

(i,j) ξ
∗
ij , where ξ∗s are the

solution to

minimize
∑

(i,j)∈Xpos

ξij +
∑

(k,l)∈Xneg

ξkl

subject to

Dkl + ξkl −Dij + ξij ≥ 2α, (i, j) ∈ X pos, (k, l) ∈ X neg

ξij , ξkl ≥ 0,

where X pos := {(i, j) : yij = 1}, and X neg :=
{(i, j) : yij = −1}. This is an isotonic regression defined

on absolute error. We see that the margin based loss is the

amount of “minimum-effort” updates to maintain relative

orders. It focuses on the relative relationships, i.e. focusing

on the separation of positive-pair distances and the negative-

pair distances. This is in contrast to traditional loss func-

tions such as the contrastive loss, where losses are defined

relative to a predefined threshold.

5. Experiments

We evaluate our method on image retrieval, clustering

and verification. For image retrieval and clustering, we

use the Stanford Online Products [22], CARS196 [19], and

the CUB200-2011 [37] datasets, following the experimen-

tal setup of Song et al. [22]. The Stanford Online Prod-

uct dataset contains 120,053 images of 22,634 categories.

The first 11,318 categories are used for training, and the

remaining are used for testing. The CARS196 dataset con-

tains 16,185 car images of 196 models. We use the first

98 models for training, and the remaining for testing. The

CUB200-2011 dataset contains 11,788 bird images of 200

species. The first 100 species are used for training, the re-

mainder for testing.

We evaluate the quality of image retrieval based on the

standard Recall@k metric, following Song et al. [22]. We

use NMI score, I(Ω,C)/
√

H(Ω)H(C), to evaluate the quality

of clustering alignments C = {c1, . . . , cn}, given a ground-

truth clustering Ω = {ω1, . . . , ωn}. Here I(·, ·) and H(·)
denotes mutual information and entropy respectively. We

use K-means algorithm for clustering.

2844



For verification, we train our model on the largest pub-

licly available face dataset, CASIA-WebFace [40], and eval-

uate on the standard LFW [16] dataset. The VGG face

dataset [23] is bigger, but many of its links have expired.

The CASIA-WebFace dataset contains 494,414 images of

10,575 people. The LFW dataset consists of 13,233 images

of 5,749 people. Its verification benchmark contains 6,000

verification pairs, split into 10 subsets. We select the veri-

fication threshold for one split based on the remaining nine

splits.

Unless stated otherwise, we use an embedding size of

128 and an input image size of 224 × 224 in all exper-

iments. All models are trained using Adam [18] with a

batch size of 200 for face verification, 80 for Stanford On-

line Products, and 128 for other experiments. The net-

work architecture follows ResNet-50 [13]. To accelerate

training, we use a simplified version of ResNet-50 in the

face verification experiments. Specifically, we use only

64, 96, 192, 384, 768 filters in the 5 stages respectively, in-

stead of the originally proposed 64, 256, 512, 1024, 2048
filters. We did not observe any obvious performance degra-

dations due to the change. Horizontal mirroring and random

crops from 256× 256 are used for data augmentation. Dur-

ing testing we use a single center crop. Face images are

aligned by MTCNN [42]. When alignment fails, we use

a center crop. Following FaceNet [25], we use α = 0.2,

and for the margin based loss we initialize β(0) = 1.2 and

β(class) = β(img) = 0.

Note that some previous papers use the provided bound-

ing boxes while others do not. To fairly compare with previ-

ous methods, we evaluate our methods on both the original

images and the ones cropped by bounding boxes. For the

CARS196 dataset we scale the cropped images to 256×256.

For CUB200, we scale and pad the images such that their

longer side is 256 pixels, keeping the aspect ratio fixed.

Our batch construction follows FaceNet [25]. We use

m = 5 positive images per class in a batch. All positive

pairs within a batch are sampled. For each example in a

positive pair, we sample one negative pair. This ensures

that the number of positive and negative pairs are balanced,

and every example belongs to the same number of positive

pairs and the same number of negative pairs.

5.1. Ablation study

We start by understanding the effect of the loss function,

the adaptive margin and the specific functional choice. We

focus on Stanford Online Products, as it is the largest among

the three image retrieval datasets. Note that image retrieval

favors triplet losses over contrastive losses, since only rela-

tive relationships matter. Here all models are trained from

scratch. Since different methods converge at different rates,

we train all methods for 100 epochs, and report the perfor-

mance at their best epoch rather than at the end of training.

k 1 10 100 1000

Random

Contrastive loss [11] 30.1 51.6 72.3 88.4

Margin 37.5 56.3 73.8 88.3

Semi-hard

Contrastive loss [11] 49.4 67.4 81.8 92.1

Triplet ℓ22 [25] 49.7 68.1 82.5 92.9

Triplet ℓ2 47.4 67.5 83.1 93.6

Margin 61.0 74.6 85.3 93.6

Distance weighted

Contrastive loss [11] 39.2 60.8 79.1 92.2

Triplet ℓ22 [25] 53.4 70.8 83.8 93.4

Triplet ℓ2 54.5 72.0 85.4 94.4

Margin 61.7 75.5 86.0 94.0

Margin (pre-trained) 72.7 86.2 93.8 98.0

Table 1: Recall@k evaluated on Stanford Online Products.

The bold numbers indicate the best and the underlined num-

bers indicate the second best performance.

We compare random sampling and semi-hard negative

mining to our distance weighted sampling. For semi-hard

sampling, there is no natural choice of a distance lower

bound for pairwise loss functions. In this experiment we

use a lower bound of 0.5 to simulate the positive distance in

triplet loss. We consider the contrastive loss, the triplet loss

and our margin based loss. By random sampling, we refer

to uniform sampling from all positive and negative pairs.

Since such a definition is not applicable for triplet losses,

we test only the contrastive and margin based losses.

Results are presented in Table 1. We see that given the

same loss function, different sampling distributions lead to

very different performance. In particular, while the con-

trastive loss yields considerably worse results than triplet

loss with random sampling, its performance significantly

improves when using a sampling procedure similar to triplet

loss. This evidence disproves a common misunderstand-

ing of contrastive loss vs. triplet loss: the strength of triplet

loss comes not just from the loss function itself, but more

importantly from the accompanying sampling methods. In

addition, distance weighted sampling consistently offers a

performance boost for almost all loss functions. The only

exception is the contrastive loss. We found it to be very sen-

sitive to its hyperparameters. While we found good hyper-

parameters for random and semi-hard sampling, we were

not able to find a well-performing hyperparameter for the

distance weighted sampling yet. On the other hand, margin

based loss automatically learns a suitable offset β and trains

well. Notably, the margin based loss outperforms other loss

functions by a large margin irrespective of sampling strate-

gies. These observations hold with multiple batch sizes, as

shown in Table 2. We also try pre-training our model us-

ing ILSVRC 2012-CLS [9] dataset, as is commonly done in

2845



Loss, batch size Random Semi-hard Dist. weighted

Triplet ℓ2, 40 - 44.3 52.9

Triplet ℓ2, 80 - 47.4 54.5

Triplet ℓ2, 120 - 48.8 54.7

Margin, 40 41.9 60.7 61.1

Margin, 80 37.5 61.0 61.7

Margin, 120 37.7 59.6 60.5

Table 2: Recall@1 evaluated on Stanford Online Products

for various batch sizes (40, 80, 120). Distance weighted

sampling consistently outperforms other sampling strate-

gies irrespective of the batch size. See supplementary ma-

terial for Recall@10, 100, and 1000.

Query Triplet (R@1=49.7) Margin (R@1=61.7)

Figure 5: Retrieval results for randomly chosen query im-

ages in Stanford Online Products. Our loss retrieves more

relevant images.

prior work [3,22]. Pre-training offers a 10% boost in recall.

In the following sections we focus on pre-trained models

for fair comparison.

Next, we qualitatively evaluate these methods. Figure 5

presents the retrieval results on randomly picked query im-

ages. We can see that triplet loss generally offers reasonable

results, but makes mistakes in some cases. On the other

hand, our method gives much more accurate results.

To evaluate the gains obtained by learning a flexible

boundary β, we compare models using a fixed β to models

using learned βs. The results are summarized in Table 3.

We see that the use of more flexibly class-specific β(class)

indeed offers advantages over various values of fixed β(0).

We also test using example-specific β(img), but the ex-

periments are inconclusive. We conjecture that learning

example-specific β(img) might have introduced too many

parameters and caused over-fitting.

Convergence speed. We further analyze the effects of

sampling on the convergence speed. We compare margin

based loss using distance weighted sampling with the two

most commonly used deep embedding approaches: triplet

k 1 10 100 1000

Fixed β(0)
= 0.8 61.3 79.2 90.5 97.0

Fixed β(0)
= 1.0 70.4 84.6 93.1 97.8

Fixed β(0)
= 1.2 71.1 85.1 93.2 97.8

Fixed β(0)
= 1.4 67.1 82.6 92.2 97.7

Learned β(class) 72.7 86.2 93.8 98.0

Table 3: Recall@k on Stanford Online Products for margin

based loss with fixed and learned β. Results at 8K iterations

are reported. The values of learned β
(class)
c range from 0.94

to 1.45, hence our choice for a consensus value of β(0).

0 50K 100K 150K

0.6

0.7

0.8

0.9

Iterations

Margin

Triplet

Contrastive

Figure 6: Validation accuracy curve, trained on CASIA-

WebFace and evaluated on LFW. The margin based loss

with distance weighted sampling converges quickly and sta-

bly, outperforming other methods.

loss with semi-hard sampling and contrastive loss with ran-

dom sampling. The learning curves are shown in Figure 6.

We see that triplet loss trained with semi-hard negative min-

ing converges slower as it ignores too many examples. Con-

trastive loss with random sampling converges even slower.

Distance weighted sampling, which uses more informative

and stable examples, converges faster and more accurately.

Time complexity of sampling The computational cost of

sampling is negligible. On a Tesla P100 GPU, forward and

backward pass take about 0.55 second per batch (size 120).

Sampling takes only 0.00031 second with semi-hard sam-

pling and 0.0043 second with distance weighted sampling,

even with our single-thread CPU implementation. Both

strategies take O (nm(n−m)), where n is the batch size,

and m is the number of images per class in a batch.

5.2. Quantitative Results

We now compare our approach to other state-of-the-art

methods. Image retrieval and clustering results are summa-

rized in Table 4, 5 and 6. We can see that our model achieves

the best performance in all three datasets. In particular, mar-

gin based loss outperforms extensions of triplet loss, such as

LiftedStruct [22], StructClustering [29], N-pairs [28], and

PDDM [15]. It also outperforms histogram loss [34], which

requires computing similarity histograms. Also note that

2846



k 1 10 100 1000 NMI

Histogram [34] 63.9 81.7 92.2 97.7 -

Binomial Deviance [34] 65.5 82.3 92.3 97.6 -

Triplet Semi-hard [25, 29] 66.7 82.4 91.9 - 89.5

LiftedStruct [22, 29] 62.5 80.8 91.9 - 88.7

StructClustering [29] 67.0 83.7 93.2 - 89.5

N-pairs [28] 67.7 83.8 93.0 97.8 88.1

HDC [41] 69.5 84.4 92.8 97.7 -

Margin 72.7 86.2 93.8 98.0 90.7

Table 4: Recall@k and NMI on Stanford Online Prod-

ucts [22].

k 1 2 4 8 16 NMI

Original Images

Triplet Semi-hard [25, 29] 51.5 63.8 73.5 82.4 - 53.4

LiftedStruct [22, 29] 53.0 65.7 76.0 84.3 - 56.9

StructClustering [29] 58.1 70.6 80.3 87.8 - 59.0

N-pairs [28] 71.1 79.7 86.5 91.6 - 64.0

HDC [41] 73.7 83.2 89.5 93.8 96.7 -

Margin 79.6 86.5 91.9 95.1 97.3 69.1

Cropped Images

PDDM Triple [15] 46.4 58.2 70.3 80.1 88.6 -

PDDM Quadruplet [15] 57.4 68.6 80.1 89.4 92.3 -

HDC [41] 83.8 89.8 93.6 96.2 97.8 -

Margin 86.9 92.7 95.6 97.6 98.7 77.5

Table 5: Recall@k and NMI on CARS196 [19].

k 1 2 4 8 16 NMI

Original Images

Histogram [34] 52.8 64.4 74.7 83.9 90.4 -

Binomial Deviance [34] 50.3 61.9 72.6 82.4 88.8 -

Triplet [25, 29] 42.6 55.0 66.4 77.2 - 55.4

LiftedStruct [22, 29] 43.6 56.6 68.6 79.6 - 56.5

Clustering [29] 48.2 61.4 71.8 81.9 - 59.2

N-pairs [28] 51.0 63.3 74.3 83.2 - 60.4

HDC [41] 53.6 65.7 77.0 85.6 91.5 -

Margin 63.6 74.4 83.1 90.0 94.2 69.0

Cropped Images

PDDM Triplet [15] 50.9 62.1 73.2 82.5 91.1 -

PDDM Quadruplet [15] 58.3 69.2 79.0 88.4 93.1 -

HDC [41] 60.7 72.4 81.9 89.2 93.7 -

Margin 63.9 75.3 84.4 90.6 94.8 69.8

Table 6: Recall@k and NMI on CUB200-2011 [37].

our model uses only one 128-dimensional embedding for

each image. This is much more concise and simpler than

HDC [41], which uses 3 embedding vectors for each image.

Table 7 presents results for face verification. Our model

achieves the best accuracy among all models trained on

CASIA-WebFace. Also note that here our method outper-

forms models using a wide range of training procedures.

MFM [38] use a softmax classification loss. CASIA [40]

use a combination of softmax loss and contrastive loss. N-

Model # training Accuracy Embed. # Nets

images (%) dim.

FaceNet [25] 200M 99.63 128 1

DeepFace [33] 4.4M 97.35 4096 1

MultiBatch [32] 2.6M 98.20 128 1

VGG [23] 2.6M 99.13 1024 1

DeepID2 [30] 203K 95.43 160 1

DeepID2 [30] 203K 99.15 160 25

DeepID3 [31] 300K 99.53 600 25

CASIA [40] 494k 97.30 320 1

MFM [38] 494k 98.13 256 1

N-pairs [28] 494k 98.33 320 1

Margin 494k 98.20 128 1

Margin 494k 98.37 256 1

Table 7: Face verification accuracy on LFW. We directly

compare to results trained on CASIA-WebFace, shown in

the lower part of the table. Methods shown in the upper part

use either more or proprietary data, and are listed purely for

reference.

pair [28] use a more costly loss function that is defined on

all pairs in a batch. We also list a few other state-of-the-

art results which are not comparable purely for reference.

DeepID2 [30] and DeepID3 [31] use 25 networks on 25

face regions based on positions of facial landmarks. When

trained using only one network, their performance degrades

significantly. Other models such as FaceNet [25] and Deep-

Face [33] are trained on huge private datasets.

Overall, our model achieves the best results on all

datasets among all compared methods. Notably, our method

uses the simplest loss function among all — a simple variant

of contrastive loss.

6. Conclusion

We demonstrated that sampling matters as much or more

than loss functions in deep embedding learning. This should

not come as a surprise, since the implicitly defined loss

function is (quite obviously) a sample weighted object.

Our new distance weighted sampling yields a perfor-

mance improvement for multiple loss functions. In addi-

tion, we analyze and provide a simple margin-based loss

that relaxes unnecessary constraints from traditional con-

trastive loss and enjoys the flexibility of the triplet loss. We

show that distance weighted sampling and the margin based

loss significantly outperform all other loss functions.

Acknowledgment

We would like to thank Manzil Zaheer for helpful discus-

sions. This work was supported in part by Berkeley Deep-

Drive, and an equipment grant from Nvidia.

2847



References

[1] The sphere game in n dimensions. http://faculty.

madisoncollege.edu/alehnen/sphere/hypers.htm.

Accessed: 2017-02-22. 3

[2] B. Amos, B. Ludwiczuk, and M. Satyanarayanan. Openface: A

general-purpose face recognition library with mobile applications.

Technical report, CMU, 2016. 3

[3] S. Bell and K. Bala. Learning visual similarity for product design

with convolutional neural networks. ACM TOG, 2015. 1, 2, 7

[4] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,

E. Säckinger, and R. Shah. Signature verification using a ”siamese”

time delay neural network. IJPRAI, 1993. 1, 2

[5] M. Bucher, S. Herbin, and F. Jurie. Improving semantic embedding

consistency by metric learning for zero-shot classiffication. In ECCV,

2016. 1

[6] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity met-

ric discriminatively, with application to face verification. In CVPR,

2005. 1, 2

[7] P. Comon. Independent component analysis, a new concept? Signal

processing, 1994. 2

[8] C. Cortes and V. Vapnik. Support-vector networks. Machine learn-

ing, 1995. 5

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Im-

agenet: A large-scale hierarchical image database. In CVPR, 2009.

6

[10] M. Hadi Kiapour, X. Han, S. Lazebnik, A. C. Berg, and T. L. Berg.

Where to buy it: Matching street clothing photos in online shops. In

ICCV, 2015. 1

[11] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by

learning an invariant mapping. In CVPR, 2006. 1, 2, 5, 6

[12] E. Hazan, K. Levy, and S. Shalev-Shwartz. Beyond convexity:

Stochastic quasi-convex optimization. In NIPS, 2015. 4

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for

image recognition. In CVPR, 2016. 6

[14] R. Herbrich, T. Graepel, and K. Obermayer. Support vector learning

for ordinal regression. In ICANN, 1999. 2

[15] C. Huang, C. C. Loy, and X. Tang. Local similarity-aware deep fea-

ture embedding. In NIPS, 2016. 2, 7, 8

[16] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled

faces in the wild: A database for studying face recognition in uncon-

strained environments. Technical report, UMass Amherst, 2007. 1,

6

[17] T. Joachims. Optimizing search engines using clickthrough data. In

KDD, 2002. 4

[18] D. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014. 6

[19] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representa-

tions for fine-grained categorization. In Workshop on 3D Represen-

tation and Recognition, at ICCV, 2013. 5, 8

[20] K. Y. Levy. The power of normalization: Faster evasion of saddle

points. arXiv preprint arXiv:1611.04831, 2016. 4

[21] T. Moon, A. Smola, Y. Chang, and Z. Zheng. IntervalRank: Isotonic

regression with listwise and pairwise constraints. In WSDM, 2010.

2, 5

[22] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric

learning via lifted structured feature embedding. In CVPR, 2016. 1,

2, 5, 7, 8

[23] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition.

In BMVC, 2015. 1, 2, 3, 6, 8

[24] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New

support vector algorithms. Neural computation, 2000. 5

[25] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified em-

bedding for face recognition and clustering. In CVPR, 2015. 1, 2, 3,

4, 5, 6, 8

[26] M. Schultz and T. Joachims. Learning a distance metric from relative

comparisons. In NIPS, 2003. 2

[27] E. Simo-Serra, E. Trulls, L. Ferraz, I. Kokkinos, P. Fua, and

F. Moreno-Noguer. Discriminative learning of deep convolutional

feature point descriptors. In ICCV, 2015. 2

[28] K. Sohn. Improved deep metric learning with multi-class n-pair loss

objective. In NIPS, 2016. 1, 2, 7, 8

[29] H. O. Song, S. Jegelka, V. Rathod, and K. Murphy. Learnable struc-

tured clustering framework for deep metric learning. arXiv preprint

arXiv:1612.01213, 2016. 1, 2, 7, 8

[30] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face repre-

sentation by joint identification-verification. In NIPS, 2014. 8

[31] Y. Sun, D. Liang, X. Wang, and X. Tang. Deepid3: Face recognition

with very deep neural networks. arXiv preprint arXiv:1502.00873,

2015. 8

[32] O. Tadmor, T. Rosenwein, S. Shalev-Shwartz, Y. Wexler, and

A. Shashua. Learning a metric embedding for face recognition using

the multibatch method. In NIPS, 2016. 8

[33] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing

the gap to human-level performance in face verification. In CVPR,

2014. 8

[34] E. Ustinova and V. Lempitsky. Learning deep embeddings with his-

togram loss. In NIPS, 2016. 1, 2, 7, 8

[35] M. Weimer, A. Karatzoglou, and A. Smola. CoFiRank: Col-

laborative filtering for ranking. https://github.com/

markusweimer/cofirank, 2009. 2

[36] K. Q. Weinberger and L. K. Saul. Distance metric learning for large

margin nearest neighbor classification. JMLR, 2009. 2

[37] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie,

and P. Perona. Caltech-UCSD Birds 200. Technical Report CNS-

TR-2010-001, California Institute of Technology, 2010. 5, 8

[38] X. Wu, R. He, and Z. Sun. A lightened cnn for deep face representa-

tion. In CVPR, 2015. 8

[39] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance met-

ric learning with application to clustering with side-information. In

NIPS, 2002. 2

[40] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation

from scratch. arXiv preprint arXiv:1411.7923, 2014. 6, 8

[41] Y. Yuan, K. Yang, and C. Zhang. Hard-aware deeply cascaded em-

bedding. arXiv preprint arXiv:1611.05720, 2016. 1, 2, 8

[42] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and

alignment using multitask cascaded convolutional networks. IEEE

Signal Processing Letters, 2016. 6

[43] P. Zhao and T. Zhang. Stochastic optimization with importance sam-

pling for regularized loss minimization. In ICML, 2015. 2

[44] Z. Zheng, H. Zha, and G. Sun. Query-level learning to rank using

isotonic regression. In Allerton, 2008. 5

[45] B. Zhuang, G. Lin, C. Shen, and I. Reid. Fast training of triplet-based

deep binary embedding networks. In CVPR, 2016. 1

2848

http://faculty.madisoncollege.edu/alehnen/sphere/hypers.htm
http://faculty.madisoncollege.edu/alehnen/sphere/hypers.htm
https://github.com/markusweimer/cofirank
https://github.com/markusweimer/cofirank

